七年级下册数学华师版 第9章 多边形9.2 多边形的内角和与外角和9.2.2 多边形的角【说课稿】
- 格式:doc
- 大小:20.44 KB
- 文档页数:3
第9章多边形 (2)§9.1三角形........................................................................ 错误!未定义书签。
1.认识三角形 (3)2.三角形的外角和 (5)3.三角形的三边关系 (8)§9.2 多边形的内角和与外角和 (10)§9.3 用正多边形拼地板 (12)1.用相同的正多边形拼地板 (12)2.用多种正多边形拼地板 (13)阅读材料 (15)多姿多彩的图案 (15)小结 (16)复习题 (17)课题学习 (18)图形的镶嵌 (18)第9章多边形瓷砖是生活中常见的装饰材料,你见过哪些形状的瓷砖?它们的形状有什么特点呢?你知道瓷砖能铺满地面的奥秘吗?§9.1 三角形走在大街上,进入宾馆或饭店,在许多地方,我们都可以看到由各种形状的地砖或瓷砖铺成的漂亮的地面和墙面,在这些地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙,如图9.1.1所示.图9.1.1在某些公园门口或高速公路两边的护坡上,我们还可以见到如图9.1.2所示的由不规则的图形铺成的地面.图9.1.2这些形状的地砖或瓷砖为什么能铺满地面而不留一点空隙呢?换一些其他的形状行不行?为了解决这些问题,我们有必要研究多边形的有关性质.三角形是最为简单的多边形,让我们从三角形开始,探究一下其中的道理.1.认识三角形三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形,这三条线段就是三角形的边.在图9.1.3(1)中画着一个三角形ABC.三角形的顶点采用大写字母A、B、C或K、L、M等表示,整个三角形表示为△ABC或△KLM(参照顶点的字母).如图9.1.3(2)所示,在三角形中,每两条边所组成的角叫做三角形的内角,如∠ACB;三角形中内角的一边与另一边的反向延长线所组成的角叫做三角形的外角,如∠ACD是与△ABC的内角∠ACB相邻的外角.图9.1.3(2)指明了△ABC 的主要成分.图9.1.3试一试图9.1.4中,三个三角形的内角各有什么特点?图9.1.4第一个三角形中,三个内角均为锐角;第二个三角形中,有一个内角是直角;第三个三角形中,有一个内角是钝角.三角形可以按角来分类:所有内角都是锐角――锐角三角形;有一个内角是直角――直角三角形;有一个内角是钝角――钝角三角形;试一试图9.1.5中,三个三角形的边各有什么特点?图9.1.5第一个三角形的三边互不相等;第二个三角形有两条边相等;第三个三角形的三边都相等.我们把两条边相等的三角形称为等腰三角形,相等的两边叫做等腰三角形的腰;把三条边都相等的三角形称为等边三角形(或正三角形).做一做在图9.1.6中找出等腰三角形、正三角形、锐角三角形、直角三角形、钝角三角形. 图9.1.6练 习1. 在练习本上画出:(1) 等腰锐角三角形;(2) 等腰直角三角形;(3) 等腰钝角三角形.2. 10个点如图所示那样放着.把这些点作为三角形的顶点,可作多少个正三角形?如图9.1.7所示,取△A B C 边AB 的中点E , 边结CE ,线段CE 就是△ABC 的一条中线;作△ABC 的内角∠BAC 的平分线交对边BC 于D ,线段AD就是△ABC 的一条角平分线;过顶点B 作△ABC 边AC 的垂线,垂足为F ,结段BF 就是△ABC 的一条高.显然,△ABC 有三条中线、三条角平分线、三条高.做一做下面给出了三个相同的锐角三角形,分别在这三个三角形中画出三角形的三条中线、三条角平分线、三条高.把锐角三角形换成直角三角形或钝角三角形,再试一试,你发现了什么? 可以发现,三角形的三条中线、三条角平分线、三条高________;直角三角形三条高的交点就是______________;钝角三角形有两条高位于三角形的外部.练 习1. 如图,△ABC 是等腰三角形,且AB =AC .试作出BC 边上的中线和高以及∠A 的平分线.从中你发现了什么?2. 在一个直角三角形中,画出斜边上的中线,先观察一下图形中有几个等腰三角形,再用刻度尺验证你的结论.2. 三角形的外角和我们已经知道三角形的内角和等于180°.现在我们讨论三角形的外角及外角和.如图9.1.8所示,一个三角形的每一个外角对应一个相邻的内角和两个不相 邻的内角.(第2题)图9.1.7 (第1题)图9.1.8三角形的外角与内角有什么关系呢?图9.1.9在图9.1.9中,显然有∠CBD(外角)+∠ABC(相邻内角)=180°.那么外角∠CBD与其他两个不相邻的内角又有什么关系呢?做一做在一张白纸上画出如图9.2.7所示的图形,然后把∠ACB、∠BAC剪下拼在一起,放到∠CBD上,看看会出现什么结果,与你的同伴交流一下,结果是否一样.可以发现∠CBD=∠ACB+∠BAC,实际上,因为∠CBD+∠ABC=180°∠ACB+∠BAC+∠ABC=180°比较这两个式子,就可以得到你与你的同伴所发现的结论.由此可知,三角形的外角有两条性质:1.三角形的一个外角等于与它不相邻的两个内角的和;2.三角形的一个外角大于任何一个与它不相邻的内角.与三角形的每个内角相邻的外角分别有两个,这两个外角是对顶角.从与每个内角相邻的两个外角中分别取一个相加,得到的和称为三角形的外角和.如图9.1.10所示,∠1+∠2+∠3就是△ABC的外角和.做一做在图9.1.10中∠1+______________=180°,∠2+_______________=180°,∠3+_______________=180°.三式相加可以得到∠1+∠2+∠3+______+______+______=_______,(1)而∠ACB+∠BAC+∠ABC=180°,(2)将(1)与(2)相比较,你能得出什么结论?概括可以得到∠1+∠2+∠3=360°由此可知:三角形的外角和等于360°.例1 如图9.1.11,D 是△ABC 的BC 边上一点,∠B =∠BAD ,∠ADC =80°,∠BAC =70°.求:(1)∠B 的度数;(2)∠C 的度数.图9.1.11解 (1)∵∠ADC 是△ABD 的外角(已知),∴∠ADC =∠B +∠BAD =80°(三角形的一个外角等于与它不相邻的两个内角的和).又 ∠B =∠BAD (已知),∴ ∠B =80°×21=40°(等量代换). (2)在△ABC 中,∵∠B +∠BAC +∠C =180°(三角形的内角和等于180°),∴ ∠C =180°-∠B -∠BAC (等式的性质)=180°-40°-70°=70°练 习1.(口答)一个三角形可以有两个内角都是直角吗?可以有两个内角都是钝角或都是锐角吗?为什么?2.求下列各图中∠1的度数.(第2题) (第3题)3.如图,在直角△ABC 中,CD 是斜边AB 上的高,∠BCD =35°,求(1)∠EBC 的度数;(2)∠A 的度数.解:(1)∵CD ⊥AB (已知),∴∠CDB =∵∠EBC=∠CD B+∠BCD ()∴∠EBC=+35°=(等量代换).(2)∵∠EBC=∠A+∠ACB ()∴∠A=∠EBC-∠ACB(等式的性质).∵∠ACB=90°(已知)∴∠A=-90°=(等量代换).你能用其他方法解决这一问题吗?3.三角形的三边关系做一做画一个三角形,使它的三条边长分别为7cm、5cm、4cm.如图9.1.12,先画线段AB=7cm;然后以点A为圆心,5cm长为半径画圆弧;再以点B为圆心,4cm长为半径画圆弧;两弧相交于点C,连结AC BC.△ABC 就是所要画的三角形.图9.1.12试一试以下列长度的各组线段为边,能否画一个三角形?(1)7cm,4cm,2cm; (2)9cm,5cm,4cm.在上述画图的过程中,我们可以发现,并不是任意三条线段都可以组成一个三角形的.在三条线段中,如果两条较短线段的和不大于第三条最长的线段,那么这三条线段就不能组成一个三角形.换句话说:三角形的任何两边的和大于第三边.用三根木条钉一个三角形,你会发现再也无法改变这一个三角形的形状和大小,也就是说,如果三角形的三条边固定,那么三角形的形状和大小就完全确定了.三角形的这人性质叫做三角形的稳定性.用四根木条钉一个四边形,你会发现可以任意改变这个四边形的形状和大小,这说明四边形具有不稳定性.三角形的稳定性在生产实践中有着广泛的应用.例如桥梁拉杆、电视塔架底座,都是三角形结构.(如图9.1.13所示)图9.1.13练习1.(口答)下列长度的各组线段能否组成一个三角形?(1)15cm、10 cm、7 cm;(2)4 cm、5 cm、10 cm;(3)3 cm、8 cm、5 cm;(4)4 cm、5 cm、6 cm.2.一木工有两根分别为40厘米和60厘米的木条,要另找一根木条,钉成一个三角木架.问第三根木条的长度应在什么范围之内?3.举两个三角形的稳定性在生产实践中应用的例子.习题9.11.已知△ABC是等腰三角形.(1)如果它的两条边长的长分别为8cm和3cm,那么它的周长是多少?(2)如果它的周长为18cm,一条边的长为4cm,那么腰长是多少?2.按图中所给的条件,求出∠1、∠2、∠3的度数.(第2题)(第3题)3.如图,飞机要从A地飞往B地,因受大风影响,一开始就偏离航线(AB)18°(即∠A=18°)飞到了C地,经B地的导航站测得∠ABC=10°.此时飞机必须沿某一方向飞行才能到达能到达B处.那么这一方向与水平方向的夹角∠BCD的度数?4.如图,在△ABC中,∠ABC=80°,∠ACB=50°,BP平分∠ABC,CP平分∠ACB,求∠BPC的度数.对于上述问题,在以下解答过程的空白处填上适当的内容(理由或数学式).解:∵BP平分∠ABC(已知)∴ ∠PBC =21∠ABC =21×80°=40°. (第4题)同理可得∠PCB =∵ ∠BPC +∠PBC +∠PCB =180°( )∴ ∠BPC =180°-∠PBC -∠PCB (等式的性质)=180°-40°- = . §9.2 多边形的内角和与外角和试一试三角形有三个内角、三条边,我们也可以把三角形称为三边形(但我们习惯称为三角形).我们已经知道什么叫三角形,你能说出什么叫四边形、五边形吗? 图9.2.1(1)是四边形,它是由四条不在同一直线上的线段首尾顺次连结组成的平面图形,记为四边形ABCD ;图9.2.1(2)是五边形,它是由五条不在同一直线上的线段首尾顺次连结组成的平面图形,记为五边形ABCDE .一般地,由n 条不在同一直线上的线段首尾顺次连结组成的平面图形称为n 边形,又称为多边形.图9.2.1注 意我们现在研究的是如图9.2.1所示的多边形,也就是所谓的凸多边形.与三角形类似,如图9.2.2所示,∠A 、∠D 、∠C 、∠ABC 是四边形ABCD 的四个内角,∠CBE 和∠ABF 都是与∠ABC 相邻的外角,两者互为对顶角.如果多边形的各边都相等,各内角也都相等,那么就称它为正多边形(regular polygon ).如正三角形、正四边形(正方形)、正五边形等等.连结多边形不相邻的两个顶点的线段叫做多边形的对角线.例如,图9.2.3(1)中,线段AC 是四边形ABCD 的一条对角线;图9.2.3(2)、(3)中,虚线表示的线段也是所画多边形的对角线. 图9.2.2图9.2.3试一试由图9.2.3可以看出,从多边形的一个顶点引出的对角线把多边形划分为若干个三角形.我们已知一个三角形的内角和等于180°,那么四边形的内角和等于多少呢?五边形、六边形呢?由此,n 边形的内角和等于多少呢?探 索为了求得n 边形的内角和,请根据图9.2.4所示,完成表9.2.1.图9.2.4表9.2.1由此,我们得出n 边形的内角和为_________________.例1 求八边形的内角和的度数.解 (n -2)×180°=(8-2)×180°=1 080°.试一试如图9.2.5,在n 边形内任取一点P ,连结点P 与多边形的每一个顶点,可得几个三角形?(图中取n =6的情形)你能否根据这样划分多边形的方法来说明n 边形的内角和等于(n -2)×180°?与多边形的每个内角相邻的外角分别有两个,这两个外角是对顶角.从与每个内角相邻的两个外角中分别取一个相加,得到的和称为多边形的外角和.如图9.2.6所示,∠1+∠2+∠3+∠4就是四边形ABCD 的外角和.探 索根据n 边形的每一个内角与它的相邻的外角都互为补角,可以求得n 边形的 外角和.为了求得n 边形的外角和,请将数据填入表9.2.2.图9.2.5 图9.2.6表9.2.2因此,任意多边形的外角和都为________.练 习1. 填空:(1) 十边形的内角和是________,外角和是_________;如果十边形的各个内角都相等,那么它的一个内角是_________.(2) 已知一个多边形的内角和是2340°,则这个多边形的边数是_______.2. 在一个多边形中,它的内角最多可以有几个是锐角?习题9.21. 先任意画一个五边形,然后画出它所有的对角线,数一数,一共有多少条对角线?2. 在n 边形某一边上任取一点P ,连结点P 与多边形的每一个顶点,可得多少个三角形?你能否根据这样划分多边形的方法来说明n 边形的内角和等于(n(第2题) (第3题)根据上图填空:∠1=∠C +___________2=∠B +______________;∠A +∠B +∠C +∠D _________+∠1+∠2=_________. 想一想,这个结论对任意的五角星是否都成立.1.用相同的正多边形拼地板探 索使用给定的某种正多边形,它能否拼成一个平面图形,既不留下一丝空白, 又不相互重叠?这显然与它的内角大小有关.为了探索哪些正多边形能铺满平 面,请根据图9.3.1,完成表9.3.1.图9.3.1表9.3.1概 括当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角时,就 拼成一个平面图形.如正六边形的每个内角为120°,三个120°拼在一起恰好组成周角,所以 全用正六边形瓷砖就可以铺满地面.如图9.1.1(1)、(2)所示,你能说明为什么正三角形和正方形能铺满平面 吗?如图9.3.2所示,正五边形不能铺满平面,正八边形也不能铺满平面.图9.3.2练 习 1.使用给定的某种三角形可以铺满地面吗?四边形呢?试试看.2.在如图9.1.1(1)中,把相邻两行正三角形分开,添一行正方形,得到右图.它表明把正三角正方形结合在一起也能铺满地面.正三角形、正方形、正六边形两两结合是否都能铺满地面呢?把正三角形、正方形、正六边形三者结合在一起呢?请你试试看.2.用多种正多边形拼地板如图9.3.3所示,用正三角形和正六边形也能铺满地面.类似的情况还有吗?由正六边形和正三角形组成图9.3.3我们还可以发现其他的情况,如图9.3.4~7.现以图9.3.5为例,观察一下其中的关系.正十二边形的一个内角为︒=︒⨯-15018012212,正六边形的一个内角为120°,正方形的一个内角为90°,三者之和恰为一个周角360°,实际上这三种正多边形结合在一起恰好能铺满地面.图9.3.4图9.3.5图9.3.6 图9.3.7练 习1. 试说明本节中几种正多边形铺满地面的理由.2. 试以正五边形和正十边形为例,说明即使满足“围绕一点拼在一起的几种正多边形的内角之和为一个圆周”的条件,也不一定能铺满地面.习题9.31. 选择题(可能有多个答案).(1) 下列正多边形中,能够铺满地面的是( ).A . 正方形B . 正五边形C . 正八边形D . 正六边形(2) 下列正多边形的组合中,能够铺满地面的是( ).[A . 正八边形和正方形B . 正五边形和正八边形C . 正六边形和正三角形2. 试画出用正三角形和正六边形铺满地面,但与图9.3.3不同的图形.3. 在一个城市的地图上,4个区的轮廓都是三角形形状.如果每个区与其他3个区都有公共边界,各区彼此的位置怎样?请画出示意图.阅读材料多姿多彩的图案我们已经看到了用正多边形拼成的各种图案,实际上,有许多图案往往是不规则的基本图形拼成的,如图(1)和图(2).(2)图(3)和图(4)分别说明了相应的图案是如何由基本图形拼成的. (3) (1)(4)你玩过哪些拼图?你自己有设计出一幅拼图吗?小结一、知识结构二、概述1.体验三角形的外角性质、三角形的外角和、三角形的三边关系、多边形的内角和与多边形的外角和的探索过程.2.理解某些正多边形能够铺满地面的道理.3.欣赏丰富多彩的图案.复习题A组1.判断题(对的填“√”,错的填“╳”):(1)三角形中至少有两个锐角.()(2)钝角三角形的内角和大于锐角三角形的内角和.()(3)锐角三角形的三个内角都是锐角.()(4)钝角三角形的三个内角都是钝角.()(5)直角三角形的两个锐角互为余角.()2.已知两条线段a、b,其长度分别为2.5cm 与3.5cm.另有长度分别为1cm、3cm、5cm、7cm、9cm的5条线段,其中能够与线段a、b一起组成三角形的有哪几条?3.如图,按规定,一块模板中AB、CD的延长线应相交成85°角.因交点不在板上,不便测量,工人师傅边结AC,测得∠BAC=32°,∠DCA=65°,此时AB、CD的延长线相交所成的角是不是符合规定?为什么?(第3题)(第4题)4.如图,在直角△ABC中,∠ACB=90°,CD是△ABC的高,∠1=30°.求∠2、∠B与∠A的度数.5.求下列多边形的内角和的度数:(1)五边形;(2)八边形;(3)十二边形.6.已知多边形的内角和的度数分别如下,求相应的多边形的边数:(1)900°;(2)1980°;(3)2700°.7.已知在一个十边形中,九个内角的和的度数是1290°,求这个十边形的另一个内角的度数.8.正八边形的每一个外角是多少度?9.如果一个正多边形的每个外角是24°,那么这个多边形有多少条边?B组10.选择题:(1)在三角形的三个外角中,锐角最多只有().A.3个B.2个C.1个D.0个(2)(n+1)边形的内角和比n边形的内角和大().A.180°B.360°C.n·180°D.n·360°(3)若三角形三个内角的比为1:2:3,则这个三角形是()A .锐角三角形B .直角三角形C .等边三角形D .钝角三角形11. 在△ABC 中,AC =12cm ,AB =8cm ,那么BC 的最大长度应小于多少?最小的长度应满足什么条件呢?12. 在各个内角都相等的多边形中,一个外角等于一个内角的52,求这个多边形的每一个内角的度数和它的边数.C 组13. 如图,已知DC 是△ABC 中∠ACB 的外角平分线,说明为什么∠BAC >∠B .(第13题)14. 在本书第61页练习的第2题中,至少应当去掉多少个点,才能使得留下的任何三点都不能组成一个正三角形?15. 试以“瓷砖中的数学”为题写一篇小论文.课题学习图形的镶嵌我们已经看到不少平面图形可以铺满地面,实际情况还有许多.现在请你参与下面的探索活动.(1) 收集生活中用平面图形铺满地面的实例,看谁收集得多.(2) 想一想,为什么用一种正多边形铺满地面时只有正三角形、正方形和 正六边形的三种.(3) 用任意一种四边形能铺满地面吗?如果能的话,试画出草图,说说你 的想法.(4) 设计一幅用平面图形铺满地面的美丽图案,与你的小伙伴比一比,看 看谁设计得更有新意. (第14题)。
华东师大版数学七年级下册第9章9.2多边形的内角和与外角和多边形的内角和专题练习题1.从n边形的一个顶点出发,可以引________条对角线,它们将n边形分成________个三角形.2.若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是()A.十三边形B.十二边形C.十一边形D.十边形3.下列说法不正确的是()A.各边都相等的多边形是正多边形B.正多边形的各边都相等C.正三角形就是等边三角形D.各内角相等的多边形不一定是正多边形4.五边形的内角和是()A.180°B.360°C.540°D.600°5.已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形6.一个多边形的每个内角都等于120°,则这个多边形的边数为()A.4 B.5 C.6 D.77.如果一张多边形纸片的内角和是1800°,那么将它剪去一个角之后的多边形的内角和不可能是()A.1440°B.1620°C.1800°D.1980°8.在四边形ABCD,∠D=60°,∠B比∠A大20°,∠C是∠A的2倍,求∠A,∠B,∠C的大小.9.将正三角形、正四边形、正五边形按如图所示的位置摆放,如果∠3=32°,求∠1+∠2.10.已知:如图,多边形的对角线条数是d,边数是n,容易知道d与n的部分关系是:三角形的对角线的条数是0;四边形的对角线的条数是2;五边形的对角线的条数是5;六边形的对角线的条数是9.问:多边形的对角线条数d和边数n有什么关系?答案:1. (n -3) (n -2)2---7 AACCCA8. ∠A =70°,∠B =90°,∠C =140°9. ∠1+∠2=70°10. d =12n(n -3)。
9.2.1多边形和多边形的对角线一.选择题(共8小题)1.如图,4×4的方格中每个小正方形的边长都是1,则S四边形ABCD与S四边形ECDF的大小关系是()A.S四边形ABDC=S四边形ECDF B.S四边形ABDC<S四边形ECDFC.S四边形ABDC=S四边形ECDF+1 D. S四边形ABDC=S四边形ECDF+22.把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是()A.六边形B.五边形C.四边形D.三角形3.下列图形中具有稳定性的有()A.正方形B.长方形C.梯形D.直角三角形4.从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成()个三角形.A. 6 B.5 C.8 D.75.若从多边形的某一顶点出发只能画五条对角线,则它是()A.六边形B.七边形C.八边形D.九边形6.从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是()A.n B.(n﹣1)C.(n﹣2)D.(n﹣3)7.下列图形中,多边形有()A.1个B.2个C.3个D.4个8.一个多边形有9条对角线,则这个多边形有多少条边()A. 6 B.7 C 8 D.9二.填空题(共7小题)9.一个多边形的内角和为720°,从这个多边形同一个顶点可画的对角线有_________ 条.10.过多边形的一个顶点的所有对角线把多边形分成8个三角形,这个多边形的边数是_________ .11.过四边形一个顶点的对角线可以把四边形分成两个三角形;过五边形或六边形的一个顶点的对角线,分别把它们分成个三角形;过n边形一个顶点的对角线可以把n边形分成_________ 个(用含n的代数式表示)三角形.12.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是_________ .13.一个凸多边形的内角中,最多有_________ 个锐角.14.如图所示,将多边形分割成三角形、图(1)中可分割出2个三角形;图(2)中可分割出3个三角形;图(3)中可分割出4个三角形;由此你能猜测出,n边形可以分割出_________ 个三角形.15.若一个多边形截去一个角后,变成六边形,则原来多边形的边数可能是_________ .三.解答题(共5小题)16.用两个一样大小的含30°角的三角板可以拼成多少个形状不同的四边形?请画图说明.17.从四边形的一个顶点出发可画_________ 条对角线,从五边形的一个顶点出发可画_________ 条对角线,从六边形的一个顶点出发可画_________ 条对角线,请猜想从七边形的一个顶点出发有_________ 条对角线,从n边形的一个顶点出发有_________ 条对角线,从而推导出n边形共有_________ 条对角线.18.请你分别在下列多边形的同一顶点出发画对角线:想一想:依此规律可以把10边形分成_________个三角形.19.实践与探索!①过四边形一边上点P与另外两个顶点连线可以把四边形分成_________ 个三角形;②过五边形一边上点P与另外三个顶点连线可以把五边形分成_________ 个三角形;③经过上面的探究,你可以归纳出过n边形一边上点P与另外_________ 个顶点连线可以把n边形分成_________ 个三角形(用含n的代数式表示).④你能否根据这样划分多边形的方法来写出n边形的内角和公式?请说明你的理由.20.已知从多边形一个顶点出发的所有对角线将多边形分成三角形的个数恰好等于该多边形所有对角线的条数,求此多边形的内角和.参考答案与试题解析一.选择题(共8小题)1.A.2.A.3.D.4.B.5.C.6.C.7.B.8.A.二.填空题(共7小题)9.3.10.10.11.(n﹣2)12.n2+2n.13.314.(n﹣1)15.5,6,7.三.解答题(共5小题)16.解:四个.如图所示:17.解:从四边形的一个顶点出发可画1条对角线,从五边形的一个顶点出发可画2条对角线,从六边形的一个顶点出发可画3条对角线,请猜想从七边形的一个顶点出发有4条对角线,从n边形的一个顶点出发有(n﹣3)条对角线,从而推导出n边形共有条对角线,故答案为:1;2;3;4;(n﹣3);.18.解:∵四边形可分割成4﹣2=2个三角形;五边形可分割成5﹣2=3个三角形;六边形可分割成6﹣2=4个三角形;七边形可分割成7﹣2=5个三角形∴10边形可分割成10﹣2=8个三角形.19.解:①过四边形一边上点P与另外两个顶点连线可以把四边形分成4﹣1=3个三角形;②过五边形一边上点P与另外三个顶点连线可以把五边形分成5﹣1=4个三角形;③经过上面的探究,你可以归纳出过n边形一边上点P与另外(n﹣2)个顶点连线可以把n边形分成(n ﹣2)个三角形(用含n的代数式表示).④在n边形的任意一边上任取一点P,连接P点与其它各顶点的线段可以把n边形分成(n﹣1)个三角形,这(n﹣1)个三角形的内角和等于(n﹣1)•180°,以P为公共顶点的(n﹣1)个角的和是180°,所以n边形的内角和是(n﹣1)•180°﹣180°=(n﹣2)•180°.故答案为:3;4;n﹣2,n﹣1.20.解:设多边形为n边形,由题意,得n﹣2=,整理得:n2﹣5n+4=0,即(n﹣1)(n﹣4)=0,解得:n1=4,n2=1(不合题意舍去),所以内角和为(4﹣2)×180°=360°.。
第9章《多边形》常考题集〔12〕:9.2多边形的内角和与外角和第9章《多边形》常考题集〔12〕:9.2 多边形的内角和与外角和选择题31.若一个多边形的边数增加2倍,它的外角和〔〕A.扩大2倍B.缩小2倍C.保持不变D.无法确定32.〔2001•##〕如果正多边形的一个内角是144°,则这个多边形是〔〕A.正十边形B.正九边形C.正八边形D.正七边形33.下面说法正确的是〔〕A.一个三角形中,至多只能有一个锐角B.一个四边形中,至少有一个锐角C.一个四边形中,四个内角可能全是锐角D.一个四边形中,不能全是钝角34.一个多边形的每一个内角都是135°,则这个多边形是〔〕A.七边形B.八边形C.九边形D.十边形35.多边形的每一个内角都等于150°,则此多边形从一个顶点出发的对角线共有〔〕条.A.7B.8C.9D.1036.一个多边形除了一个内角外,其余内角之和为257°,则这一内角等于〔〕A.90°B.105°C.103°D.120°37.若一个n边形n个内角与某一个外角的总和为1350°,则n等于〔〕A.6B.7C.8D.938.一个多边形截去一个角后,形成另一个多边形的内角和为2520°,则原多边形的边数是〔〕A.17 B.16 C.15 D.16或15或17填空题39.〔2003•##〕如图,∠1+∠2+∠3+∠4=_________度.40.〔2008•##〕如图所示,①中多边形〔边数为12〕是由正三角形"扩展〞而来的,②中多边形是由正方形"扩展〞而来的,…,依此类推,则由正n边形"扩展〞而来的多边形的边数为_________.41.从七边形的某个顶点出发,分别连接这个顶点与其余各顶点,可以把七边形分成_________个三角形.43.〔2010•##〕如果一个多边形的内角和等于外角和的2倍,那么这个多边形的边数n=_________.44.〔2009•##〕一个n边形的内角和等于720°,那么这个多边形的边数n=_________.45.〔2009•##〕八边形的内角和等于_________度.46.〔2008•永春县〕四边形的内角和等于_________度.47.〔2008•宿迁〕若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是_________.48.〔2008•##〕一个凸多边形的内角和与外角和相等,它是_________边形.49.〔2008•##〕六边形的内角和等于_________度.50.〔2007•##〕若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于_________度.51.〔2007•##〕如图,小亮从A点出发前10m,向右转15°,再前进10m,又向右转15°,…,这样一直走下去,他第一次回到出发点A时,一共走了_________m.52.〔2006•##〕若一个多边形的每一个外角都等于40°,则这个多边形的边数是_________.53.〔2006•临安市〕用一条宽相等的足够长的纸条,打一个结,如图〔1〕所示,然后轻轻拉紧、压平就可以得到如图〔2〕所示的正五边形ABCDE,其中∠BAC= _________ 度. 54.〔2006•##〕把一副三角板按如图方式放置,则两条斜边所形成的钝角α= _________ 度. 55.〔2006•##〕如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A 点时,一共走了 _________ 米. 56.〔2006•##〕正五边形的一个内角的度数是 _________ 度. 57.〔2005•##〕有一个多边形的内角和是它外角和的5倍,则这个多边形是 _________ 边形. 58.〔2005•##〕一个多边形的内角和为1080°,则这个多边形的边数是 _________ . 59.〔2004•##〕正n 边形的内角和等于1080°,那么这个正n 边形的边数n= _________ . 60.一个多边形的每个内角都等于150°,则这个多边形是 _________ 边形.第9章《多边形》常考题集〔12〕:9.2 多边形的内角和与外角和参考答案与试题解析选择题31.若一个多边形的边数增加2倍,它的外角和〔 〕 A . 扩大2倍 B .缩小2倍 C . 保持不变 D .无法确定考点:多边形内角与外角. 分析:所有凸多边形的外角和是360度,这个数值与边数的大小无关. 解答: 解:若一个多边形的边数增加2倍,它的外角和是360°,保持不变. 故选C .点评: 本题主要考查了多边形的外角和定理,对这个定理的正确理解是关键. 32.〔2001•##〕如果正多边形的一个内角是144°,则这个多边形是〔 〕 A . 正十边形 B .正九边形 C . 正八边形 D .正七边形考点:多边形内角与外角. 分析: 正多边形的每个角都相等,同样每个外角也相等,一个内角是144°,则外角是180﹣144=36°.又已知多边形的外角和是360度,由此即可求出答案.解答: 解:360÷〔180﹣144〕=10,则这个多边形是正十边形. 故选A .点评:本题主要利用了多边形的外角和是360°这一定理. 33.下面说法正确的是〔 〕A . 一个三角形中,至多只能有一个锐角B . 一个四边形中,至少有一个锐角C . 一个四边形中,四个内角可能全是锐角D . 一个四边形中,不能全是钝角考点: 多边形内角与外角;三角形内角和定理.专题: 计算题.分析: 根据多边形的内角和定理分别可以判定那个正确. 解答: 解:A 、不对,例如:90,45,45;B 、不对,例如:90,90,90,90;C 、不对,四个角都是锐角那么不能满足内角和360°;D 、正确. 故本题选D .点评: 此题考查了三角形,四边形内角与外角的性质.34.一个多边形的每一个内角都是135°,则这个多边形是〔 〕 A . 七边形 B .八边形 C . 九边形 D .十边形考点:多边形内角与外角. 分析: 已知每一个内角都等于135°,就可以知道每个外角是45度,根据多边形的外角和是360度就可以求出多边形的边数.解答: 解:多边形的边数是:n=360°÷〔180°﹣135°〕=8. 故选B .点评:通过本题要理解已知内角或外角求边数的方法. 35.多边形的每一个内角都等于150°,则此多边形从一个顶点出发的对角线共有〔 〕条. A . 7 B . 8 C . 9 D . 10 考点:多边形内角与外角;多边形的对角线. 专题:计算题. 分析: 多边形的每一个内角都等于150°,多边形的内角与外角互为邻补角,则每个外角是30度,而任何多边形的外角是360°,则求得多边形的边数;再根据不相邻的两个顶点之间的连线就是对角线,则此多边形从一个顶点出发的对角线共有n ﹣3条,即可求得对角线的条数. 解答: 解:∵多边形的每一个内角都等于150°, ∴每个外角是30°,∴多边形边数是360°÷30°=12,则此多边形从一个顶点出发的对角线共有12﹣3=9条. 故选C .点评: 本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.多边形从一个顶点出发的对角线共有n ﹣3条.36.一个多边形除了一个内角外,其余内角之和为257°,则这一内角等于〔 〕A . 90°B . 105°C . 103°D .120° 考点:多边形内角与外角. 分析: 设这个多边形是n 边形,则内角和是〔n ﹣2〕•180°,这个度数与257°的差一定小于180°并且大于0,则可以解方程:〔n ﹣2〕•180°=257°,多边形的边数n 一定是大于x 的最小的整数,这样就可以求出多边形的边数,从而求出内角和,得到这一内角的度数. 解答: 解:根据题意,得 〔n ﹣2〕•180°=257,得n=,则多边形的边数是4,因为四边形的内角和是360度,所以这一内角等于360°﹣257°=103°.故选C .点评:本题解决的关键是正确求出多边形的边数. 37.若一个n 边形n 个内角与某一个外角的总和为1350°,则n 等于〔 〕 A . 6 B . 7 C . 8 D . 9 考点: 多边形内角与外角. 分析:根据n 边形的内角和定理可知:n 边形内角和为〔n ﹣2〕×180.设这个外角度数为x 度,利用方程即可求出答案. 解答:解:设这个外角度数为x °,根据题意,得 〔n ﹣2〕×180+x=1350, 180n ﹣360+x=1350,x=1350+360﹣180n,即x=1710﹣180n, 由于0<x <180,即0<1710﹣180n <180,可变为:解得8.5<n <9.5, 所以n=9. 故选D . 点评:主要考查了多边形的内角和定理. n 边形的内角和为:180°•〔n ﹣2〕.38.一个多边形截去一个角后,形成另一个多边形的内角和为2520°,则原多边形的边数是〔 〕 A . 17 B . 16 C . 15 D . 16或15或17考点:多边形内角与外角. 分析: 因为一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,根据多边形的内角和即可解决问题.解答: 解:多边形的内角和可以表示成〔n ﹣2〕•180°〔n ≥3且n 是整数〕,一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,根据〔n ﹣2〕•180°=2520°解得:n=16, 则多边形的边数是15,16,17. 故选D .点评: 本题主要考查多边形的内角和定理的计算方法. 填空题 39.〔2003•##〕如图,∠1+∠2+∠3+∠4= 280 度. 考点: 三角形内角和定理;多边形内角与外角. 分析: 运用了三角形的内角和定理计算.解答: 解:∵∠1+∠2=180°﹣40°=140°,∠3+∠4=180°﹣40°=140°,∴∠1+∠2+∠3+∠4=280°. 故答案为:280°.点评: 此题主要是运用了三角形的内角和定理. 40.〔2008•##〕如图所示,①中多边形〔边数为12〕是由正三角形"扩展〞而来的,②中多边形是由正方形"扩展〞而来的,…,依此类推,则由正n 边形"扩展〞而来的多边形的边数为 n 〔n+1〕 . 考点: 多边形.专题:规律型.分析:①边数是12=3×4,②边数是20=4×5,依此类推,则由正n边形"扩展〞而来的多边形的边数为n〔n+1〕.解答:解:∵①正三边形"扩展〞而来的多边形的边数是12=3×4,②正四边形"扩展〞而来的多边形的边数是20=4×5,③正五边形"扩展〞而来的多边形的边数为30=5×6,④正六边形"扩展〞而来的多边形的边数为42=6×7,∴正n边形"扩展〞而来的多边形的边数为n〔n+1〕.点评:首先要正确数出这几个图形的边数,从中找到规律,进一步推广.正n边形"扩展〞而来的多边形的边数为n 〔n+1〕.41.从七边形的某个顶点出发,分别连接这个顶点与其余各顶点,可以把七边形分成5个三角形.考点:多边形的对角线.分析:根据七边形的概念和特性即可解.从简单图形说起:从四边形的一个顶点出发,连接这个点与其余各顶点,可以把一个四边形分割成〔4﹣2〕=2个三角形.解答:解:根据以上规律,从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成〔7﹣2〕=5个三角形.故答案为5.点评:本题考查的知识点为:过n边形一个顶点作对角线,最多可把n边形分成〔n﹣2〕个三角形.43.〔2010•##〕如果一个多边形的内角和等于外角和的2倍,那么这个多边形的边数n=6.考点:多边形内角与外角.分析:任何多边形的外角和是360度,内角和等于外角和的2倍则内角和是720度.n边形的内角和是〔n﹣2〕•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.解答:解:根据题意,得〔n﹣2〕•180=720,解得:n=6.点评:已知多边形的内角和求边数,可以转化为方程的问题来解决.44.〔2009•##〕一个n边形的内角和等于720°,那么这个多边形的边数n=6.考点:多边形内角与外角.专题:计算题.分析:n边形的内角和可以表示成〔n﹣2〕•180°,设这个多边形的边数是n,就得到方程,从而求出边数.解答:解:由题意可得:〔n﹣2〕•180°=720°,解得:n=6.所以,多边形的边数为6.点评:此题比较简单,只要结合多边形的内角和公式寻求等量关系,构建方程求解.45.〔2009•##〕八边形的内角和等于1080度.考点:多边形内角与外角.分析:n边形的内角和可以表示成〔n﹣2〕•180°,代入公式就可以求出内角和.解答:解:〔8﹣2〕•180°=1080°.点评:本题主要考查了多边形的内角和公式,是需要熟记的内容.46.〔2008•永春县〕四边形的内角和等于360度.考点:多边形内角与外角.分析:n边形的内角和是〔n﹣2〕•180°,代入公式就可以求出内角和.解答:解:〔4﹣2〕•180°=360°.点评:本题主要考查了多边形的内角和公式,是需要识记的内容.47.〔2008•宿迁〕若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是8.考点:多边形内角与外角.分析:任何多边形的外角和是360°,即这个多边形的内角和是3×360°.n边形的内角和是〔n﹣2〕•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.解答:解:设多边形的边数为n,根据题意,得〔n﹣2〕•180=3×360,解得n=8.则这个多边形的边数是8.点评:已知多边形的内角和求边数,可以转化为方程的问题来解决.48.〔2008•##〕一个凸多边形的内角和与外角和相等,它是四边形.考点:多边形内角与外角.分析:任何多边形的外角和是360度,因而这个多边形的内角和是360度.n边形的内角和是〔n﹣2〕•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.解答:解:根据题意,得〔n﹣2〕•180=360,解得n=4,则它是四边形.点评:已知多边形的内角和求边数,可以转化为方程的问题来解决.49.〔2008•##〕六边形的内角和等于720度.考点:多边形内角与外角.分析:n边形的内角和是〔n﹣2〕•180°,把多边形的边数代入公式,就得到多边形的内角和.解答:解:〔6﹣2〕•180=720度,则六边形的内角和等于720度.点评:解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容.50.〔2007•##〕若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于1800度.考点:多边形内角与外角.专题:计算题.分析:根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.n边形的内角和是〔n﹣2〕•180°,把多边形的边数代入公式,就得到多边形的内角和.解答:解:多边形的边数:360°÷30°=12,正多边形的内角和:〔12﹣2〕•180°=1800°.点评:根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.51.〔2007•##〕如图,小亮从A点出发前10m,向右转15°,再前进10m,又向右转15°,…,这样一直走下去,他第一次回到出发点A时,一共走了240m.考点:多边形内角与外角.专题:应用题.分析:根据多边形的外角和定理即可求出答案.解答:解:∵小亮从A点出发最后回到出发点A时正好走了一个正多边形,∴根据外角和定理可知正多边形的边数为360÷15=24,则一共走了24×10=240米.故答案为:240.点评:本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°,用外角和求正多边形的边数可直接让360度除以一个外角度数即可.52.〔2006•##〕若一个多边形的每一个外角都等于40°,则这个多边形的边数是9.考点:多边形内角与外角.分析:根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.解答:解:360÷40=9,即这个多边形的边数是9.点评:根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.53.〔2006•临安市〕用一条宽相等的足够长的纸条,打一个结,如图〔1〕所示,然后轻轻拉紧、压平就可以得到如图〔2〕所示的正五边形ABCDE,其中∠BAC=36度.考点:多边形内角与外角.分析:利用多边形的内角和定理和等腰三角形的性质即可解决问题.解答:解:∵∠ABC==108°,△ABC是等腰三角形,∴∠BAC=∠BCA=36度.点评:本题主要考查了多边形的内角和定理和等腰三角形的性质.n边形的内角和为:180°〔n﹣2〕.54.〔2006•##〕把一副三角板按如图方式放置,则两条斜边所形成的钝角α=165度.考点:多边形内角与外角;三角形内角和定理;三角形的外角性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和或者根据四边形的内角和等于360°得出.解答:解:本题有多种解法.解法一:∠α为下边小三角形外角,∠α=30°+135°=165°;解法二:利用四边形内角和,∠α等于它的对顶角,故∠α=360°﹣90°﹣60°﹣45°=165°.点评:本题通过三角板拼装来求角的度数,考查学生灵活运用知识能力.55.〔2006•##〕如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了120米.考点:多边形内角与外角.专题:应用题.分析:根据多边形的外角和即可求出答案.解答:解:∵360÷30=12,∴他需要走12次才会回到原来的起点,即一共走了12×10=120米.点评:本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°.56.〔2006•##〕正五边形的一个内角的度数是108度.考点:多边形内角与外角.分析:因为n边形的内角和是〔n﹣2〕•180°,因而代入公式就可以求出内角和,再用内角和除以内角的个数就是一个内角的度数.解答:解:〔5﹣2〕•180=540°,540÷5=108°,所以正五边形的一个内角的度数是108度.点评:本题考查正多边形的基本性质,解题时应先算出正n边形的内角和再除以n即可得到答案.57.〔2005•##〕有一个多边形的内角和是它外角和的5倍,则这个多边形是12边形.考点:多边形内角与外角.分析:一个多边形的内角和等于它的外角和的5倍,任何多边形的外角和是360度,因而这个正多边形的内角和为5×360度.n边形的内角和是〔n﹣2〕•180°,代入就得到一个关于n的方程,就可以解得边数n.解答:解:根据题意,得〔n﹣2〕•180=5×360,解得:n=12.所以此多边形的边数为12.点评:已知多边形的内角和求边数,可以转化为解方程的问题解决.58.〔2005•##〕一个多边形的内角和为1080°,则这个多边形的边数是8.考点:多边形内角与外角.分析:n边形的内角和是〔n﹣2〕•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.解答:解:根据题意,得〔n﹣2〕•180=1080,解得n=8.所以这个多边形的边数是8.点评:已知多边形的内角和求边数,可以转化为方程的问题来解决.59.〔2004•##〕正n边形的内角和等于1080°,那么这个正n边形的边数n=8.考点:多边形内角与外角.分析:n边形的内角和是〔n﹣2〕•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.解答:解:设这个多边形是n边形,由题意知,〔n﹣2〕×180°=1080°,∴n=8.故该多边形的边数为8.点评:已知多边形的内角和求边数,可以转化为方程的问题来解决.60.一个多边形的每个内角都等于150°,则这个多边形是12边形.考点:多边形内角与外角.专题:计算题.分析:根据多边形的内角和定理:180°•〔n﹣2〕求解即可.解答:解:由题意可得:180°•〔n﹣2〕=150°•n,解得n=12.故多边形是12边形.点评:主要考查了多边形的内角和定理.n边形的内角和为:180°•〔n﹣2〕.此类题型直接根据内角和公式计算可得.参与本试卷答题和审题的老师有:hnaylzhyk;zhjh;feng;lanchong;开心;心若在;zzz;蓝月梦;HJJ;kuaile;HLing;CJX〔排名不分先后〕菁优网20##6月1日。
认识三角形三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.有关三角形的概念:①三角形的边:即组成三角形的线段;②三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角;③三角形的顶点:即相邻两边的公共端点.④三角形的外角:三角形的角的一边与另一边的反向延长线组成的角叫做三角形的外角.注意:(1)三角形的定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”.三角形外角的特征:①顶点在三角形的一个顶点上;②一条边是三角形的一边;③另一条边是三角形某条边的延长线.注意:(1)三角形每个顶点处有两个外角,它们是对顶角.所以三角形共有六个外角,通常每个顶点处取一个外角,因此,我们常说三角形有三个外角.三角形的表示:三角形用符号“△”表示,顶点为A、B、C的三角形记作“△ABC”,读作“三角形ABC”,注意单独的△没有意义;△ABC的三边可以用大写字母AB、BC、AC来表示,也可以用小写字母a、b、c来表示,边BC用a表示,边AC、AB分别用b、c表示.三角形的分类:按角分⎩⎨⎧直角三角形斜三角形⎩⎨⎧锐角三角形钝角三角形按边分⎩⎨⎧不等边三角形(不规则三角形)等腰三角形⎩⎨⎧只有两条边相等的等腰三角形等边三角形锐角三角形 直角三角形 钝角三角形三个角都是锐角 有一个角为直角 有一个角是钝角不等边三角形 等腰三角形 等边三角形 三边不相等 有两条边相等 三条边都相等①锐角三角形:三个内角都是锐角的三角形; ②钝角三角形:有一个内角为钝角的三角形; ③直角三角形:有一个角为90°的三角形。
①不等边三角形:三边都不相等的三角形;②等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角; ③等边三角形:三边都相等的三角形。
三角形的三线:三角形的中线:三角形的一个顶点与它的对边中点的连线叫三角形的中线.这个角的顶点与交点之间的线段.三角形的角平分线:三角形内角的平分线与对边的交点和这个内角顶点之间的线段叫三角形的角平分线.三角形的高:过三角形顶点作对边的垂线,垂足与顶点间的线段叫做三角形的高.注意:(1)三角形分别有三条高线,三条中线,三条角平分线;(2)任意三角形三条角平分线,三条中线,分别交于一点,且都在三角形的内部;(3)直角三角形的三条高线的交点就是直角顶点,钝角三角形的三条高线的交点在三角形的外部,锐角三角形的三条高线在三角形的内部。
9.2.2 多边形的外角和一、教学目标【知识与技能】1、多边形外角的概念。
2、多边形外角和的推导及应用。
【过程与方法】经历质疑、猜想、归纳等活动,发展学生的推理能力,积累数学活动的经验,在探索中学会与人合作,学会和别人交流自己的思想和方法。
【情感态度】让学生体验猜想得到证实的喜悦和成就感,在解题中感受生活中数学的存在,体验数学中充满着探索和创造。
【教学重点】多边形外角和定理的探索和应用。
【教学难点】多边形的外角和的推导。
二、学习过程(一)知识回顾1、三角形的外角概念?三角形中内角的一边与另一边的反向延长线所组成的角叫做三角形的外角。
2、三角形的外角和?三角形的外角和等于360°3、多边形的概念?由n条不在同一直线上的线段首尾顺次连结组成的平面图形称为n边形,又称为多边形。
(n≥3的自然数)4、多边形的内角和?n边形的内角和为(n-2)·180°(二)获取新知1、概念:①多边形内角的一边与另一边的反向延长线所组成的角叫多边形的外角。
②在每一个顶点处取这个多边形的一个外角,它们的和叫做这个多边形的外角和。
n边形有n个外角。
2、探究①四边形ABCD,∠1、∠2、∠3、∠4分别是四个外角,求:∠1+∠2+∠3+∠4的度数。
②五边形ABCDE,∠1、∠2、∠3、∠4、∠5分别是五个外角,求:∠1+∠2+∠3+∠4+∠5的度数。
通过上面推导多边形的外角和的过程,我们充分利用了多边形的每一个内角与它的相邻的外角都互为,可以求得多边形的外角和.据此,请将数据填入下表中.归纳结论:任意多边形的外角和为(三)典例讲解例1:一个多边形的每个外角都是72°,这个多边形是几边形?例2:一个多边形的内角和等于它外角和的5倍,这个多边形是几边形?例3:若正n边形的一个内角是144°,这个多边形是几边形?(四)课堂练习1、一个多边形的外角都等于60°,这个多边形是几边形?2、一个多边形的内角都等于140°,这个多边形是几边形?3、若n边形的内角和与外角和的比为7∶2,这个多边形是几边形?4、如果一个正多边形的一个内角和它相邻外角的比是2∶1,那么这个多边形是几边形?(五)课堂小结:任意多边形的外角和等于360°三、课后作业练习册:9.2四、课后反思。
华师大版数学七年级下册9.2《多边形的内角和与外角和》教学设计一. 教材分析《多边形的内角和与外角和》是华师大版数学七年级下册第9.2节的内容。
本节主要让学生理解多边形的内角和定理,掌握多边形的外角和性质。
教材通过生活中的实例,引导学生探究多边形的内角和与外角和,培养学生的观察能力、操作能力和推理能力。
二. 学情分析七年级的学生已经学习了图形的性质,对图形的认知有一定的基础。
但学生在理解多边形的内角和与外角和方面可能存在困难,因此,在教学过程中,需要教师耐心引导,让学生通过观察、操作、推理等方法,理解并掌握多边形的内角和与外角和的性质。
三. 教学目标1.让学生理解多边形的内角和定理,掌握多边形的外角和性质。
2.培养学生观察、操作、推理的能力。
3.培养学生合作学习的意识。
四. 教学重难点1.教学重点:多边形的内角和定理,多边形的外角和性质。
2.教学难点:理解并证明多边形的内角和定理,理解多边形的外角和性质。
五. 教学方法1.情境教学法:通过生活中的实例,引发学生的兴趣,引导学生探究多边形的内角和与外角和。
2.操作教学法:让学生通过实际操作,观察多边形的内角和与外角和的变化,从而理解其性质。
3.推理教学法:引导学生运用已学的知识,推理出多边形的内角和定理,培养学生的推理能力。
六. 教学准备1.教学课件:制作多媒体课件,展示多边形的内角和与外角和的实例。
2.教学素材:准备一些多边形的图形,用于学生观察和操作。
3.教学工具:准备直尺、量角器等工具,方便学生测量和观察。
七. 教学过程1.导入(5分钟)利用多媒体课件展示一些生活中的多边形实例,如足球、篮球场地的线条,让学生观察多边形的内角和与外角和的特点。
引导学生思考:多边形的内角和与外角和有什么规律?2.呈现(10分钟)教师通过讲解和展示,呈现多边形的内角和定理和外角和性质。
利用课件和实物,讲解多边形的内角和定理,让学生理解并掌握多边形的内角和与外角和的性质。
《多边形的内角和与外角和》说课稿
我的教学设计是华师大版七年级数学(下)第九章“多边形的内角和与外角和”。
根据新的课程标准,我从以下七个方面说一下本节课的教学设想:
一、教材分析
从教材的编排上,本节课作为第九章的第三节是承上启下的一节,在内容上,从三角形的内角和到四边形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,知识联系性比较强,特别是教材中设计了一些“想一想”“试一试”“做一做”等内容,体现了课改的精神。
在编写意图上,编者有意从简单的几何图形入手,让学生经历探索、猜想、归纳等过程,发展了学生的合情推理能力。
二、学生分析
学生上节课刚刚学完三角形的内角和,对内角和的问题有了一定的认识,加上七年级的学生具有好奇心、求知欲强、互相评价互相提问的积极性高。
因此对于学习本节内容的知识条件已经成熟,学生参加探索活动的热情已经具备,因此把这节课设计成一节探索活动课是切实可行的。
三、教学目标及重点、难点的确定
新的课程标准注重学生所学内容与现实生活的联系,注重学生经历观察、操作、推理、想象等探索过程。
根据新课标和本节课的内容特点我确定以下教学目标及重点、难点
【知识与技能】掌握多边形内角和与外角和定理,进一步了解转化的数学思想【过程与方法】经历质疑、猜想、归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法。
【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造。
【教学重点】多边形内角和及外角和定理
【教学难点】转化的数学思维方法
四、教法和学法
本次课改很大程度上借鉴了美国教育家杜威的“在做中学”的理论,突出学生独立数学思考活动,希望通过活动使学生主动探索、实践、交流,达到掌握知识的目的,尤其是本节课更是一节难得的探索活动课,按新的课程理论和叶圣陶先生所倡导的“解放学生的手,解放学生的大脑,解放学生的时间”及初一学生的特点,我确定如下教法和学法。
【课堂组织策略】利用学生的好奇心,设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与、大胆猜想、积极思考,使学生在自主探索和合作交流中理解和掌握本节课的有关内容。
【学生学习策略】明确学习目标,在教师的组织、引导、点拨下进行主动探索、实践、交流等活动。
【辅助策略】利用多媒体课件展示三角形内角和向多边形内角和转化,突破这一教学难点,另外利用演示法、归纳法、讨论法、分组竟赛法,使不同学生的知识水平得到恰当的发展和提高。
五、教学过程设计
整个教学过程分五步完成。
1、创设情景、引入新课
首先解决四边形内角的问题,通过转化为三角形问题来解决。
2、合作交流,探索新知。
更进一步解决五边形内角和,乃至六边形、七边形直到N边形的内角和,都能用同样的方法解决。
学生分组讨论。
3、归纳总结、建构体系。
多边形内角和已得出,对外角和更是水到渠成,这时要适当的总结,让学生自己得到零散的知识体系。
4、实际应用、提高能力。
“木工师傅可以用边角余料铺地板的原因是什么?”这既是对本节所学知识
在现实生活中的应用,又是本章第一节的延伸,同时也为下节打下了一个铺垫5、分组竞赛、升华情感
四组不同难度的电子试卷,既巩固本节课所学的知识,又使学生本节课产生的激情得以释放。
六、板书设计
板书本节课学生所需掌握的知识目标:即多边形内角和与外角和定理
七、创意说明
本节课在知识上由简单到复杂,学生经历质疑、猜想、验证的同时,在情感上,由好奇到疑惑,由解决单个问题的一点点快感,到解决整个问题串的极大兴奋,产生了强烈的学习激情。
这时,一次有效的教学竞赛活动,使学生的学习激情得到释放,学科个性得以张扬,教师稍加点拨,适可而止,把更多的思考空间留给学生。