基因频率计算规律总结
- 格式:doc
- 大小:90.50 KB
- 文档页数:39
生物基因频率知识点总结基因频率是指在种群中特定基因的频率。
对于每一个基因座,有两个等位基因,它们分别由两条染色体上的同一位置的基因互相对应,假如在一个种群中,基因为A的个体占总数的比例为p(即AA和Aa的个体占总数的比例),基因为a的个体占总数的比例为q(即aa和Aa的个体占总数的比例),那么在这个群体中它的基因频率为p和q。
基因频率是近似地由一组统计数据推测和计算出来。
地理种群形成以后,若经过了长时间的孤立适应,并不再与其他种群随机杂交,其所有基因座都会产生一套基因频率。
这类基因频率就代表了基因组效应。
在一个给定的基因频率极其稳定的种群中的,它有其一种特定的基因型比例,这种基因型比例也被称作为基因型频率。
基因频率和基因型频率是种群基因组的重要特征,是用以揭示和数量化这些特性,解释和证明基因相关问题的基础。
本篇文章将对基因频率的定义,计算,稳定性和应用进行详细介绍。
一、基因频率的定义1.基因频率是指在给定的种群中特定基因的频率。
对于每一个基因座,有两个等位基因,它们分别由两条染色体上的同一位置的基因互相对应。
假如在一个种群中,基因为A的个体占总数的比例为p,基因为a的个体占总数的比例为q,那么在这个群体中它的基因频率为p和q。
2.基因频率可以用来描述群体内遗传变异的程度,以及基因座的基因型频率在种群中的分布。
3.基因频率是由一组统计数据推测和计算出来的。
它是种群中特定基因型的分布,是种群内基因变异的度量。
二、基因频率的计算基因频率是通过对群体进行抽样检测,统计得到的。
下面是基因频率计算的基本方法:1.对于单个基因座,有两个等位基因(比如A和a),它们分别由两条染色体上的同一位置的基因互相对应。
那么在一个种群中,对于这个基因座,基因为A的个体占总数的比例为p,基因为a的个体占总数的比例为q,那么p+q=1。
这时候,p和q就是该基因座的基因频率。
2.基因频率的计算可以通过对群体进行抽样检测,统计得到。
基因频率与基因型频率计算方法总结基因频率的计算方法可以通过对个体基因型的统计得到。
当已知一个基因有两个等位基因A和a,那么该基因的频率等于基因型AA的个体数除以总个体数加上基因型Aa的个体数除以总个体数。
数学公式可以表示为:基因频率=(2n_AA+n_Aa)/(2N),其中n_AA表示基因型AA的个体数,n_Aa表示基因型Aa的个体数,N表示总个体数。
基因型频率的计算方法可以通过对基因型的统计得到。
当已知一个基因有两个等位基因A和a,那么该基因的基因型频率等于基因型AA的个体数除以总个体数加上基因型Aa的个体数除以总个体数加上基因型aa的个体数除以总个体数。
数学公式可以表示为:基因型频率 = (n_AA +n_Aa + n_aa) / (2N),其中n_AA表示基因型AA的个体数,n_Aa表示基因型Aa的个体数,n_aa表示基因型aa的个体数,N表示总个体数。
基因频率和基因型频率的计算方法都可以使用频数统计的方法进行,即通过对一个群体中基因型的观察和统计得到。
得到基因频率和基因型频率具体步骤如下:1.收集样本:从目标群体中随机选择一定数量的个体作为样本。
2.提取DNA:从样本中提取DNA,通常使用血液、唾液或组织等。
3.PCR扩增:使用聚合酶链反应(PCR)扩增目标基因片段。
4.凝胶电泳:将PCR扩增产物用凝胶电泳分离,根据不同等位基因的大小分离出不同的带。
5. 观察分析:观察凝胶电泳结果,记录不同基因型的频数,即基因型AA、Aa和aa的个体数。
6.计算频率:根据上述公式,计算基因频率和基因型频率。
基因频率和基因型频率的计算方法都是基于一个重要的前提假设,即群体中各个个体之间的交配是随机的,并且群体中的基因频率和基因型频率不会发生变化。
实际中,由于自然选择、随机漂移、基因突变等因素的存在,群体中的基因频率和基因型频率可能会发生变化。
在实际应用中,基因频率和基因型频率的计算方法常用于研究人群中特定基因或基因型与其中一种疾病或性状的相关性。
高考生物计算公式总结8篇篇1一、遗传学部分1. 基因频率的计算:基因频率是指在一个种群中,某个基因占该种群所有等位基因的比例。
计算时,需要知道该种群中某个基因的数量除以该种群中所有等位基因的总数。
例如,假设一个种群中有100个A基因和200个a 基因,则A基因的频率为100÷300=1/3。
2. 遗传病的概率计算:对于常见的单基因遗传病,如抗维生素D佝偻病,其发病率可通过患者人数除以总人口数来计算。
例如,一个地区有10万人,其中500人患有抗维生素D佝偻病,则该病的发病率为500÷100000=1/200。
二、生物化学部分1. 酶活力的计算:酶活力是指酶催化特定反应的能力,通常以酶的浓度或活性单位来表示。
计算时,需要知道反应速率、底物浓度和酶浓度之间的关系,即Km=底物浓度/(反应速率/酶浓度)。
例如,已知某酶在底物浓度为1mM时的反应速率为1U/mL,则该酶的Km值为1mM/(1U/mL)=1mM。
2. 生物大分子的计算:对于蛋白质和核酸等生物大分子,其相对分子质量可通过氨基酸或核苷酸的数目乘以各自的相对原子质量来计算。
例如,一个由50个氨基酸组成的蛋白质,其相对分子质量为50×128=6400。
三、生态学部分1. 种群密度的计算:种群密度是指单位面积或单位体积内某个种群的数量。
计算时,需要知道该种群在一定空间内的数量和该空间的面积或体积。
例如,一个湖泊中有100只鸭子和200只天鹅,湖泊的面积为10平方公里,则鸭子的种群密度为100÷10=10只/平方公里。
2. 生物多样性的计算:生物多样性是指一个地区或全球范围内生物种类的丰富度和分布情况。
计算时,需要知道某个地区或全球范围内生物的种类数和每个种类的数量。
例如,一个地区有10种不同的植物和5种不同的动物,每种植物和动物的数量分别为100和50,则该地区的生物多样性指数为(10×100+5×50)/(10+5)=8.33。
此文档下载后即可编辑专题六基因频率的计算基因频率是指某群体中,某一等位基因在该位点上可能出现的基因总数中所占的比率。
关于基因频率的计算有下面几种类型。
规律一、已知基因型(或表现型)的个体数,求基因频率某基因(如A基因)频率=某基因(A)的数目/等位基因的总数(如A+a)即;A=A的总数/(A的总数+a的总数)= A的总数/(总个体数×2),a=1-A。
,具体过程见课本内容。
这是基因频率的定义公式....规律二、已知基因型频率,求基因频率基因型频率是指在一个进行有性生殖的群体中,不同基因型所占的比例。
某基因频率=包含特定基因的纯合体频率+杂合体频率×1/2 即:A的频率=AA基因型频率+Aa基因型频率×1/2规律三、已知基因频率,求基因型频率假设在一个随机交配的群体里,在没有迁移、突变和选择的条件下,世代相传不发生变化,计算基因频率时,就可以采用遗传平衡定律计算。
即:设A的基因频率=p,a的基因频率=q,则群体中各基因型频率为:AA=p2,Aa=2pq,aa=q2。
(p+q)²=p²+2pq+q²=1。
注意:种群自由交配(或者随机交配、或者在一个足够大的种群中)时才可用该公式,如是自交,则不能用该公式。
一般地,求基因频率时,若已知各基因型频率(随机抽出的一个样本),则只能用“规律二”计算,不能用“规律三”反过来,开平方。
开平..(或题目中只给一个基因型频率)。
方求基因频率只适用于理想种群..............例1. 如果在以下种群中,基因型AA的比例占25%,基因型Aa的比例为50%,基因型aa比例占25%,已知基因型aa的个体失去求偶和繁殖的能力,则基因A和a的频率各是多少?随机交配产生的子一代中,基因型aa的个体所占的比例为?例2.囊性纤维变性是一种常染色体遗传病。
在欧洲人群中每2500个人就有一人患此病。
如果一对健康的夫妇有一个患病的儿子,此后该女又与另一健康男子再婚,则再婚后他们生一个患此病孩子的概率是A. 1%B. 0.04%C. 3.9%D. 2%【解析】由于一对健康夫妇生了一个患病的儿子,所以该遗传病为隐性遗传病,设显性基因为A,隐性基因为a,所以这对夫妇的基因型都为Aa。
例2:人的红绿色盲是X染色体上的隐性遗传病.在人类群体中,男性中患色盲的概率约为8%,那么,在人类红绿色盲基因的频率以及在女性中色盲的患病率、携带者的频率各是多少?※【分析过程】假设色盲基因X b的频率=q,正常基因X B的频率=p。
已知人群中男性色盲概率为8%,由于男性个体Y染色体上无该等位基因,X b的基因频率与X b Y的频率相同,故X b的频率=8%,X B的频率=92%。
因为男性中的X染色体均来自于女性,所以,在女性群体中X b的频率也为8%,X B的频率也为92%.由于在男性中、女性中X B、X b的基因频率均相同,故在整个人群中X b也为8%,X B的频率也为92%。
在女性群体中,基因型的平衡情况是:p2(X B X B)+2pq(X B X b)+q2(X b X b)=1。
因此,在女性中色盲的患病率应为:q2=8%×8%=0。
0064,携带者的概率应为:2pq=2×92%×8%=0。
1472※【答案】在人类中红绿色盲基因的频率是0。
08,在女性中红绿色盲的患病率是0。
0064,携带者的频率是0。
1472.例3:让红果番茄与红果番茄杂交,F1中有红果番茄,也有黄果番茄。
(基因用R和r 表示)试问:(1)F1中红果番茄与黄果番茄的显隐性关系是什么?(2)F1中红果番茄和黄果番茄的比例是多少?(3)在F1红果番茄中杂合子占多少?纯合子占多少?(4)如果让F1中的每一株红果番茄自交,在F2中各种基因型的比例分别是多少?其中红果番茄与黄果番茄的比例是多少?(5)如果让F1中的红果番茄种植后随机交配,在F2中各种基因型的比例分别是多少?其中红果番茄和黄果番茄的比例是多少?※【分析过程】由题意可以简单地将(1)—(4)的结果分析如下:(1)红果为显性性状,黄果为隐性性状;(2)F1中红果番茄和黄果番茄的比例是3:1;(3)在F1红果番茄中杂合子占2/3,纯合子占1/3;(4)如果让F1中的每一株红果番茄自交,在F2中各种基因型的比例分别是:RR:Rr:rr=3:2:1,其中红果番茄与黄果番茄的比例是5:1;(5)对于“如果让F1中的红果番茄种植后随机交配,然后再确定F2中各种基因型的比例以及其中红果番茄和黄果番茄的比例是多少”的问题,如果按照常规分析方法,需要分析四种交配方式,即:①RR作为雄蕊分别为RR与Rr的雌蕊提供花粉;②Rr作为雄蕊分别为RR与Rr的雌蕊提供花粉。
基因频率和基因型频率的相关计算基因频率是指在一个种群中一些特定基因的存在概率。
基因频率通常用符号p表示。
对于有两种等位基因(例如A和a)的情况,p表示A基因的频率,q表示a基因的频率。
p+q=1、这是因为在一个群体或种群中只能存在这两种基因。
基因型频率是指在一个群体或种群中一些特定基因型的存在概率。
基因型频率通常用符号p²、2pq和q²表示。
p²表示AA基因型的频率,2pq表示Aa基因型的频率,q²表示aa基因型的频率。
这也是因为一个个体可以有三种基因型:AA、Aa和aa。
p² + 2pq + q² = 1基因频率和基因型频率之间存在一定的关系。
基因频率可以通过基因型频率的计算来获得。
例如,如果我们已知Aa基因型的频率为0.4,并假设种群达到了硬性平衡(不考虑突变、迁移、选择等因素),那么A基因的频率p可以通过基因型频率的公式2pq得到。
代入已知信息,就可以得出:0.4 = 2p(1-p)。
通过解这个方程,我们可以计算出A基因的频率,从而得出q基因的频率(1-p),最后可以得到基因频率。
基因频率和基因型频率的计算对于其他遗传学研究和进化生物学研究也非常重要。
它们可以帮助我们了解特定群体中的遗传多样性、基因流动和自然选择等过程。
通过观察基因型频率的变化,我们可以推断这些过程在种群中的作用。
此外,基因频率和基因型频率的计算方法也可以应用于基因频率分布的统计学研究。
我们可以通过统计分析来确定实际观测值和预期理论值之间的差异,并判断这种差异是否具有显著性。
这种统计方法有助于确定群体中的基因流动和基因漂变等因素的重要性。
总之,基因频率和基因型频率是描述一个群体或种群中基因型和基因的存在概率的重要概念。
它们在遗传学研究和进化生物学研究中起着关键作用,可以帮助我们理解群体中的遗传多样性和演化过程。
计算基因频率和基因型频率的方法可以应用于统计分析,帮助我们判断观测值与理论值之间的差异和显著性。
例2:人的红绿色盲是X染色体上的隐性遗传病。
在人类群体中,男性中患色盲的概率约为8%,那么,在人类红绿色盲基因的频率以及在女性中色盲的患病率、携带者的频率各是多少?※【分析过程】假设色盲基因X b的频率=q,正常基因X B的频率=p。
已知人群中男性色盲概率为8%,由于男性个体Y染色体上无该等位基因,X b的基因频率与X b Y的频率相同,故X b的频率=8%,X B的频率=92%。
因为男性中的X染色体均来自于女性,所以,在女性群体中X b的频率也为8%,X B的频率也为92%。
由于在男性中、女性中X B、X b的基因频率均相同,故在整个人群中X b也为8%,X B的频率也为92%。
在女性群体中,基因型的平衡情况是:p2(X B X B)+2pq(X B X b)+q2(X b X b)=1。
因此,在女性中色盲的患病率应为:q2=8%×8%=0.0064,携带者的概率应为:2pq=2×92%×8%=0.1472※【答案】在人类中红绿色盲基因的频率是0.08,在女性中红绿色盲的患病率是0.0064,携带者的频率是0.1472。
例3:让红果番茄与红果番茄杂交,F1中有红果番茄,也有黄果番茄。
(基因用R和r 表示)试问:(1)F1中红果番茄与黄果番茄的显隐性关系是什么?(2)F1中红果番茄和黄果番茄的比例是多少?(3)在F1红果番茄中杂合子占多少?纯合子占多少?(4)如果让F1中的每一株红果番茄自交,在F2中各种基因型的比例分别是多少?其中红果番茄与黄果番茄的比例是多少?(5)如果让F1中的红果番茄种植后随机交配,在F2中各种基因型的比例分别是多少?其中红果番茄和黄果番茄的比例是多少?※【分析过程】由题意可以简单地将(1)-(4)的结果分析如下:(1)红果为显性性状,黄果为隐性性状;(2)F1中红果番茄和黄果番茄的比例是3:1;(3)在F1红果番茄中杂合子占2/3,纯合子占1/3;(4)如果让F1中的每一株红果番茄自交,在F2中各种基因型的比例分别是:RR:Rr:rr=3:2:1,其中红果番茄与黄果番茄的比例是5:1;(5)对于“如果让F1中的红果番茄种植后随机交配,然后再确定F2中各种基因型的比例以及其中红果番茄和黄果番茄的比例是多少”的问题,如果按照常规分析方法,需要分析四种交配方式,即:①RR作为雄蕊分别为RR与Rr的雌蕊提供花粉;②Rr作为雄蕊分别为RR与Rr的雌蕊提供花粉。
分别将以上四种组合方式的结果计算出来后,再求其之和即为本题最终答案。
很显然,此方法比较繁琐,不小心还可能会出错。
如果采用遗传平衡定律来求解,则要简便得多。
本题的要“让F1中的红果番茄种植后随机交配”,所以其下一代的基因频率及其基因型频率的计算符合“遗传平衡定律”的使用围,所以可以应用“遗传平衡定律”来求解。
解答的过程如下:由(3)中可知,F1红果番茄的基因型频率分别为:RR=1/3,Rr=2/3由此可以推出R与r的基因频率分别为:R=p=2/3,r=q=1/3由“遗传平衡定律”得F2的各种基因型分别为:RR=p2=4/9,Rr=2pq=4/9,rr=q2=1/9其比例分别为:RR:Rr:rr=4/9:4/9:1/9=4:4:1在此基础上可以求出F2中红果番茄和黄果番茄的比例为:红果:黄果=(4/9+4/9):1/9=8:1当然,哈代——温伯格平衡定律并不能解决所有遗传概率的计算问题,如果不能满足给定的五个条件或是在相关的交配组合中不能确保某基因频率的固定数值,则不能生搬硬套,否则将会带来分析上的错误以及解题上的困难。
原文地址:经典基因频率计算4作者:xunlei对欧洲某学校的学生进行遗传调查时发现,血友病患者占0.7%(男∶女=2∶1);血友病携带者占5%,那么,这个种群的Xh的频率是( )A 2.97%B 0.7% C3.96% D 3.2%『解析』分析各基因型的频率如下(男女性别比例为1∶1):男:XhY 1.4%/3XHY (50%-1.4%/3)女:XHXh(携带者)5%XhXh 0.7%/3XHXH (50%-5%-0.7%/3)由以上数据,Xh基因的总数是1.4%/3+5%+1.4%/3因此,Xh的基因频率=(1.4%/3+5%+1.4%/3)/150%=3.96%。
上题,命题者可谓煞费苦心,障碍丛丛,难度很高;而命题者都根据“基因频率的概念”作了“完美的解答”。
正是命题人的『根据“基因频率的概念”所作的“完美的解答”』蒙蔽了众多善良的人。
然而,却也暴露了命题者知识的缺陷。
【我的见解】:⒈上题数据都为“编造”而非真实调查,所“编造”数据只是为其“命题立意”服务的,缺乏可信度。
居然还以“血友病”作题引,试问女性患者能存活多久?关键的是其编造的“样本”不符合《群体遗传学》所定义“自然群体”和“取样规”。
⒉涉及性染色体基因时,当然要考虑“性染色体异型的群体”的特殊性。
以“XY型的动物”讨论:后代中雄的基因频率总是与上代雌性基因频率相同;雌性的基因频率总等于上代雌、雄性基因频率的平均数。
所以,简单的以“其染色体上某基因的数目/该位点基因的基因总数”其“运算结果”不能预测“不平衡群体”之直接后代的各“基因型频率”。
故,必须分雌、雄两类群分别计算。
⒊当然,以“其染色体上某基因的数目/该位点基因的基因总数”的“运算结果”为一个“发展的群体”达到“平衡态”之“平衡频率”。
但由于命题中的“样本群体”的不规,其“运算结果”也就失去意义。
⒋综上所述,命题人的“聪明才智”在“逼”着解题者与他一起去犯一个“似乎正确”的科学性错误!那么【应该如何计算涉及“性染色体基因”的“基因频率”和“基因型频率”呢?】(各位可查阅系统的“群体遗传学”资料(如大学教材),切勿轻信小报刊。
——欢迎大家参加讨论)[相关理论知识]【基本概念】:基因型频率(genotypic frequency)指群体中某特定基因型个体的数目占个体总数目的比率。
等位基因频率(allelic frequency)是指群体中某一基因占其同一位点全部基因的比率,也称为基因频率(gene frequency)。
【关于基因频率的计算】(以二倍体生物为分析对象):1.基本计算式:基因频率=其染色体上某基因的数目/该位点基因的基因总数2.基因型频率与基因频率的性质:⑴同一位点的各基因频率之和等于1 即p+q =1⑵群体中同一性状的各种基因型频率之和等于1 即:D+H+R=1例:人的ABO血型决定于三个复等位基因:IA、IB和i。
据调查,中国人()中,IA基因的频率为0.24,IB基因频率为0.21,i基因的频率为0.55,三者之和为0.24+0.21+0.55=1。
【基因频率与基因型频率的关系】:⑴基因位于常染色体上设有一对基因A、a,他们的基因频率分别为p、q,可组成三种基因型AA、Aa、aa,基因型频率分别为D、H、R,个体总数为N,AA个体数为n1,Aa个体数为n2,aa个体数为n3。
那么:D=n1 /N、H=n2 /N、R=n3 /N;p(A)=(2*n1+n2 )/2N=D+H/2;q(a)=(2*n3+n2 )/2N=R+H/2即,一个基因的频率等于该基因纯合体的频率加上一半杂合体的频率。
(注)平衡时:D=p^2、H=2pq、R=q^2⑵基因位于性染色体上:由于性染色体具有性别差异,在XY型的动物中:雌性(♀)为XX,雄性(♂)为XY;在ZW型的动物中,雌性(♀)为ZW,雄性(♂)为ZZ。
所以,把雌雄看做两个群体分别计算。
①对性染色体同型群体(XX,ZZ)与常染色体上基因频率和基因型频率的关系相同。
即:p=D+H/2;q=R+H/2②性染色体异型的群体(XY,ZW)由于基因的数量和基因型的数量相等,因此基因频率等于基因型频率:即:P=D;q=R↑只要是孟德尔群体,这种关系在任何群体(平衡或不平衡)都是适用的。
↑(注)平衡时,XX(或ZZ)群体:D=p^2、H=2pq、R=q^2;XY(或ZW)群体:D=p、R=q【特别提醒:请注意在X-Y和Z-W上往往不存在对应位点这一特殊性。
】不少中学教师只是理解基本计算而忽略了性染色体的特殊性,采用雌雄两类群混合计算,这样得到的计算结果是错误的,并且不能用来预测发展的种群(不平衡种群)直接后代的基因型频率趋势。
谨说明:我所批评的“另类计算方法”是那种不管“平衡/不平衡”、“常染色体/性染色体”,都在套用“基因频率=其染色体上某基因的数目/该位点基因的基因总数”的“方法”——“雌雄混合计算”。
应该注意的是:⑴“由于性染色体具有性别差异,在XY型的动物中:雌性(♀)为XX,雄性(♂)为XY;在ZW型的动物中,雌性(♀)为ZW,雄性(♂)为ZZ。
所以,把雌雄看做两个群体分别计算。
”⑵平衡时,“雄性群体基因频率=雌性群体基因频率”且=“平衡频率”⑶平衡是一种特殊状态,不适于解释非平衡状态。
原文地址:基因频率计算中误差浅析5作者:xunlei关于基因频率的计算是生物计算题中的一个难点,一般有三种方法:1.概念求解法:利用种群中一对等位基因组成的各基因型个体数求解种群中某基因频率=种群中该基因总数/种群中该对等位基因总数×100%种群中某基因型频率=该基因型个体数/该种群的个体数×100%2.利用基因型频率求解基因频率种群中某基因频率=该基因控制的性状纯合体频率+1/2×杂合体频率3. 利用遗传平衡定律求解基因频率和基因型频率遗传平衡定律:一个群体在符合一定条件的情况下,群体中各个体的比例可从一代到另一代维持不变。
遗传平衡定律是由Hardy和Weinberg于1908年分别应用数学方法探讨群体中基因频率变化所得出一致结论。
符合遗传平衡定律的群体,需满足的条件:(1)在一个很大的群体中;(2)随机婚配而非选择性婚配;(3)没有自然选择;(4)没有突变发生;(5)没有大规模迁移。
,群体的基因频率和基因型频率在一代一代繁殖传代中保持不变。
这样,用数学方程式可表示为:(p+q)2=1,p2+2pq+q2=1,p+q=l。
其中p代表一个等位基因的频率,q代表另一个等位基因的频率。
运用此规律,已知基因型频率可求基因频率;反之,已知基因频率可求基因型频率。
笔者在实际教学过程中发现:上述方法1直观,容易理解和掌握,但觉得麻烦; 方法2显得方便快捷,因此常常运用; 方法3由于是在理想条件下的公式化应用,虽显得复杂,学生做这类题目格外细心,认真分析其适用条件,因此一般也能做对。
方法2因其计算方便应用较多,但该方法在计算X-连锁座位上的基因频率时有必要的适用条件,否则会产生误差,在某些特定的题目中,必须加以考虑。
笔者用下面的实例加以说明,期待与各位商榷。
例1:据调查,某小学的小学生中,基因型的比例为X B X B(43.32%)、X B X b(7.36%)、X b X b(0.32%)、X B Y(45%)、X b Y(4%),则在该地区X B和X b的基因频率分别是多少?用方法1解:假设该群体有100个个体,则: X B的基因数目=100×43.32%×2+100×7.36%+100×45%=139;X b的基因数目=100×7.36%+100×0.32%×2+100×4%=12;全部基因数目=139+12=151;X B的基因频率=139/151=92.053%;X b的基因频率=12/151=7.947%用方法2解:X B的基因频率=43.32%+7.36%×+45%=92%X b的基因频率=7.36%×1/2+0.32%+4%=8%例2:据调查,某小学的小学生中,基因型的比例为X B X B(42.32%)、X B X b(7.36%)、X b X b(0.32%)、X B Y(46%)、X b Y(4%),则在该地区X B和X b的基因频率分别是多少?用方法1解: 取100个个体,由于B和b这对等位基因只存在于X染色体上,Y 染色体上无相应的等位基因。