动量矩定理和动能定理
- 格式:ppt
- 大小:1.38 MB
- 文档页数:53
动量定理和动能定理重点难点1.动量定理:是一个矢量关系式.先选定一个正方向,一般选初速度方向为正方向.在曲线运动中,动量的变化△P 也是一个矢量,在匀变速曲线运动中(如平抛运动),动量变化的方向即合外力的方向.2.动能定理:是计算力对物体做的总功,可以先分别计算各个力对物体所做的功,再求这些功的代数和,即W 总 = W 1+W 2+…+W n ;也可以将物体所受的各力合成求合力,再求合力所做的功.但第二种方法只适合于各力为恒力的情形.3.说明:应用这两个定理时,都涉及到初、末状状态的选定,一般应通过运动过程的分析来定初、末状态.初、末状态的动量和动能都涉及到速度,一定要注意我们现阶段是在地面参考系中来应用这两个定理,所以速度都必须是对地面的速度.规律方法【例1】05如图所示,质量m A 为4.0kg 的木板A 放在水平面C 上,木板与水平面间的动摩擦因数μ为0.24,木板右端放着质量m B 为1.0kg 的小物块B (视为质点),它们均处于静止状态.木板突然受到水平向右的12N·s 的瞬时冲量作用开始运动,当小物块滑离木板时,木板的动能E KA 为8.0J ,小物块的动能E KB 为0.50J ,重力加速度取10m/s 2,求:(1)瞬时冲量作用结束时木板的速度υ0;(2)木板的长度L .【解析】(1)在瞬时冲量的作用时,木板A 受水平面和小物块B 的摩擦力的冲量均可以忽略.取水平向右为正方向,对A 由动量定理,有:I = m A υ0 代入数据得:υ0 = 3.0m/s(2)设A 对B 、B 对A 、C 对A 的滑动摩擦力大小分别为F fAB 、F fBA 、F fCA ,B 在A 上滑行的时间为t ,B 离开A 时A 的速度为υA ,B 的速度为υB .A 、B 对C 位移为s A 、s B .对A 由动量定理有: —(F fBA +F fCA )t = m A υA -m A υ0对B 由动理定理有: F fAB t = m B υB其中由牛顿第三定律可得F fBA = F fAB ,另F fCA = μ(m A +m B )g对A 由动能定理有: —(F fBA +F fCA )s A = 1/2m A υ-1/2m A υf (1)2A o (2)f (1)20o (2)o (2)对B 由动能定理有: F fA Bf s B = 1/2m B υf (1)2B o (2)根据动量与动能之间的关系有: m A υA = ,m B υB = KA A E m 2r (2mAEKA )KB B E m 2r (2mBEKB )木板A的长度即B 相对A 滑动距离的大小,故L = s A -s B ,代入放数据由以上各式可得L = 0.50m .训练题 05质量为m = 1kg 的小木块(可看在质点),放在质量为M = 5kg 的长木板的左端,如图所示.长木板放在光滑水平桌面上.小木块与长木板间的动摩擦因数μ = 0.1,长木板的长度l = 2m .系统处于静止状态.现使小木块从长木板右端脱离出来,可采用下列两种方法:(g 取10m/s 2)(1)给小木块施加水平向右的恒定外力F 作用时间t = 2s ,则F 至少多大?(2)给小木块一个水平向右的瞬时冲量I ,则冲量I 至少是多大?答案:(1)F=1.85N(2)I=6.94NS【例2】在一次抗洪抢险活动中,解放军某部队用直升飞机抢救一重要落水物体,静止在空中的直升飞机上的电动机通过悬绳将物体从离飞机90m 处的洪水中吊到机舱里.已知物体的质量为80kg ,吊绳的拉力不能超过1200N ,电动机的最大输出功率为12k W ,为尽快把物体安全救起,操作人员采取的办法是,先让吊绳以最大拉力工作一段时间,而后电动机又以最大功率工作,当物体到达机舱前已达到最大速度.(g 取10m/s 2)求:(1)落水物体运动的最大速度;(2)这一过程所用的时间.【解析】先让吊绳以最大拉力F Tm = 1200N 工作时,物体上升的加速度为a , 由牛顿第二定律有:a =m T F mg m-,代入数据得a = 5m/s 2f (FT m -mg )当吊绳拉力功率达到电动机最大功率P m = 12kW 时,物体速度为υ,由P m = T m υ,得υ = 10m /s .物体这段匀加速运动时间t 1 == 2s ,位移s 1 = 1/2at = 10m .aυf (v )f (1)21o (2)此后功率不变,当吊绳拉力F T = mg 时,物体达最大速度υm = = 15m/s .mgP m f (Pm )这段以恒定功率提升物体的时间设为t 2,由功能定理有:Pt 2-mg (h -s 1) =mυ-mυ221f (1)2m o (2)21f (1)代入数据得t 2 = 5.75s ,故物体上升的总时间为t = t 1+t 2 = 7.75s .即落水物体运动的最大速度为15m/s ,整个运动过程历时7.75s .训练题一辆汽车质量为m ,由静止开始运动,沿水平地面行驶s 后,达到最大速度υm ,设汽车的牵引力功率不变,阻力是车重的k 倍,求:(1)汽车牵引力的功率;(2)汽车从静止到匀速运动的时间. 答案:(1)P=kmgv m(2)t=(v m 2+2kgs )/2kgv m【例3】05一个带电量为-q 的液滴,从O 点以速度υ射入匀强电场中,υ的方向与电场方向成θ角,已知油滴的质量为m ,测得油滴达到运动轨道的最高点时,速度的大小为υ,求:(1)最高点的位置可能在O 点上方的哪一侧? (2)电场强度为多大?(3)最高点处(设为N )与O 点电势差绝对值为多大?【解析】(1)带电液油受重力mg 和水平向左的电场力qE ,在水平方向做匀变速直线运动,在竖直方向也为匀变速直线运动,合运动为匀变速曲线运动.由动能定理有:W G +W 电 = △E K ,而△E K = 0重力做负功,W G <0,故必有W 电>0,即电场力做正功,故最高点位置一定在O 点左侧.(2)从O 点到最高点运动过程中,运动过程历时为t ,由动量定理:在水平方向取向右为正方向,有:-qEt = m (-υ)-mυcos θ在竖直方向取向上为正方向,有:-mgt = 0-mυsin θ 上两式相比得,故电场强度为E = θθsin cos 1+=mg qE f (qE )f (1+cos θ)θθsin )cos 1(q mg +f (mg (1+cos θ))(3)竖直方向液滴初速度为υ1 = υsinθ,加速度为重力加速度g ,故到达最高点时上升的最大高度为h ,则h =2221sin 22ggυυθ=f (v \o (2,1))f (v 2sin 2θ)从进入点O 到最高点N 由动能定理有qU -mgh = △E K = 0,代入h 值得U =22sin 2m qυθf (mv 2sin 2θ)【例4】一封闭的弯曲的玻璃管处于竖直平面内,其中充满某种液体,内有一密度为液体密度一半的木块,从管的A 端由静止开始运动,木块和管壁间动摩擦因数μ = 0.5,管两臂长AB = BC = L = 2m ,顶端B 处为一小段光滑圆弧,两臂与水平面成α = 37°角,如图所示.求:(1)木块从A 到达B 时的速率;(2)木块从开始运动到最终静止经过的路程.【解析】木块受四个力作用,如图所示,其中重力和浮力的合力竖直向上,大小为F = F 浮-mg ,而F 浮 = ρ液Vg = 2ρ木Vg = 2mg ,故F = mg .在垂直于管壁方向有:F N = F cosα = mg cosα,在平行管方向受滑动摩擦力F f = μN = μmg cos θ,比较可知,F sinα= mg sinα = 0.6mg ,F f = 0.4mg ,Fsin α>F f .故木块从A 到B 做匀加速运动,滑过B 后F 的分布和滑动摩擦力均为阻力,做匀减速运动,未到C 之前速度即已为零,以后将在B 两侧管间来回运动,但离B 点距离越来越近,最终只能静止在B 处.(1)木块从A 到B 过程中,由动能定理有: FL sin α-F f L = 1/2mυf (1)2B o (2)代入F 、F f 各量得υB = = 2 = 2.83m/s.)cos (sin 2αμα-gL r(2gL(sin α-μcos α))2r (2)(2)木块从开始运动到最终静止,运动的路程设为s ,由动能定理有: FL sin α-F f s = △E K = 0 代入各量得s == 3mααcos sin m L f (Lsin α)训练题质量为2kg 的小球以4m/s 的初速度由倾角为30°斜面底端沿斜面向上滑行,若上滑时的最大距离为1m ,则小球滑回到出发点时动能为多少?(取g = 10m/s 2) 答案:E K =4J能力训练1. 05在北戴河旅游景点之一的北戴河滑沙场有两个坡度不同的滑道AB 和AB ′(均可看作斜面).甲、乙两名旅游者分别乘坐两个完全相同的滑沙撬从A 点由静止开始分别沿AB 和AB ′滑下,最后都停止在水平沙面BC 上,如图所示.设滑沙撬和沙面间的动摩擦因数处处相同,斜面与水平面连接处均可认为是圆滑时,滑沙者保持一定的姿势在滑沙撬上不动.则下列说法中正确的是(ABD)A .甲在B 点速率一定大于乙在B ′点的速率 B .甲滑行的总路程一定大于乙滑行的总路程C .甲全部滑行的水平位移一定大于乙全部滑行的水平位移D .甲在B 点的动能一定大于乙在B ′的动能 2.05下列说法正确的是(BCD)A .一质点受两个力的作用而处于平衡状态(静止或匀速直线运动),则这两个力在同一作用时间内的冲量一定相同B .一质点受两个力的作用而处于平衡状态,则这两个力在同一时间内做的功都为零,或者一个做正功,一个做负功,且功的绝对值相等C .在同一时间内作用力和反作用力的冲量一定大小相等,方向相反D .在同一时间内作用力和反作用力有可能都做正功3.05质量分别为m 1和m 2的两个物体(m 1>m 2),在光滑的水平面上沿同方向运动,具有相同的初动能.与运动方向相同的水平力F 分别作用在这两个物体上,经过相同的时间后,两个物体的动量和动能的大小分别为P 1、P 2和E 1、E 2,则(B)A .P 1>P 2和E 1>E 2 B .P 1>P 2和E 1<E 2C .P 1<P 2和E 1>E 2D .P 1<P 2和E 1<E 24.05如图所示,A 、B 两物体质量分别为m A 、m B ,且m A >m B ,置于光滑水平面上,相距较远.将两个大小均为F 的力,同时分别作用在A 、B 上经相同距离后,撤去两个力,两物体发生碰撞并粘在一起后将( C )A .停止运动B .向左运动C .向右运动D .不能确定5.05在宇宙飞船的实验舱内充满CO 2气体,且一段时间内气体的压强不变,舱内有一块面积为S 的平板紧靠舱壁,如图3-10-8所示.如果CO 2气体对平板的压强是由于气体分子垂直撞击平板形成的,假设气体分子中分别由上、下、左、右、前、后六个方向运动的分子个数各有,且每个分子的速度均为υ,设气体分子与平板碰撞后仍以原速反弹.已知实验舱中单位体积内CO 2f (1)的摩尔数为n ,CO 2的摩尔质量为μ,阿伏加德罗常数为N A ,求:(1)单位时间内打在平板上的CO 2分子数;(2)CO 2气体对平板的压力.答案:(1)设在△t 时间内,CO 2分子运动的距离为L ,则 L =υ△t打在平板上的分子数△N=n L S N A 61故单位时间内打在平板上的C02的分子数为tNN ∆∆=得 N=n S N A υ61(2)根据动量定理 F △t=(2mυ)△N μ=N A m解得F=nμSυ2 31CO2气体对平板的压力 F / = F =nμSυ2 316.05如图所示,倾角θ=37°的斜面底端B 平滑连接着半径r =0.40m 的竖直光滑圆轨道。
动参考系中质点系的动量矩定理和动能定理的讨论在理论力学学中,由牛顿定律22d d m t =r F,通过积分导出了质点对固定点O 的动量矩定理d()d O m t ⨯=⨯=r v r F M将该式用于质点系中的每一个质点i m ,求和并去掉成对出现的内力系对点O 的主矩,得d()d e i i i i i m t ⨯=⨯∑∑r v r F或d d eO O t =L M即质点系相对于固定点O 的动量矩对时间的一阶导数等于作用在该质点系上外力系对同一点的主矩。
这就是质点系对固定点动量矩定理的微分形式。
类比d d t =r v ,有d d O t =L u。
其中,u 为定位矢量O L 的矢端速度。
代入式(44),得eO=u M式为质点系动量矩定理的几何解释式,称为赖柴定理,即质点系对任一固定点的动量矩矢端速度,等于外力对同一点的主矩。
问题 如图所示,长为l ,质量为m 的均质细长杆的质心O 处与定轴AB 固结,AB l =,倾斜角为θ,定轴以匀角速度ω转动时,求支座A ,B 处动约束力。
答 因AB 非细长杆主轴,先将ω沿杆的主轴正交分解,因杆细长,可忽略2ω方向的动量矩。
则细杆对O 点动量矩大小为21sin 12O L ml ωθ=,方向如图所示,且垂直于杆。
由于d d eO O t ==L u M ,而cos O u L ωθ=,故221sin cos sin 21224eO A B ml M ml F F l l ωθωθωθ====按右手法则确定,A B F F 方向,如图所示(此时,,A B O F F L 共面)。
思考 ①若考虑问题中沿杆轴方向的动量矩,结果有何变化? ②若杆与轴的固结点偏离质心O ,结果又怎样? ③若将均质细杆换为均质圆盘或矩形板,如何求解? 2 积分形式将(44)式两边对时间t 求定积分得2121 d t eO O O t t-=⎰L L M式表明:质点系对任一固定点的动量矩在某一时间间隔内的改变量,等于在同一时间内各外问题图力对同一点的冲量矩之和。
动能定理动量定理联立推导公式动能定理和动量定理是物理学中的两个基本定理,它们可以用来描述质点的运动,并在各种领域都发挥了重要作用。
本文将介绍动能定理和动量定理的定义及其推导公式,着重讨论它们的关系,设计出一个联立的推导公式。
动能定理定义:动能定理指出,当质点受到力作用时,由于动能的定义为K=\frac{1}{2}mv^2 ,因此质点的动能变化量是由力所做的功量决定的,即W=ΔK。
其中 W 是力所做的功量,ΔK 是质点动能的变化量,m 是质点的质量,v 是质点的速度。
动量定理定义:动量定理是描述质点动力学的重要定律之一,表述如下:当质量为m的质点受到力F作用时,它的动量的变化率与这个力的大小和作用时间有关系,即\frac{\Deltap}{\Delta t}=F。
\Delta p是质点动量的变化量,\Delta t是力作用时间的变化量,F是力的大小。
联立动能定理和动量定理:动能定理和动量定理都描述运动物体的性质。
它们之间的联系可以通过联立运用公式来得到。
如果一只质点受到一定的力作用,它的速度将发生变化。
假设在时间\Delta t内,质点的速度从v_1变为v_2,力的大小为F,则根据动量定理:F\Delta t=\frac{\Delta p}{\Delta t}=m\frac{\Delta v}{\Delta t}=ma\Delta v=v_2-v_1,a是质点受到力作用后的加速度。
将动量定理中的F\Delta t=ma带入到动能定理W=ΔK中得到:W=F\Delta x=ma\Delta x=m\frac{\Delta v}{\Delta t}a\Delta x=m\frac{\Deltav}{\Delta t}\Delta (1/2mv^2)=\Delta (1/2mv^2)Δx是质点移动的距离,m和v是质点的质量和速度。
通过上述推导,我们可以发现动能定理和动量定理之间存在非常紧密的关系。
动能定理描述了质点(静止的或运动的)所具有的动能如何与力作用量相比较和联系起来。
动量定理和动能定理的联系1. 动量定理和动能定理,这俩家伙听起来就像是物理学里的双胞胎兄弟,虽然名字听起来差不多,但它们的个性和做的事情可大不相同。
让我给你细细道来,这俩兄弟的故事。
2. 先说说动量定理吧,这家伙就像是个守门员,它告诉我们力和物体动量变化之间的关系。
想象一下,你踢足球,脚就是那个力,足球就是那个物体。
你一脚踢出去,足球的速度和方向都变了,这就是动量的变化。
动量定理就是告诉你,力和动量变化之间有个啥关系。
3. 动能定理呢,这家伙更像是个会计,它关心的是能量的进出。
还是拿踢球来说,你的脚给球一个力,球就开始滚动,这个过程中,球的动能就在变化。
动能定理就是告诉你,做功和动能变化之间的关系。
4. 这俩兄弟虽然做的事情不一样,但它们之间有个秘密联系。
这个联系就是能量守恒定律。
你想想,当你踢球的时候,你的脚对球做了功,这个功就转换成了球的动能。
同时,这个过程中,球的动量也在变化。
这就是动量定理和动能定理之间的联系。
5. 让我给你举个更具体的例子。
比如说,你在滑冰,你推了一下墙,然后反弹回来。
你推墙的力,就是动量定理里的力,你的动量变化了,因为你从静止变成了移动。
同时,你的动能也从零增加到了某个值,这就是动能定理在起作用。
6. 但是,这里有个好玩的现象,你推墙的时候,墙也对你施加了一个相等大小但方向相反的力,这就是牛顿第三定律。
你的动能增加了,但墙的动能几乎没变,因为它太大了,你的那点力对它来说微不足道。
这就是动量守恒和动能不守恒的一个例子。
7. 再来说说,如果你把一个球扔到空中,球在上升的过程中,它的动能逐渐减少,因为它在对抗重力做功。
当球达到最高点时,动能变为零,所有的能量都转换成了势能。
然后球开始下落,势能又逐渐转换成动能。
这个过程,就是动能定理和能量守恒定律的完美结合。
8. 你看,动量定理和动能定理虽然关注的点不同,但它们都是物理学大家庭中的一员,它们共同遵守着能量守恒这个大原则。
这就像是,无论你是跑步、游泳还是骑自行车,你的身体都在消耗能量,这些能量最终都会以某种形式释放出来。
动力的计算公式1、动量矩定理:F=ma(合外力提供物体的加速度);2、动能定理:W=1/2mV^2-1/2mv^2(合外力做的功等于物体的动能的改变量);3、动量定理:(合外力的冲量等于物体动量的变化量)。
从牛顿运动微分方程组推导出来的具有明显物理意义的定理,计有动量定理、动量矩定理、动能定理、质心运动定理等四个。
前三个都是运动微分方程的一次积分,末一个是动量定理的又一次积分,牛顿认为物体运动的量应用“质量和速度的乘积”表示。
因此他叙述运动定律时,用“动量的变化率”,而不是用“质量乘加速度”可见,动量定理是牛顿观点的产物。
这定理主要用于求速度v(或质心速度)和作用时间的关系。
G.W.莱布尼兹则认为表示物体运动的物理里应是“质量与速度的平方的乘积”,并将mv2称为活力。
用现在的观点,这就相当于物体的动能的两倍。
牛顿对力的作用是从时间的累积效应来认识的,而莱布尼兹则从力对运动路程的累积来认识。
所以动能定浬适用于求速度v和路程S 的关系动量矩适用于物体的转动效应,所以与转动有关的力学问题可以考虑动量矩定理。
有关质心位置的问题,应用质心运动定理。
扩展资料动力学的基本内容包括质点动力学、质点系动力学、刚体动力学,达朗伯原理等。
以动力学为基础而发展出来的应用学科有天体力学、振动理论、运动稳定性理论、陀螺力学、外弹道学、变质量力学以及正在发展中的多刚体系统动力学等(见振动,运动稳定性,变质量体运动,多刚体系统)。
质点动力学有两类基本问题:一是已知貭点的运动,求作用于质点上的力,二是已知作用于质点上的力,求质点的运动,求解第一类问题时只要对质点的运动方程取二阶导数,得到质点的加速度,代入牛顿第二定律,即可求得力。
求解第二类问题时需要求解质点运动微分方程或求积分。
所谓质点运动微分方程就是把运动第二定律写为包含质点的坐标对时间的导数的方程。
常见刚体运动的动力学分析方法刚体是指在运动过程中保持形状不变的物体,它的运动可以通过动力学分析方法来研究。
本文将介绍常见的刚体运动的动力学分析方法。
一、平面刚体运动的动力学分析方法在平面刚体运动中,刚体在平面上的运动可以分解为质心运动和绕质心的旋转运动。
常见的动力学分析方法包括线动量定理、角动量定理和动能定理。
1. 线动量定理线动量定理描述了刚体在平面上的线动量变化与合外力矩之间的关系。
根据线动量定理,刚体在一个时间间隔内的线动量变化等于作用在刚体上的合外力矩乘上时间间隔。
线动量定理的数学表达式为:Δp= ∑F⃗ ×Δt,其中Δp表示线动量的变化量,F⃗表示合外力矩,Δt表示时间间隔。
2. 角动量定理角动量定理描述了刚体在平面上围绕质心旋转时的角动量变化与合外力矩之间的关系。
根据角动量定理,刚体在一个时间间隔内的角动量变化等于作用在刚体上的合外力矩乘上时间间隔。
角动量定理的数学表达式为:ΔL = ∑τ⃗ ×Δt,其中ΔL表示角动量的变化量,τ⃗表示合外力矩,Δt表示时间间隔。
3. 动能定理动能定理描述了刚体在平面上的动能变化与合外力矩之间的关系。
根据动能定理,刚体在一个时间间隔内的动能变化等于作用在刚体上的合外力矩与刚体的质量乘积乘上时间间隔。
动能定理的数学表达式为:ΔE = ∑τ⃗ ×Δθ,其中ΔE表示动能的变化量,τ⃗表示合外力矩,Δθ表示角位移。
二、空间刚体运动的动力学分析方法在空间刚体运动中,刚体在三维空间上的运动可以分解为质心运动和绕质心的旋转运动。
常见的动力学分析方法包括动量矩定理、角动量矩定理和动能定理。
1. 动量矩定理动量矩定理描述了刚体在空间上的动量矩变化与合外力和合外力矩之间的关系。
根据动量矩定理,刚体在一个时间间隔内的动量矩变化等于作用在刚体上的合外力和合外力矩乘上时间间隔。
动量矩定理的数学表达式为:ΔL = ∑M⃗ ×Δt,其中ΔL表示动量矩的变化量,M⃗表示合外力矩,Δt表示时间间隔。
比较质点系的动能定理和动量定理比较质点系的动能定理和动量定理质点系的动能定理和动量定理是物理力学中非常重要的定理,两者都与质点系的运动状态相关。
下面将对这两个定理进行比较。
一、动能定理动能定理是描述质点运动状态的重要定理,它与质点的动能有关。
动能定理可以表示为:ΔK=W,其中ΔK为质点在某段时间内的动能变化量,W为外力对质点做功。
动能定理的物理意义是:外力对质点做功的大小等于质点动能的变化量,即质点动能的增加等于外力对质点做的功,质点动能的减小等于质点对外界做的功。
二、动量定理动量定理是另一个描述质点运动状态的重要定理,它与质点的动量有关。
动量定理可以表示为:Δp=FΔt,其中Δp为质点在某段时间内的动量变化量,F为质点所受合外力,Δt为质点所受合外力作用的时间。
动量定理的物理意义是:质点所受合外力的作用使质点的动量发生变化,即质点动量的增加等于合外力对质点的作用,质点动量的减小等于质点对外界施加的作用。
三、两者的比较动能定理和动量定理都是物理力学中描述质点运动状态的重要定理,它们之间有以下几点不同:1. 方向:动能定理只涉及质点动能的变化,与动量的方向无关;而动量定理要考虑合外力的方向,与动量的方向有关。
2. 物理量:动能定理描述的是质点的动能变化,而动量定理描述的是质点的动量变化。
3. 计算方式:动能定理的计算只需知道外力对质点做功的大小,而动量定理的计算需要知道合外力的大小、方向和作用时间。
4. 应用场合:动能定理适用于质点在力学系统中的动能变化问题,而动量定理适用于描述质点受力作用后动量变化的问题。
总之,动能定理和动量定理都是描述质点运动状态的重要定理,在不同的物理场合中都有着重要的应用。