毛细管网换热器
- 格式:doc
- 大小:183.00 KB
- 文档页数:15
毛细管网辐射采暖供冷系统的优势18条1、在热辐射的作用下,维护结构内表面和室内其他物体表面的温度,都比对流供暖时高,人体的辐射散热相应减少,人的实际感觉比相同室内温度对流供暖时舒适得多。
2、由于直接满足了辐射负荷,而且室内空气的流动速度处于自然通风水平,因此能创造舒适度优于其他供暖和空调系统的绿色环境。
3、室内空气的流动速度很低,没有强烈的对流,不会像对流供暖那样导致室内尘埃飞扬,影响室内卫生。
4、供暖时室内的垂直温度梯度很小,不仅舒适度提高,而且,维护结构上部的热损耗减少,供暖效果优于对流供暖。
5、室内没有明露的散热设备(散热器),不仅不占建筑面积与空间,且便于布置家居和悬挂窗帘,而且,也不会污染(熏黑)墙面。
6、既能供暖,又可供冷,一套设备,两种用途。
7、便于实现热量的“分户计量”。
8、由于有辐射强(照)度和温度的综合利用,供暖负荷可减少约15%左右;不仅节省能耗,而且初投资与运行费用都相应减少。
9、供水温度一般为16-35℃,为直接利用自然水(如地下水、江河湖海水)、废热等创造了条件,并使制冷制热机组的热效率大大提升,符合国家节能减排降耗的号召。
10、毛细管网配合装修面层安装,拆装方便快捷,能适应和满足房间分隔任意改变的需要。
11、可以与任何全空气空调系统相结合,组成混合(多元)暖通空调系统,分别处理热湿负荷;这时,所需的送风量一般不超过通风换气与除湿要求的数量。
12、不需要如风机盘管机组、诱导器等末端设备;几乎所有机械设备(如新风机组)都可以集中安置,简化运行管理与维修。
13、辐射供暖和供冷,加上置换通风或常规新风系统,可以创造出符合绿色要求的仿自然通风环境。
14、避免了冷却盘管在湿工况下运行的弊端,没有潮湿的表面,杜绝细菌滋生,不仅改善了卫生条件,而且减少了金属的腐蚀机会。
15、与全空气空调系统相组合,可以同时为建筑的内区和外区服务。
16、不会产生空调器、风机盘管机组、诱导器、风机动力箱等无法避免的噪声。
浅谈毛细管网空调系统论文导读:随着社会的进步,人民生活水平的提高,人们对住宅环境的舒适性要求也逐步提高,相应的室内空调系统必须得到改进,尽量减少室内送风量,避免强风感和噪声,特别是在休息时间保持室内宁静。
毛细管网就是温湿度独立控制空调技术的一部分。
1、高效节能:毛细管网有极大的散热表面积,以辐射方式供暖制冷。
因此,毛细管网承担的热、湿负荷有限,无法满足多数冷热负荷较大建筑的需要,特别是无法保证在高温环境下的空调效果,必须配以新风处理体统并将新风的含湿量处理到室内设计的绝对含湿量以下,是新风担负房间的部分湿负荷,弥补辐射供冷系统对热湿处理能力的不足。
关键词:毛细管网,辐射供冷,节能,舒适引言随着社会的进步,人民生活水平的提高,人们对住宅环境的舒适性要求也逐步提高,相应的室内空调系统必须得到改进,尽量减少室内送风量,避免强风感和噪声,特别是在休息时间保持室内宁静;同时考虑到能源短缺的影响,还应尽量采用低品位能源,有冷热蓄能措施等,目前普遍认为温度湿度独立控制空调技术可能是一个有效的解决途径。
毛细管网就是温湿度独立控制空调技术的一部分。
一、毛细管网平面辐射空调简介毛细管网模拟叶脉和人体毛细血管机制,利用毛细管网表面或辐射体表面与室内空气较小的温差,通过毛细管内流动的液体来调节自身温度,从而达到与周围环境的平衡。
毛细管网是集分水式结构,由外径3.5-5.0mm(壁厚0.4-0.9mm左右)的毛细管和外径20mm(壁厚2mm或2.3mm)的供回水主干管构成管网。
保温层、散热层和毛细管网结合使用,复合成毛细管网换热器。
毛细管网顶板辐射空调一般由热交换器、带循环泵的分配站、温控调节系统、毛细管网以及配套除湿系统等组成。
毛细管网主要承担室内去除显热的影响。
由于除湿的任务有处理潜热的新风系统承担,因而显热系统的冷水供水温度不再是常规冷凝除湿空调系统中的7℃,而是提高到18℃左右。
毛细管网平面空调系统夏季供水温度为16/18℃,辐射面表面温度约为20℃;冬季供水温度为28/32℃;辐射面表面温度约为30℃。
2013年毛细管网技术毛细管网技术的先进性是由其结构特点、材料特点和使用特点三方面决定的。
(1)结构特点毛细管网是由两根供回水主管和若干毛细管连接而成的集分水式结构,具有换热面积大、换热均匀、壁薄换热效果好、水力损失小的特点,决定了毛细管网采暖制冷的热效率都非常高,是一种高效的换热器。
根据国家空调质检中心检测报告:样品在供水温度45℃,回水温度40℃,基准点温度20℃,ΔT=22.5℃时,单位面积散热量Qdr=240.88 W/m2,热效率几乎是传统地暖的2.5倍;样品在供水温度15℃,回水温度20℃,基准点温度26℃,ΔT=8. 5℃时,单位面积散热量Qdl=122.84W/m2。
正因为毛细管网采暖制冷的效率都很高,决定了毛细管网能够有效利用低品位能源,打造高品质生活,实现节能和舒适效果,对国家节能、减排、降耗,提升建筑品质意义十分重大。
这是毛细管网的核心价值之所在。
(2)材料特点制作毛细管网的原料是PP-R、PE-RT等热塑性绿色环保材料,可热熔成型,同时具有耐高温、耐高压、耐腐蚀的特点,使用寿命长久,决定了毛细管网具有广泛的用途,是理想的高效换热器。
(3)使用特点毛细管网以水为介质输送能量,厚度一般4.3mm,轻薄、柔软、荷载小,结构合理、性能优良,有多种方便灵活的安装形式,具有高效节能和高舒适度的特点。
毛细管网可以与装饰层结合,安装在地面、顶棚或墙面,均匀散发能量,就像皮肤中的毛细血管调节体温一样,柔和地调节室内温度。
毛细管网可以安装在墙体内腔,这种空气调节墙不需要任何风机动力,靠温差自动“呼吸”室内空气,促进室内空气循环,柔和安静无任何噪声,排除夏季室内余湿,也有调温和净化功能。
这两类安装形式可以结合使用,还可以和新风换气系统结合起来,保证室内舒适的温度、湿度和高品质的空气质量,打造真正意义上的生态建筑。
文章编辑:佛山方圆三川不锈钢毛细管生产厂官方网: huang。
四通阀,电子膨胀阀,毛细管原理介绍;四通阀四通阀,液压阀术语,是具有四个油口的控制阀;四通阀是制冷设备中不可缺少的部件,其工作原理是,当电磁阀线圈处于断电状态,先导滑阀在右侧压缩弹簧驱动下左移,高压气体进入毛细管后进入右端活塞腔,另一方面,左端活塞腔的气体排出,由于活塞两端存在压差,活塞及主滑阀左移,使排气管与室外机接管相通,另两根接管相通,形成制冷循环;当电磁阀线圈处于通电状态,先导滑阀在电磁线圈产生的磁力作用下克服压缩弹簧的而右移,高压气体进入毛细管后进入左端活塞腔,另一方面,右端活塞腔的气体排出,由于活塞两端存在压差,活塞及主滑阀右移,使排气管与室内机接管相通,另两根接管相通,形成制热循环;结构特点位置由阀结构不难发现,当主滑阀处于中间位置状态时,如下图所示,e、s、c三条接管相互通气,产生中间流量,此时,压缩机内高压管内的冷媒可以直接流回低压管;设计中间流量的目的是当主滑阀处在中间位置时,能起到卸压的作用,使系统免受高压破坏;关系四通阀四通阀换向的基本条件是活塞两端的压力差f1-f2必须大于摩擦阻力f,否则,四通阀将不会换向;换向所需的最低动作压力差华鹭的实际水平低于1kg/cm2是系统流量来保证的如上图所示;当左右活塞的压力差f1-f2大于摩擦阻力f时,四通阀换向开始,当主滑阀运动到中间位置时,四通阀的e、s、c三条接管相互导通,压缩机排出的冷媒从四通阀d接管直接经e、c接管流向s接管压缩机回气口,使压力差快速降低,形成瞬时窜气状态中间流量状态;此时,若压缩机的排气流量远大于四通阀的中间流量,便可以建立足够大的换向压力差而使四通阀换向到位;反过来,若压缩机的排气量小于四通阀的中间流量,则四通阀换向所需的最低动作压力差便不能建立,即f1-f2;工作原理制冷空调处在制冷状态时,四通阀不通电,四通阀处于AD连通,BC连通的状态,冷媒通过压缩机压缩转变为高温高压的气体,通过四通阀的A口,由D口排出,进入室外热交换器冷凝器,在冷凝器吸冷放热后变成中温高压的液体,经膨胀阀后,变成低温低压的液体,经过室内热交换器蒸发器吸热放冷作用后,变成低温低压的气体,经过四通阀B口,由C口回到压缩机,然后继续循环;制暖空调处在制暖状态时,四通阀通电,活塞向右移动,使AB连通,CD连通,冷媒通过压缩机压缩转变为高温高压的气体,通过四通阀的A口,由B口排出,进入室内热交换器冷凝器,在冷凝器吸冷放热后变成中温高压的液体,经膨胀阀后变成低温低压的液体,经过室外热交换器蒸发器吸热放冷作用后,变成低温低压的气体,经过四通阀D口,由C口回到压缩机,然后继续循环;引用德国的排气管改装理念与技术,严格把控改装排气管时的每个环节,并且对用户所提出的疑问会作全方面系统的介绍,这也是Repose一直引用德国技术的原因之一;故障维修流量不足1、系统发生泄露,造成系统冷媒循环量不足;2、天气很冷时,冷媒蒸发量不足;3、四通阀与系统匹配不佳,即所选四通阀中间流量大而系统能力小;4、空调换向时间;一般系统设计为压缩机停机一定时间后四通阀才换向,此时高低压趋于平衡,换向到中间位置便停止,即四通阀换向不到位,主滑阀停在中间位置,下次启动时,由于中间流量作用造成流量不足;5、压缩机启动时流量不足,变频机更明显;换向不良1、线圈断线或电压不符合线圈性能规定,造成先导阀的阀芯不能动作;2、由于外部原因,先导阀部分变形,造成阀芯不能动作;3、由于外部原因,先导阀毛细管变形,流量不足,形成不了换向所需的压力差而不能动作;4、由于外部原因,主变形,活塞被卡死而不能动作;5、系统内的杂物进入四通阀内卡死活塞或主滑阀而不能动作;6、钎焊配管时,主阀体的温度超过了120度,内部零件发生热变形而不能动作;7、空调系统制冷剂泄漏,制冷剂不足,换向所需的压力差不能建立而不能动作;8、压缩机的制冷剂循环量不能满足四通阀换向的必要流量;9、变频压缩机转速频率低时,换向所需的必要流量得不到保证;10、使系统产生液压冲击造成四通阀活塞被破坏而不能动作;串气维修1、用手摸四通阀的下面三条管,若均发热,说明四通阀换向未到位,处在中间串气状态;2、也可以用一小块磁铁,当换向时小磁铁不随之移动,则也说明串气;向系统充入一定量的制冷剂,便可换向到位;不换向维修其故障多表现为不制冷或不制热:1、制冷剂不足仅用系统压力判别不全面;2、漏氟;3、阀体或毛细管变形;4、线圈通断电是否正常,电压是否正常;5、判断先导阀有无动作:线圈通断电时有“嗒嗒嗒”的阀芯撞击音,说明先导阀动作正常;此时最好仅四通阀通电,以便听清声音;6、先导阀动作正常,主阀体不动作,说明四通阀换向所需的最低动作压力差没有建立起来,向系统内充入制冷剂;7、液压冲击;可能是a.四通阀安装方向错;b.使用的是涡旋式压缩机;c.冬天气温太低;d.截止阀未打开;电子膨胀阀电子膨胀阀是按照预设程序调节蒸发器供液量,因属于电子式调节模式,故称为电子膨胀阀;它适应了制冷机电一体化的发展要求,具有热力膨胀阀无法比拟的优良特性,为制冷系统的智能化控制提供了条件,是一种很有发展前途的自控节能元件;电子膨胀阀与热膨胀阀的基本用途相同,结构上多种多样,但在性能上,两者却存在较大的差异;简介形式人们对电子膨胀阀的研究和开发主要针对的是电磁式膨胀阀和电动式膨胀阀;电磁式膨胀阀在电磁线圈通电前,针阀处于打开位置;由线圈上施加的电压控制针阀开度的大小,从而调节膨胀阀的流量;该阀动作响应快,但在制冷系统工作时一直需要供电;构成从控制实现的角度来看,电子膨胀阀由控制器、执行器和传感器 3 部分构成,通常所说的电子膨胀阀大多仅指执行器,即可控驱动装置和阀体,实际上仅有这一部分是无法完成控制功能的;电子膨胀阀控制器的核心硬件为单片机,如控制器同时要完成压缩机及风机的变频等控制功能,一般采用多机级连的形式;电子膨胀阀的传感器通常采用热电偶或热电阻;电子膨胀阀作为一种新型的控制元件,早已经突破了节流机构的概念,它是制冷系统智能化的重要环节,也是制冷系统优化得以真正实现的重要手段和保证,也是制冷系统机电一体的象征,已经被应用在越来越多的领域中;由于电子膨胀阀的采用,突破了以前在空调机组设计过程中存在的某种系统屈从热力膨胀阀的观念,进入膨胀阀为系统优化服务的新境界,对于制冷行业的发展起着重要的作用;相对优势适用温度低对于热力膨胀阀,当环境温度较低,其感温包内部的感温介质的压力变化大大减小,严重影响了调节性能;而对于电子膨胀阀,其感温部件为热电偶或热电阻,它们在低温下同样能准确反应出过热度的变化;因此,在冷藏库的冻结间等低温环境中,电子膨胀阀也能提供较好的流量调节;过热度设定值可调只需改变一下控制程序中的源代码,就可改变过热度的设定值;完全不像热力膨胀阀那样要进入冷库当中,现场调节弹簧的预紧力来改变过热度的设定值,对电子膨胀阀的调节作用可以彻底实现远距离控制,并且电子膨胀阀可根据不同需要灵活调整过热度以减小蒸发器表面和冷藏库内环境之间的温差,从而减少蒸发器表面的结霜,这样一来,既提高了冷冻能力,同时也可以降低食品的干耗;可起到节能的作用对于冷藏库制冷系统停机期间如使高低压侧连通,则会产生所谓工质迁移现象, 即冷凝器中的常温高压液体将逐渐流入蒸发器,使蒸发器的温度压力都升高;再次开机时,要重新建立压差也需要消耗压缩机额外一部分能量;反之,若在停机期间切断高低压侧, 这虽然维持了蒸发器的低温低压,但再次启动时,压缩机属于带载启动,电流冲击大,也会增加能量的损失;但若是采用电子膨胀阀就会解决上述问题;具体做法是:停机时令膨胀阀全关,防止冷凝器的高温液体流入蒸发器,造成再次启动时的能量损失;开机前,将膨胀阀全开,使系统高低压侧平衡,然后开机;这样既实现了轻载启动,又减少了停机中的热损失;另外,采用电子膨胀阀可以缩短冻结时间,电子膨胀阀在冻结全过程中能做到负荷与冷量平衡,冻结效率可以得到提高,冻结时间比热力膨胀阀也可缩短10%,同时也就减少了压缩机的能耗;采用电子膨胀阀控制压缩机排气温度可以防止因排气温度的升高对系统性能产生的不利影响, 同时又可省去专设的安全保护器,节约成本,节省电耗约6%;驱动方式电子膨胀阀电子膨胀阀的驱动方式是控制器通过对传感器采集得到的参数进行计算,向驱动板发出调节指令,由驱动板向电子膨胀阀输出电信号,驱动电子膨胀阀的动作;电子膨胀阀从全闭到全开状态其用时仅需几秒钟,反应和动作速度快,不存在静态过热度现象,且开闭特性和速度均可人为设定, 尤其适合于工况波动剧烈的热泵机组的使用;毛细管凡内径很细的管子叫“毛细管”;通常指的是内径等于或小于1毫米的细管,因管径有的细如毛发故称毛细管;目前可以在医学上,建筑材料上都能看得到; 简介例举、尖部的狭缝、毛巾和吸墨纸纤维间的缝隙、中的细隙以及植物的根、茎、叶的脉络等,都可认为是毛细管;毛细管是发展起来的一种新型微分离分析技术,它整合了与微径柱液相色谱的优点,通过在填充微细颗粒液相色谱填料的微径柱色谱柱两端施加直流高压电场,达到其对痕量复杂生物及化学体系样品优越的分离能力;电泳色谱LC/MSD TOF的高效液相色谱仪部分式组合设备,可以根据需要任意组合;系统中的毛细管的作用:制冷时,毛细管将从出来的高压液态制冷剂,通过节流膨胀使其成为低压的液态制冷剂,再进入;细管空调毛细管网模拟叶脉和人体毛细血管机制,由外径为壁厚左右的毛细管和外径20mm壁厚2mm或的供回水主干管构成管网;保温层、散热层、和毛细管网结合使用,复合成毛细管网换热器,大大提高了毛细管网单一构造的散热能力合使用用途,保护了毛细管管壁不受损坏;毛细管网平面辐射空调系统一般采用小循环大系统方式,并采用专用溶液作介质,可以避免系统阻塞,方便控制;为达到更高舒适度要求并避免结露,房间还应该配套湿度控制和新风系统;毛细管网生产和应用技术此前一直由德国企业高度垄断,北京普来福环境技术有限公司已打破国外企业垄断,研发生产出国产的毛细管网换热器,申请了多项发明专利和,并且已经进入批量生产阶段;2007年5月,该产品在中国建筑科学研究院空调所国家空调设备置粮监督检验中心进行检验;以某节点的测试举例,结果如下:1、在实验压力为情况下,无渗漏;2、在供水温度45℃,回水温度40℃,基准温度20℃,△T=℃时,折合样品单位面积散热量Qdr=m2;3、在供水温度15℃,回水温度20℃,基准温度26℃,△℃,折合样品单位面积制冷量Qdl=m2;细管用途毛细管毛细管一般被用于20kW1以下的小型氟利昂制冷装置;毛细管由紫铜管制成,长度1~6m,内径为~2mm.通过长度和管径的多种组合可使其满足不同的工况和不同制冷量的制冷剂装置要求,但毛细管被选定和安装后,便不能随负荷变化而变化,为使制冷装置在绝大多数时间下高效率运转,选择具有代表性的设计工况是及其重要的;毛细现象定义:当含有细微缝隙的物体与液体接触时,在浸润情况下液体沿缝隙上升或渗入,在不浸润情况下液体沿缝隙下降的现象;在浸润情况下,缝隙越细,液体上升越高; 就是指液体在细管状物体的内侧因为内聚力以及附着力的差异,克服而向上升;介绍毛细现象又称毛细管作用,是指在细管状物体内侧,由于内聚力与附着力的差异,克服而上升或下降的现象2;含有细微孔隙的物体与液体接触时,使该液体沿孔隙上升或毛细管效应下降的现象;当液体和固体管壁之毛细管效应间的附着力大于液体本身内聚力时,就会产生毛细现象上升;反之,当液体和固体管壁之间的附着力小于液体本身内聚力时,就会产生毛细现象下降;液体在垂直的细管中时液面呈凹或凸状、以及多孔材质物体能吸收液体皆为此现象所致;毛细管作用的出现是由于水具有黏性—水分子互相黏着附在其他物体上的特性,这些物体可以是玻璃、布、器官组织或土壤;而水银因其原子之间的内聚力极强,所以发生毛细现象下降;越细的毛细管吸水所受的气压影响越不明显,所以越细的毛细管在垂直于水面的情况下吸水程度越强;影响因素纸本身的吸水力,纸的大小、形状和水的高低都会影响到毛细现象的进行,而产生许多不同的结果;而且水的温度也会影响到毛细现象的进行;水温越高,水的上升变越快,反之,则越慢;因此液体本身的特性也是影响毛细现象的主要原因;而且水温的升高会产生大量的水蒸气,因此,水蒸气也会使毛细现象加速进行;另外当液体分子的内聚力小于其与纸张或其他物质之间的吸引力时也会产生毛细现象上升;不同的液体或纸张,其毛细现象就有程度上的差异;如水银因其原子之间的内聚力极强,所以发生毛细现象下降;常见例子植物根部吸收的水分能够经由茎内维管束上升;植物吸水把一张纸巾浸入一杯水中,水就会爬上纸巾,直到它无法克服地球的重力地心引力为止;由于水具有黏性,所以当你杯中的水溅到桌面上时,它不会流到地上,而是在桌面形成一个弧状的小水点;生产应用毛细管作用虽然对于植物的吸水有极大的帮助,但是在农业生产中毛细现象也会对农业生产的有负面影响;土壤里有很多毛细管,地下的水分经常沿着这些毛细管上升到地面上来;如果要保存地下的水分,就应当锄松地面的土壤,破坏土壤表层的毛细管,以减少水分的蒸发;建筑房屋的时候,在砸实的地基中毛细管又多又细,它们会把土壤中的水分引上来,使得室内潮湿;建房时在地基上面铺油毡,就是为了防止毛细现象造成的潮湿;。
关于毛细管网冷暖辐射系统,你知道多少毛细管网冷暖辐射系统是由五大部分组成:冷热源、管道系统、新风系统、控制系统、毛细管网高效末端系统,毛细管网换热器与地源热泵或空气源热泵结合,加上合理的控制组成一个节能系统,节能可达70%;如果再配套太阳能和冷热储能系统,节能可达90%左右。
毛细管网换热器与“节能减排降耗、提升建筑品质”关系密切,带有巨大推广应用前景。
毛细管网高效末端是按照仿生学原理模仿人体中的毛细管,由3.4*0.55mm或4.3*0.8mm的PP聚丙烯毛细管结成间距在10mm~30mm的网栅。
承担运载热量的水媒在管内保持0.05~0.2m/s的流速,而每个平米的毛细管网栅只含有0.4升水,系统运行时则水温温差2~3度,毛细管网为大流量小日照时间的导管高效辐射末端。
通过毛细管网提高单位散热面积最大化来满足“供热低温化、制冷高温化”的散热制冷末端,经过实测供热温度只需35℃以下就可满足室内20℃,设计匹配温差是5℃。
毛细管网与热泵组成高效微血管暖通系统,COP值远大于普通暖通系统和空气源热泵系统,与普通系统相比,节能达到50%以上。
分为两方面:1)顶棚辐射制冷:毛细管的管径细小,可以弯曲,因此适合各种形状形状的屋檐,即使拱形和三角形的表面也可以装载。
毛细管用于金属吊顶安装时,由于毛细管的充水多一些,吊顶的荷载不会增加很多,因此对一些金属吊顶的旧建筑物建筑物进行空调系统修整时,毛细管辐射顶板系统是最佳选择。
(模块末端系统冷冷却系统由地源热泵提供,顶棚辐射夏季系统冬季所需供回水温度为17/20℃,冬季所需供回水温度为32/29℃)2)低温采暖:公司的毛细管网栅的毛细管管径极小,可有效降低地面垂直加热系统的高度。
与传统的地面加热电脑系统不同,该系统可在地面表面以下短距离内供热。
因此,使用毛细管网栅地面加热系统的响应非常迅速,而且可在较低供水温度下输水工作。
将毛细管用于地面采暖或者墙面辐射时,可以先将毛细管用胶水、大头钉固定,然后用砂浆覆盖。
1毛细管网加工工艺的特殊性1、传统塑料管道连接方式的局限性:(1)所用的管件多,连接工艺复杂,容易发生漏水事故。
(2)连接方式限制了1根整体的管道与至少3根管道同时连接。
(3)管道壁厚受限制。
依据现有国家标准《GB10798-89 热塑性塑料管材通用壁厚表》和《JBJ地面辐射供暖技术规程B.1.3》规定以热熔方式连接的热塑性塑料管道壁厚不得小于1.9mm,才能保证热熔连接的可靠性,这样就限制了可热熔的塑料管道向小管径和微小管径方向的发展,小管径管道的壁厚会远远超过满足所需压力等级的壁厚要求,不但造成原材料的浪费,壁厚过大也降低了塑料管材的柔韧性,降低了导热性能。
2、毛细管网加工是塑料管道加工工艺的技术创新(1)提供了一种塑料管道之间不用加直通、弯头、三通等连接管件直接连接的连接方式。
(2)实现了一根整体管道通过侧面开孔方式同时和若干管道直接连接。
(3)提供端面连接的小管管道壁厚不受焊接要求的限制,为细小、微小管径的管道的应用提供了可能。
2毛细管网的主要特点1、结构特点:毛细管网是集分水式结构,具有换热面积大、壁薄导热性好、换热均匀、水力损失小的特点,决定了毛细管网是一种高效的换热器。
“面大壁薄”是毛细管网用于热交换的核心优点。
2、材料特点:制作毛细管网的原料是PP-R、PE-RT等可热塑性塑料,可热熔成型,绿色环保,同时具有耐高温、耐高压、耐腐蚀的特点,因此有广泛的推广应用领域,是理想的高效换热器。
3、使用特点:毛细管网薄、柔、轻,因此安装方便、覆盖层可以薄,铺装面积可以大,因此可以有效利用低品位能源,实现节能和舒适效果。
3毛细管网的主要用途1、用于热湿独立处理空调系统,辐射供暖制冷,用能品位低,可以提高空调机组的能效,或直接利用可再生能源。
2、用于制作呼吸式空调墙(又称重力循环空调),调温调湿,使用方便,受限制条件少。
3、用于供暖,可以替代传统散热器或普通地板采暖,安装方便,供热效率高。
4、用于农业大棚,利用土壤的蓄热能力,均衡大棚内昼夜及季节的温差,提高大棚的生产效率。
180 |R E A L E S T A T E G U I D E毛细管网特点及其应用探究方福军 (南京朗诗地产有限公司 江苏 南京 210096)[摘 要] 随着国家双碳 政策的推行,建筑节能产业显得越发重要,解决好北方采暖与南方的制冷的能耗问题,对节能减排具有重要意义㊂毛细管网与其所联系的室内空调系统作为一个新兴的材料及系统,在建筑行业具有广阔的应用前景㊂[关键词] 双碳政策;建筑能耗;毛细管网[中图分类号]T U 201.5 [文献标识码]A [文章编号]1009-4563(2023)15-180-031 毛细管网1985,德国人D o n a l d H e r b s 发明制造了毛细管网㊂2006年,我国实现了毛细管网的国产化㊂目前,国产的毛细管网通过了建设部行业科技成果评估,结论为: 国内首创㊁主要性能指标国际先进㊂ 这项产品进入推广应用阶段,去年已经成功地应用于国家重点工程国奥村的建设㊂1.1 毛细管网的特点1.1.1 结构特点毛细管网是集分水式结构,具有换热面积大㊁换热均匀㊁换热效果好㊁水力损失小的特点,从而决定了毛细管网是一种高效的换热器.1.1.2 材料特点制作毛细管网的原料可以是P P -R ㊁P E-R T 或P B 等可热熔性树脂,均是绿色环保的原料,具有耐高温㊁耐高压㊁耐腐蚀的特点,从而使毛细管网具有广泛的用途并成为理想的高效换热器;1.1.3 使用特点毛细管网轻薄㊁柔软㊁荷载小㊁结构合理㊁性能优良,因此具有安装方便㊁高效节能㊁高舒适度㊁绿色环保的特点㊂图1 毛细管网的结构示意图1.2 毛细管网的用途正是以上毛细管网的优良特点,决定了毛细管网具有广泛的用途㊂毛细管网可以打造生态建筑㊂室外的能量,可能来自阳光㊁空气或土壤,通过毛细管网中循环的介质均匀地散布到室内顶棚㊁地面或墙面㊂毛细管网和室内表面的装饰层相结合,就像皮肤中的毛细血管一样柔和地调节室内温度㊂徐徐的微风送来清新的空气,室内不再有异味,不再有甲醛和一氧化碳的污染,合理的湿度滋润您的皮肤和呼吸系统,家具㊁被服㊁粮食也不再发生霉变和虫咬,从而造就 恒温恒湿恒氧 的生态住宅㊂图2 毛细管网制冷时的红外热成像图2所示的是毛细管网制冷时的红外热成像㊂由图中可知,毛细管网可以像控制灯光一样控制室温㊂地板采暖的热惯性要2~6小时,而毛细管网用5分钟就可以使辐射面温度达到设定温度,30分钟明显改变室温,很容易实现分室温控㊂因此安装了毛细管网的环境有洞窟效应:冬天感受阳光的温馨,夏天享受林荫的凉爽,从而使毛细管网成为生态空调技术的基石,并具有舒适㊁节能的优点㊂1.3 毛细管网应用中注意并解决的问题毛细管网作为一个产品,不是万能的,而在于我们掌握其优点和缺点合理应用㊂对毛细管网的使用我们要做到扬长避短,合理解决产品及其系统可能出现的问题㊂1.3.1 制冷凝露产生凝露的条件:当冷辐射表面的温度低于室内空气露点温度的时候,就会凝露㊂我们可以从以下几个方面预防凝露:(1)用18ħ左右的高温冷水制冷,通过管壁再到装饰面,装饰面温度大概在21ħ左右,一般高于露点温度;(2)增加毛细管网铺装面积,进一步提高制冷水温,增大制冷量,降低辐射面与室内的温差;(3)通过除湿降低露点,保证室内相对湿度40~60%的时候,室内常温下的露点温度一般会在17ħR E A L E S T A T E G U I D E |181以下㊂1.3.2 成品保护(1)尽量做好预留预埋工作,避免施工破坏毛细管网;(2)毛细管柔软,间距可调节,覆盖前后都不会影响穿线管和插座等的安装;(3)毛细管网耐高压,爆破压力可达5.6M P a 左右,制造原料有优良性能,不会轻易被损坏㊂1.3.3 破坏修复(1)毛细管网一般结合装饰面层安装,漏水点很容易寻找到;(2)毛细管网是并联结构,材质可热熔,破坏后用打火机做热熔工具将该支路熔接焊死,不会影响使用效果㊂1.3.4 容易阻塞(1)尽量采用封闭的小循环系统,供水主管安装过滤器,防止颗粒物进入毛细管系统;(2)塑料管透氧,长期运行管道内会滋生生物粘泥阻塞毛细管㊂在确定系统不漏不渗后可加入除氧剂或防冻液,破坏生物生长环境;(3)机械脱氧除渣㊂1.3.5 墙面开裂采用毛细管网采暖制冷的墙面,四季温差不超过20ħ,墙面温度比较恒定,不容易开裂㊂开裂一般是装饰的问题,为确保万无一失,一般采用石膏砂浆和玻纤网做装饰层㊂1.4 毛细管网的推广应用前景毛细管网的推广应用前景巨大㊂毛细管网实现国产化并大规模生产将大大降低生产和使用成本,为大面积推广应用提供可能㊂目前,毛细管网生产基地在多方支持下正在建设,今年内将实现年产能力60万平方米,随着市场需求的增加可以很快扩大到年产2000万平方米的生产规模㊂毛细管网以其技术性和经济性的优势将被普及用作隐形散热器㊁超薄地板采暖和空调末端㊂毛细管网的推广应用符合国家节能减排降耗㊁住宅产业化的政策,满足人民生活水平不断提高对舒适和健康的要求㊂2 国产毛细管网与进口产品的对比国产毛细管网性能优良,能够满足各种使用要求㊂2.1 国家化学建材检验中心的报告(1)爆破试验,爆破压力5.6M P a;(2)通过循环压力冲击试验,10000个周期;(3)通过了5000次冷热循环测试;(4)8760小时测试,已有中期报告㊂2.2 国家空调设备质量监督检验中心的系列报告㊂(1)样品在供水温度45ħ,回水温度40ħ,基准点温度20ħ,ΔT=22.5ħ时,单位面积散热量Q d r =240.88W /m 2;(2)样品在供水温度15ħ,回水温度20ħ,基准点温度26ħ,ΔT=8.5ħ时,单位面积散热量Q d l =122.84W /m 2;(3)使用北欧化工P P -R 原料㊁韩国S K 的P E-R T原料;(4)加工成本大大降低;(5)供货期有保证,一般两周内可以供货;(6)能提供设计并指导安装;(7)售后服务更有保证㊂3 毛细管网采暖与普通地板采暖的对比3.1 普通地板采暖(1)多占空间80mm ,增加荷载,减少层高;(2)热惯性2-6小时;(3)经济性对比:①地板采暖60元/平方米左右;②增加钢筋8.5元/平方米;③增加豆石砼32元/平方米;④层高减少3%左右折算为500元/平方米左右(按北京目前房价)㊂(4)普通地板采暖系统用于制冷具有很大的局限性:系统制冷时,毛细管网辐射面温度非常均匀,而普通地板采暖的辐射面温度波动较大,地面容易形成线性凝露带㊂为了消除凝露危险,需要更低的系统温度,从而牺牲舒适性和节能性㊂4 毛细管网生态空调与传统中央空调的对比常规空调系统采取温度和湿度混合处理方式,存在如下问题㊂4.1 能源浪费使用一套系统同时制冷和除湿,为满足用冷凝方法排除室内余湿,冷源的温度需要远远低于室内空气露点温度,一般采用7~12ħ的冷冻水㊂空调系统中,占总负荷一半以上的显热负荷部分,本可以采用高温冷源排走,却与除湿一起共用7~12ħ的低温冷源进行处理,造成能量利用品位上的浪费;4.2 难以适应室内热湿比变化同一套空调系统对空气进行冷却,其吸收的显热与潜热比只能在一定的范围内变化,而室内实际的热湿比变化范围较大㊂常规空调一般会牺牲对湿度的控制,仅仅满足室内温度的要求,往往造成室内相对湿度过高或过低的现象㊂相对湿度过高会感觉闷热不舒适,通过进一步降低室温来改善热舒适,造成能耗不必要的增加;相对湿度过低则增加处理室外新风的能耗;4.3 造成室内空气品质下降常规空调依靠空气通过冷表面对空气进行降温除湿,导致冷表面潮湿甚至产生积水,空调停机后这样的潮湿表面就成为霉菌繁殖的理想场所㊂常规空调系统霉菌182 |R E A L E S T A T E G U I D E繁殖并传播成为室内环境污染并影响身体健康的主要原因㊂另外,目前我国大多数城市的主要污染物是可吸入颗粒物,空调系统引入的室外空气必须过滤,过滤器内必然成为粉尘和细菌聚集处,如果再漂溅一些冷凝水,则成为各种细菌㊁微生物繁殖的理想场所,甚至有爆发 军团菌 的威胁㊂频繁清洗过滤器既不现实,也不是根本的解决方案㊂4.4 常规空调的末端装置有局限性为排除足够的余热余湿同时又不使送风温度过低,就要求有较大的循环通风量,往往造成室内很大的空气流动,产生不适的强风感和噪声㊂室内布置的风道还降低室内净高或加大楼层间距㊂在冬季,为了避免强吹风感及干燥的不适,还有高能耗的问题,即使安装了空调系统,最好也不要使用热风取暖,而是应该通过另一套采暖系统(如散热器㊁地板采暖)供热㊂在北方地区,室内一般需要重复安装两套环境控制系统,分别供冬夏使用㊂4.5 输配能耗的问题为了完成室内环境控制的任务就需要有输配系统,带走余热㊁余湿㊁C O 2㊁气味等㊂常规空调系统所有的冷量全部用空气来传送,导致输配效率很低,风机㊁水泵消耗了整个空调系统40%~70%的电耗㊂相对而言,1m3水所输送的热量和3840m 3空气所输送的热量是相当的,靠室内表面辐射传热是最舒适和节能的方式㊂4.6 导致电力危机建筑能耗占到整个社会总能耗的40%,随着能源问题的日益严重,以低品位能源解决建筑的采暖制冷问题成为迫切需要,特别可以减缓夏季供电压力,提高能源利用率㊂常规空调负荷在一天内变化显著,容易产生集中的用电高峰,在居住密集地区还发生 热岛效应 ,加剧电力危机㊂如果室内的采暖制冷系统可以有效蓄能,将非常有利于缓解用电高峰产生的电力危机,通过把能量蓄存到室内表面再以辐射方式均匀散布是一个很好的解决办法㊂5 毛细管工艺详述5.1 能源选配低品位再生能源与毛细管网结合为最佳选择,条件许可首选土壤源热泵,空气源热泵主要适合小户型,在北方最好选用分体机以免特殊条件下冻坏机体,毛细管网的用水温度范围决定能源品位的选择㊂5.2 毛细管网铺设面积首选顶底双铺,增加铺设面积提高机组运行效率;提高辐射面温度降低结露风险;采暖降低供水温度提高室内舒适度;增加辐射面降低室内环境热惰性实现行为节能;头凉脚热提高舒适度㊂5.3 毛细管网选型住宅首选U-20-4.3mm x 0.85mm ,承压能力及单平方米冷辐射负荷满足环境需求,U-20-3.5mm x 5.0mm 不适合高层系统压力较高的应用㊂5.4 毛细管网连接选用专用管材管件选用同一原料同一产地同一批次没有其他添加的原料的专用管材管件,热熔连接时降低虚焊或缩颈风险,虚焊有渗漏风险㊁缩颈影响运行负荷㊂5.5 毛细管网卡条间距卡条编制要与装修设计确认吊顶副龙骨平行且间距相同,便于自攻钉钉在副龙骨上提高毛细管网与石膏板结合牢固性㊂5.6 毛细管网U 型编网要求U 型一端要求细管U 在一水平面上,避免细管重叠增加抹灰厚度影响辐射效果增加施工难度和材料成本㊂5.7 毛细管网顶棚铺设最好不要直接铺设在楼层板下,需要铺设在石膏板吊顶下,以免蓄冷蓄热增加系统惰性降低行为节能能力㊂5.8 毛细管网设计长度毛细管网每路内及每路间长度设计尽量要避免长度差过大,长度不同阻力不同影响辐射面的流速,流量调节差过大会增系统水泵扬程选型㊂5.9 毛细管网分集水器安装带有电热阀的分集水器安装尽量是垂直安装,以免冷凝水流入电热阀体内造成短路失去控制造成结露风险㊂5.10 分集水器电热阀选型电热阀最好选用低压弱电,以免分集水器漏水有触电风险;分集水器电控最好选用电动阀,电热阀有关闭延迟,顶针关闭阀也会增加系统阻力㊂5.11 温湿度探测和露点计算温湿度探头和露点计算芯片要硬件分开设计,芯片运行发热会影响温湿度的探测数值,造成露点计算偏差影响系统安全运行㊂5.12 温湿度探头放置位置需要放在气流组织通畅的地方,建议放置在每个探测空间的回风口,探测的温湿度相对比较准确,有利于系统的精准控制㊂综上所述,常规空调系统的技术缺陷明显,以毛细管网技术为核心的温湿度独立控制空调技术具备高舒适度和高效节能的特点,代表着未来的发展方向㊂毛细管网还将应用于更广泛的领域,可以改变人类未来的生活㊂参考文献[1] C E C S 433-2016.毛细管网辐射供暖供冷施工技术规程规范.[2] J G J 142-2012.辐射供暖供冷技术规程.。
浅谈现代建筑空调系统中的新技术及节能优化设计摘要:随着我国经济的持续发展和人们对居住环境舒适性要求的不断提高, 空调的应用越来越广泛。
空调在给人们创造舒适环境的同时,其能耗也不容被忽视。
根据国家倡导创建低碳社会的要求,节约用电是节能的一个重要环节,有效地降低空调的运行费用是现阶段需要解决的问题。
本文结合工程实例简要论述了现代建筑空调系统中的新技术及节能优化设计。
关键词:现代建筑;空调系统;新技术;节能优化设计中图分类号:te08 文献标识码:a 文章编号:一、现代建筑暖通空调系统节能设计现状分析空调系统的设计对空调系统的节能有着重要的影响。
在实际中往往得不到一些设计部门和设计人员的足够重视,加上目前工程设计周期普遍较短,设计收费与设计产生的经济效益不挂钩以及一些技术性问题没有完全得到解决等原因,有的设计单位只求数量,忽略质量,使得设计的系统不仅初投资大,运行能耗也高,大大超过了国家标准。
建筑施工监理行业中暖通空调专业的从业人员水平参差不齐,非本专业院校毕业或对口专业的人员占很大一部分,甚至一部分人员根本未经过任何培训,对本专业理论只是似懂非懂,设计或施工中遇到的一些设计方案性的调整问题不能进行及时正确的处理和解决,最终导致工程出现无法挽回的不良后果,给系统的运行管理留下隐患。
二、工程概况本工程总建筑面积为29258m,其中地上建筑面积22940m2,地下建筑面积 6318m2;建筑高度35.25m,地下2层,地上9层。
2.1土壤源热泵系统为满足末端空调系统的需求,本工程空调系统方案拟采用冷却水塔与土壤源相结合的复合源热泵系统,选用3台满液式(螺杆)地源热泵机组,夏季提供7℃/12℃的冷水,冬季提供45℃/40℃的热水;地源热泵机房设置在地下2层,3台机组的制冷量:700kw/台。
供热量:679 kw/台;地源热泵主机采用单压缩机配置,单台机组的能量调节范围 25%~l00%,机组可以根据不同时段负荷的变化调节机组的出力。
毛细管网换热器与“节能减排降耗、提升建筑品质”关系密切建筑能耗占整个能耗的40%左右,是最有潜力的节能领域。
毛细管网换热器结构具有换热面积大、流量分配均匀、水流阻力小、散热效果好的优点,还能够耐高温、耐高压、耐腐蚀,是一种理想的高效换热器,用途十分广泛。
毛细管网换热器的突出的优点是能够有效利用低品位的能源,尤其是可再生能源(如太阳能,以及土壤、地下水、空气、污水、地表水、发电厂废水等说蕴含的能量),还可以提高空调系统的能效,做到节能减排环保并提高建筑物的品质。
毛细管网换热器与地源热泵或空气源热泵结合,加上合理的控制组成一个节能系统,节能可达70%;如果再配套太阳能和冷热储能系统,节能可达90%左右。
毛细管网换热器与“节能减排降耗、提升建筑品质”关系密切,具有巨大推广应用前景。
第一部分:温湿度独立控制空调技术简介一、常规空调技术存在的问题从人体的热舒适与健康出发,要求对室内温度、湿度进行全面控制。
夏季人体舒适区为25℃,相对湿度60%,此时露点温度为16.6℃。
空调排热排湿的任务可以看成是从25℃的环境中向外界排热,在16.6℃的露点温度的环境下向外界排湿。
目前空调方式的排热排湿都是通过空气冷却器对空气进行冷却和冷凝除湿,再将冷却干燥的空气送入室内,实现排热排湿的目的。
常规温湿度混合处理的空调方式存在如下问题:1、能源浪费。
使用一套系统同时制冷和除湿,为了满足用冷凝方法排除室内余湿,冷源的温度需要低于室内空气的露点温度,考虑传热温差与介质输送温差,实现16.6℃的露点温度需要约7℃的冷源温度,这是现有空调系统采用5~7℃的冷冻水、房间空调器中直接蒸发器的冷媒蒸发温度也多在5℃的原因。
在空调系统中,占总负荷一半以上的显热负荷部分,本可以采用高温冷源排走的热量却与除湿一起共用5~7℃的低温冷源进行处理,造成能量利用品位上的浪费。
而且,经过冷凝除湿后的空气虽然湿度(含湿量)满足要求,但温度过低,有时还需要再热,造成了能源的进一步浪费与损失。
2、难以适应热湿比的变化。
通过冷凝方式对空气进行冷却和除湿,其吸收的显热与潜热比只能在一定的范围内变化,而建筑物实际需要的热湿比却在较大的范围内变化。
一般是牺牲对湿度的控制,通过仅满足室内温度的要求来妥协,造成室内相对湿度过高或过低的现象。
过高的结果是不舒适,进而降低室温设定值,通过降低室温来改善热舒适,造成能耗不必要的增加;相对湿度过低也将导致由于与室外的焓差增加使处理室外新风的能耗增加。
3、造成室内空气品质下降。
大多数空调依靠空气通过冷表面对空气进行降温除湿,这就导致冷表面成为潮湿表面甚至产生积水,空调停机后这样的潮湿表面就成为霉菌繁殖的理想场所。
空调系统繁殖和传播霉菌成为空调可能引起健康问题的主要原因。
另外,目前我国大多数城市的主要污染物仍是可吸入颗粒物,因此有效过滤空调系统引入的室外空气是维持室内健康环境的重要问题。
然而过滤器内必然是粉尘聚集处,如果再漂溅过一些冷凝水,则也成为各种微生物繁殖的理想场所。
频繁清洗过滤器既不现实,也不是根本的解决方案。
4、传统的室内末端装置有局限性。
为排除足够的余热余湿同时又不使送风温度过低,就要求有较大的循环通风量。
例如每平方米建筑面积如果有80 W/m2显热需要排除,房间设定温度为25℃,当送风温度为15℃时,所要求循环风量为24 m3/hr/m2,这就往往造成室内很大的空气流动,使居住者产生不适的吹风感。
为减少这种吹风感,就要通过改进送风口的位置和形式来改善室内气流组织。
这往往要在室内布置风道,从而降低室内净高或加大楼层间距。
很大的通风量还极容易引起空气噪声,并且很难有效消除。
在冬季,为了避免吹风感,即使安装了空调系统,也往往不使用热风,而是通过另一套的暖气系统(如采暖散热器)供热。
这样就导致室内重复安装两套环境控制系统,分别供冬夏使用。
5、输配能耗的问题。
为了完成室内环境控制的任务就需要有输配系统,带走余热、余湿、CO2、气味等。
在中央空调系统中,风机、水泵消耗了40%~70%的整个空调系统的电耗。
在常规中央空调系统中,多采用全空气系统的形式。
所有的冷量全部用空气来传送,导致输配效率很低。
相对而言,1m3水所输送的热量和3840 m3空气所输送的热量是相当的。
此外,随着能源问题的日益严重,以低品位热能作为夏季空调动力成为迫切需要。
目前北方地区大量的热电联产集中供热系统在夏季由于无热负荷而无法运行,使得电力负荷出现高峰的夏季热电联产发电设施反而停机,或者按纯发电模式低效运行。
如果可以利用这部分热量驱动空调,既省下空调电耗,又可使热电联产电厂正常运行,增加发电能力。
这样即可减缓夏季供电压力,又提高能源利用率,是热电联产系统继续发展的关键。
由于空调负荷在一天内变化显著,与热电联产电厂提供热能并不是很好匹配,如何实现有效的蓄能,以协调二者的矛盾也是热能使用当中存在的问题。
综上所述,空调的广泛需求、人居环境健康的需要和能源系统平衡的要求,对目前空调方式提出了挑战。
新的空调应该具备的特点为:减少室内送风量、高效换热末端、采用低品位能源、设置冷热蓄能系统。
从如上要求出发,目前普遍认为温湿度独立控制空调技术可能是一个有效的解决途径。
二、温湿度独立控制空调技术的特点空调系统承担着排除室内余热、余湿、CO2与异味的任务。
研究表明:排除室内余湿与排除CO2、异味所需要的新风量与变化趋势一致,即可以通过新风同时满足排除余湿、CO2与异味的要求,而排除室内余热的任务则通过其他的系统(独立的温度控制系统)来实现。
由于无需承担除湿的任务,因而用较高温度的冷源即可实现排除余热的任务。
温湿度独立控制空调系统中,采用温度与湿度两套独立的空调控制系统,分别控制、调节室内的温度与湿度,从而避免了常规空调系统中热湿联合处理所带来的损失。
由于温度、湿度采用独立的控制系统,可以满足不同区域和同一区域不同房间热湿比不断变化的要求,克服了常规空调系统中难以同时满足温、湿度参数的要求,避免了室内湿度过高(或过低)的现象。
温湿度独立控制空调系统的基本组成为:处理显热的系统与处理潜热的系统,两个系统独立调节分别控制室内的温度与湿度(见图1)。
处理显热的系统包括:高温冷源、余热消除末端装置,采用水作为输送媒介。
由于除湿的任务由处理潜热的系统承担,因而显热系统的冷水供水温度不再是常规冷凝除湿空调系统中的7℃,而是提高到18℃左右,从而为天然冷源的使用提供了条件。
即使采用机械制冷方式,制冷机的性能系数也有大幅度的提高。
余热消除末端装置可以采用毛细管网换热器、辐射板、干式风机盘管等多种形式,由于供水的温度高于室内空气的露点温度,因而不存在结露的危险。
处理潜热的系统,同时去除室内CO2、室内异味等,以保证室内空气质量。
此系统由新风处理机组、送风末端装置组成,采用新风作为能量输送的媒介。
在处理潜热的系统中,由于不一定需要处理温度,因而湿度的处理可能有多种方法,如冷凝除湿、吸附除湿等。
图1 温湿度独立控制空调系统在温湿度独立控制空调系统中,采用新风来承担排除室内余湿、CO2和室内异味的任务,以保证室内空气质量。
一般来说,这些排湿,排有害气体的负荷仅随室内人员数量而变化,因此可采用变风量方式,根据室内空气的湿度或CO2的浓度调节风量。
由于仅是为了满足新风和湿度的要求,如果人均风量40 m3/hr,每人5平方米面积,则换气次数只在2~3次/hr,远小于变风量系统的风量。
这部分空气可通过置换送风的方式从下侧或地面送出,也可采用个性化送风方式直接将新风送入人体活动区。
室内的显热则通过另外的系统来排除(或补充)。
由于这时只需要排除显热,就可以用较高温度的冷源通过辐射、对流等多种方式实现。
当室内设定温度为25℃时,采用屋顶或垂直表面辐射方式,即使平均冷水温度为20℃,每平米辐射表面仍可排除显热40 W/m2,已基本可满足多数类型建筑排除围护结构和室内设备发热量的要求。
由于水温一直高于室内露点温度,因此不存在结露的危险和排凝水的要求。
温湿度独立控制空调系统实现了室内温度和湿度的分别控制。
尤其实现了新风量随人员数量的同步增减,从而避免了变风量系统冬季人员增加,热负荷降低,新风量也随之降低的问题;与目前的风机盘管加新风方式比较,免去了凝水盘和凝水排除系统,彻底消除了实际工程中经常出现问题的这一隐患,同时由于不再存在潮湿表面,根除了滋生霉菌的温床,可有效改善室内空气品质。
由于室内相对湿度可一直维持在60%以下,较高的室温(26℃)就可以达到热舒适要求。
这就避免了由于相对湿度太高,只得把室温降低(甚至到20℃),以维持舒适度要求的问题。
既降低了运行能耗,又减少了由于室内外温差过大造成的热冲击对健康的危害。
图2 毛细管网辐射三、高温冷源的制备由于潜热由单独的新风处理系统承担,因而在温度控制(余热去除)系统中,不再采用7℃的冷水同时满足降温与除湿的要求,而是采用约18℃的冷水即可满足降温要求。
此温度要求的冷水为很多天然冷源的使用提供了条件,如深井水、通过土壤源换热器获取冷水等,深井回灌与土壤源换热器的冷水出水温度与使用地的年平均温度密切相关,我国很多地区可以直接利用该方式提供18℃冷水。
在某些干燥地区(如新疆等)通过直接蒸发或间接蒸发的方法获取18℃冷水。
即使采用机械制冷方式,由于要求的压缩比很小,根据制冷卡诺循环可以得到,制冷机的理想COP将有大幅度提高。
如果将蒸发温度从常规冷水机组的2~3℃提高到14~16℃,当冷凝温度恒为40℃时,卡诺制冷机的COP将从7.2~7.5提高到11.0~12.0。
对于现有的压缩式制冷机、吸收式制冷机,怎样改进其结构形式,使其在小压缩比时能获得较高的效率,则是对制冷机制造者提出的新课题。
图3是三菱重工(MHI)微型离心式高温冷水机组的工作原理,采用“双级压缩+经济器”的制冷循环形式和传热性能优异的高效传热管,优化设计离心式压缩机叶轮和轴承,不仅突破了离心式冷水机组难以小型化的误区,而且还具有非常高的性能系数COP。
图4示出了利用该微型离心式冷水机组制备高温冷水时的性能计算值。
从图中可以看出:当冷冻水进、出水温度为21/18℃、冷却水进、出水温度为37/32℃时,其COP=7.1,在部分负荷条件下或冷却水温度降低时,其性能则更为优越。
图3 微型离心式高温冷水机组图4 18C高温冷水机组的性能曲线四、结论与目前普遍使用的风机盘管加新风方式或全空气方式相比,温湿度独立控制系统的特点可总结如下:适应室内热湿比的变化。
温湿度独立控制系统分别控制房间的温度和湿度,能够满足建筑热湿比随时间与使用情况的变化,全面控制室内环境。
并根据室内人员数量调节新风量,因此可获得更好的室内环境控制效果和空气质量。
末端方式不同。
可采用辐射式末端或者干式风机盘管吸收或提供显热,采用置换通风等方式送出干燥的新风去除显热,冬夏共用同样的末端装置。