第9章多边形
- 格式:doc
- 大小:1.49 MB
- 文档页数:20
2022年春华师版数学七年级下册单元测试卷班级姓名第9章多边形[时间:90分钟分值:120分]一、选择题(每题3分,共30分)1.[2022·黔东南]如图,∠ACD=120°,∠B=20°,则∠A 的度数是()A.120°B.90°C.100°D.30°2.[2022·乌鲁木齐]如果正n边形每一个内角等于与它相邻外角的2倍,则n的值是()A.4B.5C.6D.73.如图,张明同学设计了四种正多边形的瓷砖图案,在这四种瓷砖图案中,不能铺满地面的是()A B C D4.在下列条件中:①∠A+∠B=∠C;②∠A∶∠B∶∠C=1∶2∶3;③∠A=12∠B=13∠C;④∠A=∠B=2∠C;⑤∠A=∠B=12∠C.能确定△ABC为直角三角形的条件有()A.5个B.4个C.3个D.2个5.已知三角形的三边长分别为3、x、14.若x为正整数,则这样的三角形共有()A.2个B.3个C.5个D.7个6.如图,在△ABC中,点D在边BA的延长线上,∠ABC 的平分线和∠DAC的平分线相交于点M.若∠BAC=80°,∠C =60°,则∠M的大小为()A.20°B.25°C.30°D.35°7.如图,点P是△ABC三条角平分线的交点.若∠BPC =108°,则下列结论中正确的是()A.∠BAC=54°B.∠BAC=36°C.∠ABC+∠ACB=108°D.∠ABC+∠ACB=72°8.[2021·郴州校级期中]如图,在△ABC中,∠A=∠ACB,CD是△ABC的角平分线,CE是△ABC的高.若∠DCE=48°,则∠ACB的度数为()A.∠ACB=28°B.∠ACB=29°C.∠ACB=30°D.∠ACB=31°9.[2021·无棣模拟]如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)10. 如图,AB∥CD,∠A=30°,则∠A+∠B+∠C+∠D +∠E=()A. 240°B. 270°C. 300°D.360°二、填空题(每题4分,共24分)11.已知三角形的三边长分别为2、a-1、4,那么a的取值范围是________.13.如图,以CD为高的三角形的个数是____.14.一个n边形的每个内角为108°,那么n=____.15.[2021春·单县期末]将一副三角板如图放置,使点A 在DE上,BC∥DE,∠C=45°,∠D=30°,则∠ABD的度数为______.16.如图,在△ABC中,∠A=42°,∠ABC和∠ACB 的三等分线分别交于点D、E,则∠BDC=____.17.(8分)[2021春·迁安市期末]如图,把一副三角板摆放在△ABC中,点E在BC上,点D、F在AB上.(1)CD与EF平行吗?请说明理由;(2)如果∠GDC=∠FEB,且∠B=30°,∠A=45°,求∠AGD的度数.18.(8分)已知三角形的三条边为互不相等的整数,且有两边长分别为7和9,另一条边长为偶数.(1)请写出一个三角形,符合上述条件的第三边长;(2)若符合上述条件的三角形共有a个,求a的值.19.(8分)如图,在锐角△ABC中,若∠ABC=40°,∠ACB =70°,点D、E在边AB、AC上,CD与BE交于点H.(1)若BE⊥AC,CD⊥AB,求∠BHC的度数;(2)若BE,CD平分∠ABC和∠ACB,求∠BHC的度数.20.(8分)[2021春·兴化市期末]如图,点D在AB上,点E在AC上,BE、CD相交于点O.(1)若∠A=50°,∠BOD=70°,∠C=30°,求∠B的度数;(2)试猜想∠BOC与∠A+∠B+∠C之间的关系,并证明你猜想的正确性.21.(10分)[2021春·灵石县期末]如图,△ABC中,AD 平分∠BAC交BC于点D,AE⊥BC,垂足为E,CF∥AD.(1)若∠B=30°,∠ACB=70°,求∠CFE的度数;(2)若(1)中的∠B=α,∠ACB=β,求∠CFE的度数.(用α、β表示)22.(12分)如图,BE与CD相交于点A,CF为∠BCD 的平分线,EF为∠BED的平分线.(1)试探求∠F与∠B、∠D之间的关系;(2)若∠B∶∠D∶∠F=2∶4∶x,求x的值.23.(12分)(1)如图1,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.在△ABC中,∠A=30°,求∠ABC+∠ACB、∠XBC +∠XCB的值.(2)如图2,改变直角三角板XYZ的位置,使三角板XYZ 的两条直角边XY、XZ仍然分别经过B、C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.图1图2参考答案1.C2.C【解析】设该正多边形的外角为x°,则相邻的内角为2x°.根据“外角与相邻的内角互补”,得x+2x=180,解得x=60.根据多边形的外角和是360°,有n=36060=6.3.C【解析】用一种正多边形瓷砖铺满地面的条件是:正多边形的一个内角是360°的约数.由此可判断正五边形瓷砖不能铺满地面.4.B5.C【解析】由题可得11<x<17.∵x为正整数,∴x的可能取值是12、13、14、15、16,共5个,故这样的三角形共有5个.6.C【解析】∵∠BAC=80°,∠C=60°,∴∠ABC=40°.∵∠ABC的平分线和∠DAC的平分线相交于点M,∴∠ABM=20°,∠CAM=12×(180°-80°)=50°,∴∠M=180°-20°-50°-80°=30°.7.B【解析】设∠A为2x,则∠ACB=2x,∠ACD=x,∴∠CBE=∠A+∠ACB=4x,∠CDB=∠A+∠ACD=3x,∴∠CDB=3∠DCB.∵∠DCE=48°,∴∠CDB=90°-48°=42°,∴∠DCB=14°,∴∠ACB=28°.9.B【解析】2∠A=∠1+∠2.理由:∵在四边形ADA′E中,∠A+∠A′+∠ADA′+∠AEA′=360°,则2∠A+180°-∠2+180°-∠1=360°,∴2∠A=∠1+∠2.10. A【解析】如答图,∵AB∥CD,∠A=30°,∴∠C=∠A =30°,∠B=∠1.又∵∠1+∠D+∠E=180°,∴∠A+∠B +∠C+∠D+∠E=30°+30°+180°=240°.11.3<a<7【解析】根据三角形的三边关系,有4-2<a-1<4+2,解得3<a<7.12.270°【解析】CD分别是△ABC,△CEB,△CDB,△ADC,△CED,△AEC的高,共6个三角形.14.5【解析】根据多边形的内角和公式可知(n-2)×180°=108°n,解得n=5.15.15°【解析】∵Rt△ABC中,∠C=45°,∴∠ABC=45°.∵BC∥DE,∠D=30°,∴∠DBC=30°,∴∠ABD=45°-30°=15°.16.88°【解析】∵∠A=42°,∴∠ABC+∠ACB=180°-42°=138°,∴∠DBC+∠DCB=23×138°=92°,∴∠BDC=180°-92°=88°.17.解:(1)CD∥EF.理由:∵∠CDF=∠EFB=90°,∴CD∥EF.(2)∵∠B=30°,∠A=45°,∴∠FEB=60°,∠ACD=45°.∵∠GDC=∠FEB,∴∠GDC=60°.∵∠AGD=∠GDC+∠ACD,∴∠AGD=60°+45°=105°.18.解:两边长分别为9和7,设第三边是n,则9-7<n<7+9,即2<n<16.(1)第三边长是4(答案不唯一).(2)∵2<n<16,且n为偶数,∴n的值为4、6、8、10、12、14,共6个,∴a=6. 19.解:(1)∵BE⊥AC,∠ACB=70°,∴∠EBC=90°-70°=20°.∵CD⊥AB,∠ABC=40°,∴∠DCB=90°-40°=50°,∴∠BHC=180°-20°-50°=110°.(2)∵BE平分∠ABC,∠ABC=40°,∴∠EBC=20°.∵DC平分∠ACB,∠ACB=70°,∴∠DCB=35°,∴∠BHC=180°-20°-35°=125°. 20.解:(1)∵∠A=50°,∠C=30°,∴∠BDO=∠A+∠C=80°.∵∠BOD=70°,∴∠B=180°-∠BDO-∠BOD=30°. (2)∠BOC=∠A+∠B+∠C.证明:∵∠BEC=∠A+∠B,∴∠BOC=∠BEC+∠C=∠A+∠B+∠C. 21.解:(1)∵∠B=30°,∠ACB=70°,∴∠BAC=180°-∠B-∠ACB=80°.∵AD平分∠BAC,∴∠BAD=40°.∵AE⊥BC,∴∠AEB=90°,∴∠BAE=60°,∴∠DAE =∠BAE -∠BAD =60°-40°=20°. ∵CF ∥AD ,∴∠CFE =∠DAE =20°,(2)∵∠BAE =90°-∠B ,∠BAD =12∠BAC =12(180°-∠B -∠BCA ),∴∠CFE =∠DAE =∠BAE -∠BAD =90°-∠B -12(180°-∠B -∠BCA )=12(∠BCA -∠B )=12β-12α. 22.解:(1)如答图,∵CF 为∠BCD 的平分线, EF 为∠BED 的平分线,∴∠1=∠2,∠3=∠4.∵∠D +∠1=∠F +∠3,∠B +∠4=∠F +∠2,∴∠B +∠D +∠1+∠4=2∠F +∠3+∠2,∴∠F=12(∠B+∠D).(2)当∠B∶∠D∶∠F=2∶4∶x时,设∠B=2a(a≠0),则∠D=4a,∠F=ax.∵2∠F=∠B+∠D,∴2ax=2a+4a,∴2x=2+4,∴x=3.23.解:(1)∵∠A=30°,∴∠ABC+∠ACB=150°.∵∠X=90°,∴∠XBC+∠XCB=90°.(2)不变化.∵∠A=30°,∴∠ABC+∠ACB=150°.∵∠X=90°,∴∠XBC+∠XCB=90°,∴∠ABX+∠ACX=(∠ABC-∠XBC)+(∠ACB-∠XCB)=(∠ABC+∠ACB)-(∠XBC+∠XCB)=150°-90°=60°.。
第9章多边形 (2)§9.1三角形........................................................................ 错误!未定义书签。
1.认识三角形 (3)2.三角形的外角和 (5)3.三角形的三边关系 (8)§9.2 多边形的内角和与外角和 (10)§9.3 用正多边形拼地板 (12)1.用相同的正多边形拼地板 (12)2.用多种正多边形拼地板 (13)阅读材料 (15)多姿多彩的图案 (15)小结 (16)复习题 (17)课题学习 (18)图形的镶嵌 (18)第9章多边形瓷砖是生活中常见的装饰材料,你见过哪些形状的瓷砖?它们的形状有什么特点呢?你知道瓷砖能铺满地面的奥秘吗?§9.1 三角形走在大街上,进入宾馆或饭店,在许多地方,我们都可以看到由各种形状的地砖或瓷砖铺成的漂亮的地面和墙面,在这些地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙,如图9.1.1所示.图9.1.1在某些公园门口或高速公路两边的护坡上,我们还可以见到如图9.1.2所示的由不规则的图形铺成的地面.图9.1.2这些形状的地砖或瓷砖为什么能铺满地面而不留一点空隙呢?换一些其他的形状行不行?为了解决这些问题,我们有必要研究多边形的有关性质.三角形是最为简单的多边形,让我们从三角形开始,探究一下其中的道理.1.认识三角形三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形,这三条线段就是三角形的边.在图9.1.3(1)中画着一个三角形ABC.三角形的顶点采用大写字母A、B、C或K、L、M等表示,整个三角形表示为△ABC或△KLM(参照顶点的字母).如图9.1.3(2)所示,在三角形中,每两条边所组成的角叫做三角形的内角,如∠ACB;三角形中内角的一边与另一边的反向延长线所组成的角叫做三角形的外角,如∠ACD是与△ABC的内角∠ACB相邻的外角.图9.1.3(2)指明了△ABC 的主要成分.图9.1.3试一试图9.1.4中,三个三角形的内角各有什么特点?图9.1.4第一个三角形中,三个内角均为锐角;第二个三角形中,有一个内角是直角;第三个三角形中,有一个内角是钝角.三角形可以按角来分类:所有内角都是锐角――锐角三角形;有一个内角是直角――直角三角形;有一个内角是钝角――钝角三角形;试一试图9.1.5中,三个三角形的边各有什么特点?图9.1.5第一个三角形的三边互不相等;第二个三角形有两条边相等;第三个三角形的三边都相等.我们把两条边相等的三角形称为等腰三角形,相等的两边叫做等腰三角形的腰;把三条边都相等的三角形称为等边三角形(或正三角形).做一做在图9.1.6中找出等腰三角形、正三角形、锐角三角形、直角三角形、钝角三角形. 图9.1.6练 习1. 在练习本上画出:(1) 等腰锐角三角形;(2) 等腰直角三角形;(3) 等腰钝角三角形.2. 10个点如图所示那样放着.把这些点作为三角形的顶点,可作多少个正三角形?如图9.1.7所示,取△A B C 边AB 的中点E , 边结CE ,线段CE 就是△ABC 的一条中线;作△ABC 的内角∠BAC 的平分线交对边BC 于D ,线段AD就是△ABC 的一条角平分线;过顶点B 作△ABC 边AC 的垂线,垂足为F ,结段BF 就是△ABC 的一条高.显然,△ABC 有三条中线、三条角平分线、三条高.做一做下面给出了三个相同的锐角三角形,分别在这三个三角形中画出三角形的三条中线、三条角平分线、三条高.把锐角三角形换成直角三角形或钝角三角形,再试一试,你发现了什么? 可以发现,三角形的三条中线、三条角平分线、三条高________;直角三角形三条高的交点就是______________;钝角三角形有两条高位于三角形的外部.练 习1. 如图,△ABC 是等腰三角形,且AB =AC .试作出BC 边上的中线和高以及∠A 的平分线.从中你发现了什么?2. 在一个直角三角形中,画出斜边上的中线,先观察一下图形中有几个等腰三角形,再用刻度尺验证你的结论.2. 三角形的外角和我们已经知道三角形的内角和等于180°.现在我们讨论三角形的外角及外角和.如图9.1.8所示,一个三角形的每一个外角对应一个相邻的内角和两个不相 邻的内角.(第2题)图9.1.7 (第1题)图9.1.8三角形的外角与内角有什么关系呢?图9.1.9在图9.1.9中,显然有∠CBD(外角)+∠ABC(相邻内角)=180°.那么外角∠CBD与其他两个不相邻的内角又有什么关系呢?做一做在一张白纸上画出如图9.2.7所示的图形,然后把∠ACB、∠BAC剪下拼在一起,放到∠CBD上,看看会出现什么结果,与你的同伴交流一下,结果是否一样.可以发现∠CBD=∠ACB+∠BAC,实际上,因为∠CBD+∠ABC=180°∠ACB+∠BAC+∠ABC=180°比较这两个式子,就可以得到你与你的同伴所发现的结论.由此可知,三角形的外角有两条性质:1.三角形的一个外角等于与它不相邻的两个内角的和;2.三角形的一个外角大于任何一个与它不相邻的内角.与三角形的每个内角相邻的外角分别有两个,这两个外角是对顶角.从与每个内角相邻的两个外角中分别取一个相加,得到的和称为三角形的外角和.如图9.1.10所示,∠1+∠2+∠3就是△ABC的外角和.做一做在图9.1.10中∠1+______________=180°,∠2+_______________=180°,∠3+_______________=180°.三式相加可以得到∠1+∠2+∠3+______+______+______=_______,(1)而∠ACB+∠BAC+∠ABC=180°,(2)将(1)与(2)相比较,你能得出什么结论?概括可以得到∠1+∠2+∠3=360°由此可知:三角形的外角和等于360°.例1 如图9.1.11,D 是△ABC 的BC 边上一点,∠B =∠BAD ,∠ADC =80°,∠BAC =70°.求:(1)∠B 的度数;(2)∠C 的度数.图9.1.11解 (1)∵∠ADC 是△ABD 的外角(已知),∴∠ADC =∠B +∠BAD =80°(三角形的一个外角等于与它不相邻的两个内角的和).又 ∠B =∠BAD (已知),∴ ∠B =80°×21=40°(等量代换). (2)在△ABC 中,∵∠B +∠BAC +∠C =180°(三角形的内角和等于180°),∴ ∠C =180°-∠B -∠BAC (等式的性质)=180°-40°-70°=70°练 习1.(口答)一个三角形可以有两个内角都是直角吗?可以有两个内角都是钝角或都是锐角吗?为什么?2.求下列各图中∠1的度数.(第2题) (第3题)3.如图,在直角△ABC 中,CD 是斜边AB 上的高,∠BCD =35°,求(1)∠EBC 的度数;(2)∠A 的度数.解:(1)∵CD ⊥AB (已知),∴∠CDB =∵∠EBC=∠CD B+∠BCD ()∴∠EBC=+35°=(等量代换).(2)∵∠EBC=∠A+∠ACB ()∴∠A=∠EBC-∠ACB(等式的性质).∵∠ACB=90°(已知)∴∠A=-90°=(等量代换).你能用其他方法解决这一问题吗?3.三角形的三边关系做一做画一个三角形,使它的三条边长分别为7cm、5cm、4cm.如图9.1.12,先画线段AB=7cm;然后以点A为圆心,5cm长为半径画圆弧;再以点B为圆心,4cm长为半径画圆弧;两弧相交于点C,连结AC BC.△ABC 就是所要画的三角形.图9.1.12试一试以下列长度的各组线段为边,能否画一个三角形?(1)7cm,4cm,2cm; (2)9cm,5cm,4cm.在上述画图的过程中,我们可以发现,并不是任意三条线段都可以组成一个三角形的.在三条线段中,如果两条较短线段的和不大于第三条最长的线段,那么这三条线段就不能组成一个三角形.换句话说:三角形的任何两边的和大于第三边.用三根木条钉一个三角形,你会发现再也无法改变这一个三角形的形状和大小,也就是说,如果三角形的三条边固定,那么三角形的形状和大小就完全确定了.三角形的这人性质叫做三角形的稳定性.用四根木条钉一个四边形,你会发现可以任意改变这个四边形的形状和大小,这说明四边形具有不稳定性.三角形的稳定性在生产实践中有着广泛的应用.例如桥梁拉杆、电视塔架底座,都是三角形结构.(如图9.1.13所示)图9.1.13练习1.(口答)下列长度的各组线段能否组成一个三角形?(1)15cm、10 cm、7 cm;(2)4 cm、5 cm、10 cm;(3)3 cm、8 cm、5 cm;(4)4 cm、5 cm、6 cm.2.一木工有两根分别为40厘米和60厘米的木条,要另找一根木条,钉成一个三角木架.问第三根木条的长度应在什么范围之内?3.举两个三角形的稳定性在生产实践中应用的例子.习题9.11.已知△ABC是等腰三角形.(1)如果它的两条边长的长分别为8cm和3cm,那么它的周长是多少?(2)如果它的周长为18cm,一条边的长为4cm,那么腰长是多少?2.按图中所给的条件,求出∠1、∠2、∠3的度数.(第2题)(第3题)3.如图,飞机要从A地飞往B地,因受大风影响,一开始就偏离航线(AB)18°(即∠A=18°)飞到了C地,经B地的导航站测得∠ABC=10°.此时飞机必须沿某一方向飞行才能到达能到达B处.那么这一方向与水平方向的夹角∠BCD的度数?4.如图,在△ABC中,∠ABC=80°,∠ACB=50°,BP平分∠ABC,CP平分∠ACB,求∠BPC的度数.对于上述问题,在以下解答过程的空白处填上适当的内容(理由或数学式).解:∵BP平分∠ABC(已知)∴ ∠PBC =21∠ABC =21×80°=40°. (第4题)同理可得∠PCB =∵ ∠BPC +∠PBC +∠PCB =180°( )∴ ∠BPC =180°-∠PBC -∠PCB (等式的性质)=180°-40°- = . §9.2 多边形的内角和与外角和试一试三角形有三个内角、三条边,我们也可以把三角形称为三边形(但我们习惯称为三角形).我们已经知道什么叫三角形,你能说出什么叫四边形、五边形吗? 图9.2.1(1)是四边形,它是由四条不在同一直线上的线段首尾顺次连结组成的平面图形,记为四边形ABCD ;图9.2.1(2)是五边形,它是由五条不在同一直线上的线段首尾顺次连结组成的平面图形,记为五边形ABCDE .一般地,由n 条不在同一直线上的线段首尾顺次连结组成的平面图形称为n 边形,又称为多边形.图9.2.1注 意我们现在研究的是如图9.2.1所示的多边形,也就是所谓的凸多边形.与三角形类似,如图9.2.2所示,∠A 、∠D 、∠C 、∠ABC 是四边形ABCD 的四个内角,∠CBE 和∠ABF 都是与∠ABC 相邻的外角,两者互为对顶角.如果多边形的各边都相等,各内角也都相等,那么就称它为正多边形(regular polygon ).如正三角形、正四边形(正方形)、正五边形等等.连结多边形不相邻的两个顶点的线段叫做多边形的对角线.例如,图9.2.3(1)中,线段AC 是四边形ABCD 的一条对角线;图9.2.3(2)、(3)中,虚线表示的线段也是所画多边形的对角线. 图9.2.2图9.2.3试一试由图9.2.3可以看出,从多边形的一个顶点引出的对角线把多边形划分为若干个三角形.我们已知一个三角形的内角和等于180°,那么四边形的内角和等于多少呢?五边形、六边形呢?由此,n 边形的内角和等于多少呢?探 索为了求得n 边形的内角和,请根据图9.2.4所示,完成表9.2.1.图9.2.4表9.2.1由此,我们得出n 边形的内角和为_________________.例1 求八边形的内角和的度数.解 (n -2)×180°=(8-2)×180°=1 080°.试一试如图9.2.5,在n 边形内任取一点P ,连结点P 与多边形的每一个顶点,可得几个三角形?(图中取n =6的情形)你能否根据这样划分多边形的方法来说明n 边形的内角和等于(n -2)×180°?与多边形的每个内角相邻的外角分别有两个,这两个外角是对顶角.从与每个内角相邻的两个外角中分别取一个相加,得到的和称为多边形的外角和.如图9.2.6所示,∠1+∠2+∠3+∠4就是四边形ABCD 的外角和.探 索根据n 边形的每一个内角与它的相邻的外角都互为补角,可以求得n 边形的 外角和.为了求得n 边形的外角和,请将数据填入表9.2.2.图9.2.5 图9.2.6表9.2.2因此,任意多边形的外角和都为________.练 习1. 填空:(1) 十边形的内角和是________,外角和是_________;如果十边形的各个内角都相等,那么它的一个内角是_________.(2) 已知一个多边形的内角和是2340°,则这个多边形的边数是_______.2. 在一个多边形中,它的内角最多可以有几个是锐角?习题9.21. 先任意画一个五边形,然后画出它所有的对角线,数一数,一共有多少条对角线?2. 在n 边形某一边上任取一点P ,连结点P 与多边形的每一个顶点,可得多少个三角形?你能否根据这样划分多边形的方法来说明n 边形的内角和等于(n(第2题) (第3题)根据上图填空:∠1=∠C +___________2=∠B +______________;∠A +∠B +∠C +∠D _________+∠1+∠2=_________. 想一想,这个结论对任意的五角星是否都成立.1.用相同的正多边形拼地板探 索使用给定的某种正多边形,它能否拼成一个平面图形,既不留下一丝空白, 又不相互重叠?这显然与它的内角大小有关.为了探索哪些正多边形能铺满平 面,请根据图9.3.1,完成表9.3.1.图9.3.1表9.3.1概 括当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角时,就 拼成一个平面图形.如正六边形的每个内角为120°,三个120°拼在一起恰好组成周角,所以 全用正六边形瓷砖就可以铺满地面.如图9.1.1(1)、(2)所示,你能说明为什么正三角形和正方形能铺满平面 吗?如图9.3.2所示,正五边形不能铺满平面,正八边形也不能铺满平面.图9.3.2练 习 1.使用给定的某种三角形可以铺满地面吗?四边形呢?试试看.2.在如图9.1.1(1)中,把相邻两行正三角形分开,添一行正方形,得到右图.它表明把正三角正方形结合在一起也能铺满地面.正三角形、正方形、正六边形两两结合是否都能铺满地面呢?把正三角形、正方形、正六边形三者结合在一起呢?请你试试看.2.用多种正多边形拼地板如图9.3.3所示,用正三角形和正六边形也能铺满地面.类似的情况还有吗?由正六边形和正三角形组成图9.3.3我们还可以发现其他的情况,如图9.3.4~7.现以图9.3.5为例,观察一下其中的关系.正十二边形的一个内角为︒=︒⨯-15018012212,正六边形的一个内角为120°,正方形的一个内角为90°,三者之和恰为一个周角360°,实际上这三种正多边形结合在一起恰好能铺满地面.图9.3.4图9.3.5图9.3.6 图9.3.7练 习1. 试说明本节中几种正多边形铺满地面的理由.2. 试以正五边形和正十边形为例,说明即使满足“围绕一点拼在一起的几种正多边形的内角之和为一个圆周”的条件,也不一定能铺满地面.习题9.31. 选择题(可能有多个答案).(1) 下列正多边形中,能够铺满地面的是( ).A . 正方形B . 正五边形C . 正八边形D . 正六边形(2) 下列正多边形的组合中,能够铺满地面的是( ).[A . 正八边形和正方形B . 正五边形和正八边形C . 正六边形和正三角形2. 试画出用正三角形和正六边形铺满地面,但与图9.3.3不同的图形.3. 在一个城市的地图上,4个区的轮廓都是三角形形状.如果每个区与其他3个区都有公共边界,各区彼此的位置怎样?请画出示意图.阅读材料多姿多彩的图案我们已经看到了用正多边形拼成的各种图案,实际上,有许多图案往往是不规则的基本图形拼成的,如图(1)和图(2).(2)图(3)和图(4)分别说明了相应的图案是如何由基本图形拼成的. (3) (1)(4)你玩过哪些拼图?你自己有设计出一幅拼图吗?小结一、知识结构二、概述1.体验三角形的外角性质、三角形的外角和、三角形的三边关系、多边形的内角和与多边形的外角和的探索过程.2.理解某些正多边形能够铺满地面的道理.3.欣赏丰富多彩的图案.复习题A组1.判断题(对的填“√”,错的填“╳”):(1)三角形中至少有两个锐角.()(2)钝角三角形的内角和大于锐角三角形的内角和.()(3)锐角三角形的三个内角都是锐角.()(4)钝角三角形的三个内角都是钝角.()(5)直角三角形的两个锐角互为余角.()2.已知两条线段a、b,其长度分别为2.5cm 与3.5cm.另有长度分别为1cm、3cm、5cm、7cm、9cm的5条线段,其中能够与线段a、b一起组成三角形的有哪几条?3.如图,按规定,一块模板中AB、CD的延长线应相交成85°角.因交点不在板上,不便测量,工人师傅边结AC,测得∠BAC=32°,∠DCA=65°,此时AB、CD的延长线相交所成的角是不是符合规定?为什么?(第3题)(第4题)4.如图,在直角△ABC中,∠ACB=90°,CD是△ABC的高,∠1=30°.求∠2、∠B与∠A的度数.5.求下列多边形的内角和的度数:(1)五边形;(2)八边形;(3)十二边形.6.已知多边形的内角和的度数分别如下,求相应的多边形的边数:(1)900°;(2)1980°;(3)2700°.7.已知在一个十边形中,九个内角的和的度数是1290°,求这个十边形的另一个内角的度数.8.正八边形的每一个外角是多少度?9.如果一个正多边形的每个外角是24°,那么这个多边形有多少条边?B组10.选择题:(1)在三角形的三个外角中,锐角最多只有().A.3个B.2个C.1个D.0个(2)(n+1)边形的内角和比n边形的内角和大().A.180°B.360°C.n·180°D.n·360°(3)若三角形三个内角的比为1:2:3,则这个三角形是()A .锐角三角形B .直角三角形C .等边三角形D .钝角三角形11. 在△ABC 中,AC =12cm ,AB =8cm ,那么BC 的最大长度应小于多少?最小的长度应满足什么条件呢?12. 在各个内角都相等的多边形中,一个外角等于一个内角的52,求这个多边形的每一个内角的度数和它的边数.C 组13. 如图,已知DC 是△ABC 中∠ACB 的外角平分线,说明为什么∠BAC >∠B .(第13题)14. 在本书第61页练习的第2题中,至少应当去掉多少个点,才能使得留下的任何三点都不能组成一个正三角形?15. 试以“瓷砖中的数学”为题写一篇小论文.课题学习图形的镶嵌我们已经看到不少平面图形可以铺满地面,实际情况还有许多.现在请你参与下面的探索活动.(1) 收集生活中用平面图形铺满地面的实例,看谁收集得多.(2) 想一想,为什么用一种正多边形铺满地面时只有正三角形、正方形和 正六边形的三种.(3) 用任意一种四边形能铺满地面吗?如果能的话,试画出草图,说说你 的想法.(4) 设计一幅用平面图形铺满地面的美丽图案,与你的小伙伴比一比,看 看谁设计得更有新意. (第14题)。
第9章多边形祸兮福之所倚,福兮祸之所伏。
《老子·五十八章》原创不容易,【关注】店铺,不迷路!教材简析本章的主要内容包括:(1)三角形的概念及其边角性质;(2)多边形的有关概念以及多边形的内角和与外角和;(3)用多边形的内角和知识探究正多边形在铺设地面中的运用和隐含的数学道理.三角形是最简单的多边形,也是认识其他图形的基础.本章将在学习与其有关的线段(三角形的高、中线和角平分线)和角(三角形的内角、外角)的基础上学习多边形的有关知识,如借助三角形的内角和探究多边形的内角和.学习本章后,我们不仅可以进一步认识三角形,而且还可以了解一些几何中研究问题的基本思路和方法.本章在中考中,主要考查运用三角形内角和定理、内外角的关系求角的度数,运用多边形内角和公式求角的度数或多边形的边数,以及选择一种或多种正多边形铺设地面.题型以选择题、填空题为主,难度较小.教学指导【本章重点】1.三角形的有关概念及性质.2.三角形的内角和定理、外角和定理的推导及应用.3.三角形三边的关系.【本章难点】1.多边形的内角和定理及外角和定理的推导及应用.2.如何运用正多边形铺设地面.【本章思想方法】1.体会和掌握分类讨论思想.如解决已知等腰三角形的周长和一边长的相关问题、不清楚三角形形状以及解决与三角形高相关的问题,需要分类讨论.2.体会方程思想.如根据多边形内角和公式可以建立方程,从而运用方程思想解决.课时计划9.1 三角形4课时9.2 多边形的内角和与外角和2课时9.3 用正多边形铺设地面2课时9.1 三角形9.1.1 认识三角形第1课时三角形的相关概念及分类教学目标一、基本目标1.理解三角形、三角形的边、顶点、内角、外角等概念.2.会将三角形分类.3.理解等腰三角形、等边三角形的概念.二、重难点目标【教学重点】三角形内角、外角、等腰三角形、等边三角形等概念.【教学难点】三角形的外角.教学过程环节1 自学提纲,生成问题【5min阅读】阅读教材P72~P74的内容,完成下面练习.【3min反馈】1.由不在同一条直线上的三条线段首尾顺次连结组成的平面图形叫做三角形.2.如图,线段AB、BC、CA是三角形的边,点A、B、C是三角形的顶点,∠A、∠B、∠是相邻两边组成的角,叫做三角形的内角,简称三角形的角.3.我们把有两边相等的三角形称为等腰三角形.其中相等的两边叫做等腰三角形的腰;把三边相等的三角形称为等边三角形.4.所有内角都是锐角的三角形是锐角三角形;有一个角是直角的三角形是直角三角形;有一个内角是钝角的三角形是钝角三角形.5.三角形的分类(按角分):锐角三角形、钝角三角形和直角三角形;三角形的分类(按边分):不等边三角形和等腰三角形.环节2 合作探究,解决问题活动1 小讨论(师生互学)【例1】如图所示,图中共有多少个三角形?请写出这些三角形并指出所有以E为顶点的角.【互动探索】(引发学生思考)根据三角形的定义,让不在同一条直线上的三个点组合即可.【解答】图中共有7个三角形,分别是:△ABC、△ABF、△ABE、△ADE、△AEF、△BCF、△BDE.以E为顶点的角是∠AEF、∠AED、∠DE、∠DEF、∠AEB、∠BEF.【互动总结】(学生总结,老师点评)找的时候要有顺序,注意要不重不漏地找到所有三角,一般从一边开始,依次进行.【例2】△ABC的周长为22cm,AB边比AC边长2cm,BC边是AC边的一半,求△ABC三边的长.【互动探索】(引发学生思考)设BC=x cm→用含x的式子表示出AC、AB→由周长为22cm列出方程→求解得出各边长.【解答】设B=x cm,则AC=2cm,AB=(2x+2)cm.∵△ABC的周长为22cm,∴2x+2x+2+x=22,解得x=4,∴AC=8cm,BC=4cm,AB=10cm.【互动总结】(学生总结,老师点评)此题主要考查了三角形的周长公式,根据题意得出关于三角形周长的方程是解题的关键.活动2 巩固练习(学生独学)1.下列说法:①等边三角形是等腰三角形;②三角形按边分类可为等腰三角形、等边三角形和不等边三角形;③三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.其中正确的有( B )A .1个B .2个C .3个D .4个2.如图,图中直角三角形共有( C )A .1个B .2个C .3个D .4个3.已知一个三角形的周长为27cm ,三边长的比为2∶3∶4,则最长边比最短边长6cm.4.如图,BD 是长方形ABCD 的一条对角线,CE ⊥BD 于点E .(1)写出图中所有的直角三角形;(2)写出图中的锐角三角形和钝角三角形.解:(1)直角三角形有:△ABD 、△BCD 、△BCE 、△CDE . (2)锐角三角形:△ABE ;钝角三角形:△ADE .环节3 课堂小结,当堂达标(学生总结,老师点评)三角形⎩⎪⎨⎪⎧ 三角形的概念三角形的分类⎩⎨⎧ 按角分类按边分类练习设计请完成本课时对应练习!第2课时 三角形的高、中线与角平分线教学目标一、基本目标1.掌握三角形的高、中线和角平分线的概念.2.会用工具准确画出三角形的高、中线与角平分线,通过画图了解三角形的三条高(及所在直线)、三角形的三条中线和三条角平分线分别交于一点.二、重难点目标【教学重点】理解三角形的高、中线与角平分线.【教学难点】会利用三角形的三条高、三条中线与三条角平分线分别交于一点解决问题.教学过程环节1 自学提纲,生成问题【5min阅读】阅读教材P75的内容,完成下面练习.【3min反馈】1.从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高.2.在三角形中,连结一个顶点与它对边中点的线段,叫做三角形的中线.三角形的三条中线相交于一点.3.在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫三角形的角平分线.环节2 合作探究,解决问题活动1 小组讨论(师生互学)1.用工具准确画出三角形的高.如图,线段AD是△ABC中BC边上的高.注意:标明垂直的记号和垂足的字母.教师点拨:回忆并演示“过一点画已知直线的垂线”画法.讨论:分别在下列锐角三角形、直角三角形、钝角三角形中画出所有的高,观察高与三角形的位置关系.结论:由作图可得:(1)三角形的三条高线相交于一点;(2)锐角三角形的三条高线相交于三角形的内部;(3)钝角三角形的三条高线相交于三角形的外部;(4)直角三角形的三条高线相交于三角形的直角顶点.2.画三角形的中线.如图,线段AD是△ABC中BC边上的中线.讨论:分别在下列锐角三角形、直角三角形、钝角三角形中画出所有的中线,观察中线与三角形的位置关系.结论:由作图可得:(1)三角形的三条中线相交于一点;(2)锐角三角形的三条中线相交于三角形的内部;(3)钝角三角形的三条中线相交于三角形的内部;(4)直角三角形的三条中线相交于三角形的内部.3.画三角形的角平分线.如图,线段AD是△ABC的一条角平分线,则图中∠BAD=∠CAD.讨论:分别在下列锐角三角形、直角三角形、钝角三角形中画出所有的角平分线,观察角平分线与三角形的位置关系.结论:由作图可得:(1)三角形的三条角平分线相交于一点;(2)锐角三角形的三条角平分线相交于三角形的内部;(3)钝角三角形的三条角平分线相交于三角形的内部;(4)直角三角形的三条角平分线相交于三角形的内部.活动2 巩固练习(学生独学)1.如图,在△ABC中,EF∥AC,BD⊥AC于点D,交EF于点G,则下列选项中错误的是( C )A.BD是△ABC的高B.CD是△BCD的高C.EG是△ABD的高D.BG是△BEF的高第1题第2题2.如图,DE∥BC,CD是∠ACB的平分线,∠ACB=60°,那么∠EDC=30度.3.如图所示,CD为△ABC中AB边上的中线,△BCD的周长比△ACD的周长大3,BC=8,求边AC的长.解:∵CD 为△ABC 中AB 边上的中线,∴AD =BD .∵△BCD 的周长比△ACD 的周长大3,∴(BC +BD +CD )-(AC +AD +CD )=3,∴BC -AC =3.∵BC =8,∴AC =5.活动3 拓展延伸(学生对学)【例题】如图,在△ABC 中,∠B =30°,∠ACB =110°,AD 是BC 边上高线,AE 平分∠BAC ,求∠DAE 的度数.【互动探索】根据三角形的内角和等于180°列式求出∠BAC ,再根据角平分线的定义求出∠BAE ,根据直角三角形两锐角互余求出∠BAD ,然后根据∠DAE =∠BAD -∠BAE 计算即可得解.【解答】∵∠B =30°,∠ACB =110°,∴∠BAC =180°-30°-110°=40°.∵AE 平分∠BAC ,∴∠BAE =12∠BAC =12×40°=20°. ∵∠B =30°,AD 是BC 边上高线,∴∠BAD =90°-30°=60°,∴∠DAE =∠BAD -∠BAE =60°-20°=40°.【互动总结】(学生总结,老师点评)本题考查了三角形的角平分线和高,熟记概念并准确识图,理清图中各角度之间的关系是解题的关键.环节3 课堂小结,当堂达标(学生总结,老师点评)三角形的三线⎩⎨⎧ 高中线角平分线练习设计 请完成本课时对应练习!9.1.2 三角形的内角和与外角和教学目标一、基本目标1.理解“三角形的内角和等于180°”.2.掌握三角形的外角的定义和性质.3.使学生能熟练灵活地利用三角形内角和、外角和以及外角的两条性质进行有关计算.二、重难点目标【教学重点】1.三角形内角和定理.2.与三角形的外角有关的性质.【教学难点】1.三角形内角和定理的推导、验证过程.2.三角形外角的性质推理.教学过程环节1 自学提纲,生成问题【5min阅读】阅读教材P76~P79的内容,完成下面练习.【3min反馈】1.探索三角形的内角和都为180°.(1)在所准备的三角形硬纸片上标出三个内角的编码.(2)把一个三角形的两个角剪下拼在第三个角的顶点处,如图,用量角器量出∠BCD的度数,可得到∠A+∠B+∠ACB=180°.(3)把∠B和∠C剪下按下图拼在一起,如图,用量角器量一量∠MAN的度数,可得到∠BAC+∠B+∠C=180°.(4)三角形内角和定理:三角形三个内角的和等于180°.2.在△ABC中,∠A=60°,∠B=80°,则∠C=40°.3.如图,把△ABC的一边BC延长,得到∠ACD.像这样,三角形的一边与另一边的延长线组成的角,叫做三角形的外角.4.三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于任何一个与它不相邻的内角.5.△ABC中,∠A=80°,∠B=40°,∠ACD是△ABC的一个外角,则∠ACD =120°.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】如图,D是△ABC中BC边延长线上一点,DF⊥AB交AB于点F,交AC 于点E,若∠A=46°,∠D=50°,求∠ACB的度数.【互动探索】(引发学生思考)DF⊥AB,∠D=50°→得∠B的度数,结合∠A =46°→得∠ACB的度数(三角形内角和定理).【解答】在△DFB中,∵DF⊥AB,∴∠DFB=90°.∵∠D=50°,∠DFB+∠D+∠B=180°,∴∠B=40°.在△ABC中,∵∠A=46°,∠B=40°,∴∠ACB=180°-∠A-∠B=94°.【互动总结】(学生总结,老师点评)求三角形的内角,一般和三角形内角和定理有关,解决问题时要根据图形特点,在不同的三角形中,灵活运用三角形内角和定理求解.【例2】如图所示,P为△ABC内一点,∠BPC=150°,∠ABP=20°,∠ACP =30°,求∠A的度数.【互动探索】(引发学生思考)∠A与已知角不在同一个三角形内→考虑作辅助线,如图→利用三角形的外角性质求解.【解答】如图,延长BP交AC于点E,则∠BPC、∠PEC分别为△PCE,△ABE 的外角,∴∠BPC=∠PEC+∠PCE,∠PEC=∠ABE+∠A,∴∠PEC=∠BPC-∠PCE=150°-30°=120°,∴∠A=∠PEC-∠ABE=120°-20°=100°.【互动总结】(学生总结,老师点评)解决此类题的一般方法是作辅助线,利用三角形的外角的性质将已知与未知的角联系起来是计算角的度数的方法.此题也可以延长CP与AB相交,还可以连结AP并延长与BC相交,同学们可以自己尝试另外两种解法.活动2 巩固练习(学生独学)1.如果将一副三角板按如图方式叠放,那么∠1等于( B )A.120°B.105°C.60°D.45°2.在△ABC中,∠A=80°,∠B=∠C,则∠C=50°.3.已知三角形三个内角的度数之比为1∶3∶5,则这三个内角的度数分别为20°,60°,100°.4.求下列各图中∠1的度数.解:左图:∠1=90°;中图:∠1=80°;右图:∠1=95°.5.已知△ABC中,DE∥BC,∠AED=50°,CD平分∠ACB,求∠CDE的度数.解:∵DE ∥BC ,∠AED =50°,∴∠ACB =∠AED =50°.∵CD 平分∠ACB ,∴∠BCD =12∠ACB =25°.∵DE ∥BC ,∴∠EDC =∠BCD =25°. 活动3 拓展延伸(学生对学)【例3】如图,点P 是△ABC 内一点.(1)求证:∠BPC >∠A ;(2)若PB 平分∠ABC ,PC 平分∠ACB ,∠A =40°,求∠P 的度数.【互动探索】(1)延长BP 交AC 于点D (如图),根据△PDC 外角的性质知∠BPC >∠1,根据△ABD 外角的性质知∠1>∠A ,所以易证∠BPC >∠A ;(2)由三角形内角和定理求出∠ABC +∠ACB =140°,由角平分线和三角形内角和定理即可得出结果.【解答】(1)证明:延长BP 交AC 于点D ,如图所示.∵∠BPC 是△CDP 的一个外角,∠1是△ABD 的一个外角,∴∠BPC >∠1,∠1>∠A ,∴∠BPC >∠A .(2)在△ABC 中,∵∠A =40°,∴∠ABC +∠ACB =180°-∠A =180°-40°=140°.∵PB 平分∠ABC ,PC 平分∠ACB ,∴∠PBC =12∠ABC ,∠PCB =12∠ACB . 在△ABC 中,∠P =180°-(∠PBC +∠PCB )=180°-⎝ ⎛⎭⎪⎫12∠ABC +12∠ACB =180°-12(∠ABC +∠ACB )=180°-12×140°=110°. 【互动总结】(学生总结,老师点评)此题主要考查了三角形的外角性质、三角形内角和定理、三角形的角平分线定义;熟练掌握三角形的外角性质和三角形内角和定理是解决问题的关键.环节3 课堂小结,当堂达标(学生总结,老师点评)三角形的内角和与外角和⎩⎪⎨⎪⎧ 三角形的内角和等于180°三角形的一个外角等于与它不相邻的两个内角的和三角形的一个外角大于任何一个与它不相邻的内角练习设计请完成本课时对应练习!9.1.3 三角形的三边关系教学目标一、基本目标1.掌握三角形三边关系. 2.利用三角形三边关系判断三条线段能否组成三角形以及已知三角形的两边会求第三边的取值范围.二、重难点目标【教学重点】掌握三角形三边关系.【教学难点】三角形三边关系的应用.教学过程环节1 自学提纲,生成问题【5min 阅读】阅读教材P80~P81的内容,完成下面练习.【3min 反馈】1.三角形三边关系:三角形的任意两边之和小于第三边.2.推论:三角形两边的差小于第三边.3.如果三角形三边的长度固定,那么三角形的形状和大小就能唯一确定下来.三角形的这个性质叫做三角形的稳定性.4.如图是一个由四根木条钉成的框架,拉动其中两根木条后,它的形状将会改变,若固定其形状,下列有四种加固木条的方法,不能固定形状的是钉在________两点上的木条.( D )A.A、F B.C、EC.C、A D.E、F5.以下列各组线段为边,能组成三角形的是( B )A.2,3,5 B.5,6,10C.1,1,3 D.3,4,9环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( )A.1 B.2C.8 D.11【互动探索】(引发学生思考)设第三边的长为x.根据三角形的三边关系,可得7-3<x<7+3,即4<x<10,所以此三角形第三边的长可能是8,故选C.【答案】C【互动总结】(学生总结,老师点评)已知三角形的两边长,则第三边长的范围为大于两边差且小于两边和.【例2】用一根长为18厘米的细铁丝围成一个等腰三角形.(1)如果腰长是底边的2倍,那么各边的长是多少?(2)能围成有一边的长为4厘米的等腰三角形吗?【互动探索】(引发学生思考)(1)理解题意,得出等腰三角形的周长是18厘米→列方程求解;(2)知道等腰三角形的周长为18厘米→分类讨论,已知边是腰还是底边→得三角形另外两边长→三角形三边关系进行判断.【解答】(1)设底边长为x厘米,则腰长为2x厘米.根据题意,得x+2x+2x=18,解得x=3.6.∴三边长分别为3.6厘米,7.2厘米,7.2厘米.(2)①当4厘米长为底边,设腰长为x厘米,则4+2x=18,解得x=7.∴等腰三角形的三边长为7厘米,7厘米,4厘米;②当4厘米长为腰长,设底边长为x厘米,则4×2+x=18.解得x=10.∵4+4<10,∴此时不能构成三角形.∴能围成有一边的长为4厘米的等腰三角形,且三边长分别为7厘米,7厘米和4厘米.【互动总结】(学生总结,老师点评)当已知等腰三角形的周长和一边长时,需要分类讨论已知的一边长是腰还是底边,再解决问题.活动2 巩固练习(学生独学)1.一个三角形的两边长分别为5cm和3cm,第三边也是整数,且周长是偶数,则第三边长是( B )A.2cm或4cm B.4cm或6cmC.4cm D.2cm或6cm2.已知a、b、c为三角形的三边,则︱a+b―c︱-︱b-c-a︱的化简结果是( D )A.2a B.-2bC.2a+2b D.2b-2c3.已知等腰三角形的两边长分别为4cm和6cm,且它的周长大于14cm,则第三边长为6cm.4.三角形的三边长是三个连续的自然数,且三角形的周长小于20,求三边的长.解:2,3,4;3,4,5;4,5,6;5,6,7.环节3 课堂小结,当堂达标(学生总结,老师点评)三角形的三边关系⎩⎨⎧ 两边之和大于第三边两边之差小于第三边三角形的稳定性练习设计请完成本课时对应练习!【素材积累】 辛弃疾忧国忧民辛弃疾曾写《美芹十论》献给宋孝宗。
第9章《多边形》常考题集〔12〕:9.2多边形的内角和与外角和第9章《多边形》常考题集〔12〕:9.2 多边形的内角和与外角和选择题31.若一个多边形的边数增加2倍,它的外角和〔〕A.扩大2倍B.缩小2倍C.保持不变D.无法确定32.〔2001•##〕如果正多边形的一个内角是144°,则这个多边形是〔〕A.正十边形B.正九边形C.正八边形D.正七边形33.下面说法正确的是〔〕A.一个三角形中,至多只能有一个锐角B.一个四边形中,至少有一个锐角C.一个四边形中,四个内角可能全是锐角D.一个四边形中,不能全是钝角34.一个多边形的每一个内角都是135°,则这个多边形是〔〕A.七边形B.八边形C.九边形D.十边形35.多边形的每一个内角都等于150°,则此多边形从一个顶点出发的对角线共有〔〕条.A.7B.8C.9D.1036.一个多边形除了一个内角外,其余内角之和为257°,则这一内角等于〔〕A.90°B.105°C.103°D.120°37.若一个n边形n个内角与某一个外角的总和为1350°,则n等于〔〕A.6B.7C.8D.938.一个多边形截去一个角后,形成另一个多边形的内角和为2520°,则原多边形的边数是〔〕A.17 B.16 C.15 D.16或15或17填空题39.〔2003•##〕如图,∠1+∠2+∠3+∠4=_________度.40.〔2008•##〕如图所示,①中多边形〔边数为12〕是由正三角形"扩展〞而来的,②中多边形是由正方形"扩展〞而来的,…,依此类推,则由正n边形"扩展〞而来的多边形的边数为_________.41.从七边形的某个顶点出发,分别连接这个顶点与其余各顶点,可以把七边形分成_________个三角形.43.〔2010•##〕如果一个多边形的内角和等于外角和的2倍,那么这个多边形的边数n=_________.44.〔2009•##〕一个n边形的内角和等于720°,那么这个多边形的边数n=_________.45.〔2009•##〕八边形的内角和等于_________度.46.〔2008•永春县〕四边形的内角和等于_________度.47.〔2008•宿迁〕若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是_________.48.〔2008•##〕一个凸多边形的内角和与外角和相等,它是_________边形.49.〔2008•##〕六边形的内角和等于_________度.50.〔2007•##〕若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于_________度.51.〔2007•##〕如图,小亮从A点出发前10m,向右转15°,再前进10m,又向右转15°,…,这样一直走下去,他第一次回到出发点A时,一共走了_________m.52.〔2006•##〕若一个多边形的每一个外角都等于40°,则这个多边形的边数是_________.53.〔2006•临安市〕用一条宽相等的足够长的纸条,打一个结,如图〔1〕所示,然后轻轻拉紧、压平就可以得到如图〔2〕所示的正五边形ABCDE,其中∠BAC= _________ 度. 54.〔2006•##〕把一副三角板按如图方式放置,则两条斜边所形成的钝角α= _________ 度. 55.〔2006•##〕如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A 点时,一共走了 _________ 米. 56.〔2006•##〕正五边形的一个内角的度数是 _________ 度. 57.〔2005•##〕有一个多边形的内角和是它外角和的5倍,则这个多边形是 _________ 边形. 58.〔2005•##〕一个多边形的内角和为1080°,则这个多边形的边数是 _________ . 59.〔2004•##〕正n 边形的内角和等于1080°,那么这个正n 边形的边数n= _________ . 60.一个多边形的每个内角都等于150°,则这个多边形是 _________ 边形.第9章《多边形》常考题集〔12〕:9.2 多边形的内角和与外角和参考答案与试题解析选择题31.若一个多边形的边数增加2倍,它的外角和〔 〕 A . 扩大2倍 B .缩小2倍 C . 保持不变 D .无法确定考点:多边形内角与外角. 分析:所有凸多边形的外角和是360度,这个数值与边数的大小无关. 解答: 解:若一个多边形的边数增加2倍,它的外角和是360°,保持不变. 故选C .点评: 本题主要考查了多边形的外角和定理,对这个定理的正确理解是关键. 32.〔2001•##〕如果正多边形的一个内角是144°,则这个多边形是〔 〕 A . 正十边形 B .正九边形 C . 正八边形 D .正七边形考点:多边形内角与外角. 分析: 正多边形的每个角都相等,同样每个外角也相等,一个内角是144°,则外角是180﹣144=36°.又已知多边形的外角和是360度,由此即可求出答案.解答: 解:360÷〔180﹣144〕=10,则这个多边形是正十边形. 故选A .点评:本题主要利用了多边形的外角和是360°这一定理. 33.下面说法正确的是〔 〕A . 一个三角形中,至多只能有一个锐角B . 一个四边形中,至少有一个锐角C . 一个四边形中,四个内角可能全是锐角D . 一个四边形中,不能全是钝角考点: 多边形内角与外角;三角形内角和定理.专题: 计算题.分析: 根据多边形的内角和定理分别可以判定那个正确. 解答: 解:A 、不对,例如:90,45,45;B 、不对,例如:90,90,90,90;C 、不对,四个角都是锐角那么不能满足内角和360°;D 、正确. 故本题选D .点评: 此题考查了三角形,四边形内角与外角的性质.34.一个多边形的每一个内角都是135°,则这个多边形是〔 〕 A . 七边形 B .八边形 C . 九边形 D .十边形考点:多边形内角与外角. 分析: 已知每一个内角都等于135°,就可以知道每个外角是45度,根据多边形的外角和是360度就可以求出多边形的边数.解答: 解:多边形的边数是:n=360°÷〔180°﹣135°〕=8. 故选B .点评:通过本题要理解已知内角或外角求边数的方法. 35.多边形的每一个内角都等于150°,则此多边形从一个顶点出发的对角线共有〔 〕条. A . 7 B . 8 C . 9 D . 10 考点:多边形内角与外角;多边形的对角线. 专题:计算题. 分析: 多边形的每一个内角都等于150°,多边形的内角与外角互为邻补角,则每个外角是30度,而任何多边形的外角是360°,则求得多边形的边数;再根据不相邻的两个顶点之间的连线就是对角线,则此多边形从一个顶点出发的对角线共有n ﹣3条,即可求得对角线的条数. 解答: 解:∵多边形的每一个内角都等于150°, ∴每个外角是30°,∴多边形边数是360°÷30°=12,则此多边形从一个顶点出发的对角线共有12﹣3=9条. 故选C .点评: 本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.多边形从一个顶点出发的对角线共有n ﹣3条.36.一个多边形除了一个内角外,其余内角之和为257°,则这一内角等于〔 〕A . 90°B . 105°C . 103°D .120° 考点:多边形内角与外角. 分析: 设这个多边形是n 边形,则内角和是〔n ﹣2〕•180°,这个度数与257°的差一定小于180°并且大于0,则可以解方程:〔n ﹣2〕•180°=257°,多边形的边数n 一定是大于x 的最小的整数,这样就可以求出多边形的边数,从而求出内角和,得到这一内角的度数. 解答: 解:根据题意,得 〔n ﹣2〕•180°=257,得n=,则多边形的边数是4,因为四边形的内角和是360度,所以这一内角等于360°﹣257°=103°.故选C .点评:本题解决的关键是正确求出多边形的边数. 37.若一个n 边形n 个内角与某一个外角的总和为1350°,则n 等于〔 〕 A . 6 B . 7 C . 8 D . 9 考点: 多边形内角与外角. 分析:根据n 边形的内角和定理可知:n 边形内角和为〔n ﹣2〕×180.设这个外角度数为x 度,利用方程即可求出答案. 解答:解:设这个外角度数为x °,根据题意,得 〔n ﹣2〕×180+x=1350, 180n ﹣360+x=1350,x=1350+360﹣180n,即x=1710﹣180n, 由于0<x <180,即0<1710﹣180n <180,可变为:解得8.5<n <9.5, 所以n=9. 故选D . 点评:主要考查了多边形的内角和定理. n 边形的内角和为:180°•〔n ﹣2〕.38.一个多边形截去一个角后,形成另一个多边形的内角和为2520°,则原多边形的边数是〔 〕 A . 17 B . 16 C . 15 D . 16或15或17考点:多边形内角与外角. 分析: 因为一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,根据多边形的内角和即可解决问题.解答: 解:多边形的内角和可以表示成〔n ﹣2〕•180°〔n ≥3且n 是整数〕,一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,根据〔n ﹣2〕•180°=2520°解得:n=16, 则多边形的边数是15,16,17. 故选D .点评: 本题主要考查多边形的内角和定理的计算方法. 填空题 39.〔2003•##〕如图,∠1+∠2+∠3+∠4= 280 度. 考点: 三角形内角和定理;多边形内角与外角. 分析: 运用了三角形的内角和定理计算.解答: 解:∵∠1+∠2=180°﹣40°=140°,∠3+∠4=180°﹣40°=140°,∴∠1+∠2+∠3+∠4=280°. 故答案为:280°.点评: 此题主要是运用了三角形的内角和定理. 40.〔2008•##〕如图所示,①中多边形〔边数为12〕是由正三角形"扩展〞而来的,②中多边形是由正方形"扩展〞而来的,…,依此类推,则由正n 边形"扩展〞而来的多边形的边数为 n 〔n+1〕 . 考点: 多边形.专题:规律型.分析:①边数是12=3×4,②边数是20=4×5,依此类推,则由正n边形"扩展〞而来的多边形的边数为n〔n+1〕.解答:解:∵①正三边形"扩展〞而来的多边形的边数是12=3×4,②正四边形"扩展〞而来的多边形的边数是20=4×5,③正五边形"扩展〞而来的多边形的边数为30=5×6,④正六边形"扩展〞而来的多边形的边数为42=6×7,∴正n边形"扩展〞而来的多边形的边数为n〔n+1〕.点评:首先要正确数出这几个图形的边数,从中找到规律,进一步推广.正n边形"扩展〞而来的多边形的边数为n 〔n+1〕.41.从七边形的某个顶点出发,分别连接这个顶点与其余各顶点,可以把七边形分成5个三角形.考点:多边形的对角线.分析:根据七边形的概念和特性即可解.从简单图形说起:从四边形的一个顶点出发,连接这个点与其余各顶点,可以把一个四边形分割成〔4﹣2〕=2个三角形.解答:解:根据以上规律,从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成〔7﹣2〕=5个三角形.故答案为5.点评:本题考查的知识点为:过n边形一个顶点作对角线,最多可把n边形分成〔n﹣2〕个三角形.43.〔2010•##〕如果一个多边形的内角和等于外角和的2倍,那么这个多边形的边数n=6.考点:多边形内角与外角.分析:任何多边形的外角和是360度,内角和等于外角和的2倍则内角和是720度.n边形的内角和是〔n﹣2〕•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.解答:解:根据题意,得〔n﹣2〕•180=720,解得:n=6.点评:已知多边形的内角和求边数,可以转化为方程的问题来解决.44.〔2009•##〕一个n边形的内角和等于720°,那么这个多边形的边数n=6.考点:多边形内角与外角.专题:计算题.分析:n边形的内角和可以表示成〔n﹣2〕•180°,设这个多边形的边数是n,就得到方程,从而求出边数.解答:解:由题意可得:〔n﹣2〕•180°=720°,解得:n=6.所以,多边形的边数为6.点评:此题比较简单,只要结合多边形的内角和公式寻求等量关系,构建方程求解.45.〔2009•##〕八边形的内角和等于1080度.考点:多边形内角与外角.分析:n边形的内角和可以表示成〔n﹣2〕•180°,代入公式就可以求出内角和.解答:解:〔8﹣2〕•180°=1080°.点评:本题主要考查了多边形的内角和公式,是需要熟记的内容.46.〔2008•永春县〕四边形的内角和等于360度.考点:多边形内角与外角.分析:n边形的内角和是〔n﹣2〕•180°,代入公式就可以求出内角和.解答:解:〔4﹣2〕•180°=360°.点评:本题主要考查了多边形的内角和公式,是需要识记的内容.47.〔2008•宿迁〕若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是8.考点:多边形内角与外角.分析:任何多边形的外角和是360°,即这个多边形的内角和是3×360°.n边形的内角和是〔n﹣2〕•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.解答:解:设多边形的边数为n,根据题意,得〔n﹣2〕•180=3×360,解得n=8.则这个多边形的边数是8.点评:已知多边形的内角和求边数,可以转化为方程的问题来解决.48.〔2008•##〕一个凸多边形的内角和与外角和相等,它是四边形.考点:多边形内角与外角.分析:任何多边形的外角和是360度,因而这个多边形的内角和是360度.n边形的内角和是〔n﹣2〕•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.解答:解:根据题意,得〔n﹣2〕•180=360,解得n=4,则它是四边形.点评:已知多边形的内角和求边数,可以转化为方程的问题来解决.49.〔2008•##〕六边形的内角和等于720度.考点:多边形内角与外角.分析:n边形的内角和是〔n﹣2〕•180°,把多边形的边数代入公式,就得到多边形的内角和.解答:解:〔6﹣2〕•180=720度,则六边形的内角和等于720度.点评:解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容.50.〔2007•##〕若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于1800度.考点:多边形内角与外角.专题:计算题.分析:根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.n边形的内角和是〔n﹣2〕•180°,把多边形的边数代入公式,就得到多边形的内角和.解答:解:多边形的边数:360°÷30°=12,正多边形的内角和:〔12﹣2〕•180°=1800°.点评:根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.51.〔2007•##〕如图,小亮从A点出发前10m,向右转15°,再前进10m,又向右转15°,…,这样一直走下去,他第一次回到出发点A时,一共走了240m.考点:多边形内角与外角.专题:应用题.分析:根据多边形的外角和定理即可求出答案.解答:解:∵小亮从A点出发最后回到出发点A时正好走了一个正多边形,∴根据外角和定理可知正多边形的边数为360÷15=24,则一共走了24×10=240米.故答案为:240.点评:本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°,用外角和求正多边形的边数可直接让360度除以一个外角度数即可.52.〔2006•##〕若一个多边形的每一个外角都等于40°,则这个多边形的边数是9.考点:多边形内角与外角.分析:根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.解答:解:360÷40=9,即这个多边形的边数是9.点评:根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.53.〔2006•临安市〕用一条宽相等的足够长的纸条,打一个结,如图〔1〕所示,然后轻轻拉紧、压平就可以得到如图〔2〕所示的正五边形ABCDE,其中∠BAC=36度.考点:多边形内角与外角.分析:利用多边形的内角和定理和等腰三角形的性质即可解决问题.解答:解:∵∠ABC==108°,△ABC是等腰三角形,∴∠BAC=∠BCA=36度.点评:本题主要考查了多边形的内角和定理和等腰三角形的性质.n边形的内角和为:180°〔n﹣2〕.54.〔2006•##〕把一副三角板按如图方式放置,则两条斜边所形成的钝角α=165度.考点:多边形内角与外角;三角形内角和定理;三角形的外角性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和或者根据四边形的内角和等于360°得出.解答:解:本题有多种解法.解法一:∠α为下边小三角形外角,∠α=30°+135°=165°;解法二:利用四边形内角和,∠α等于它的对顶角,故∠α=360°﹣90°﹣60°﹣45°=165°.点评:本题通过三角板拼装来求角的度数,考查学生灵活运用知识能力.55.〔2006•##〕如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了120米.考点:多边形内角与外角.专题:应用题.分析:根据多边形的外角和即可求出答案.解答:解:∵360÷30=12,∴他需要走12次才会回到原来的起点,即一共走了12×10=120米.点评:本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°.56.〔2006•##〕正五边形的一个内角的度数是108度.考点:多边形内角与外角.分析:因为n边形的内角和是〔n﹣2〕•180°,因而代入公式就可以求出内角和,再用内角和除以内角的个数就是一个内角的度数.解答:解:〔5﹣2〕•180=540°,540÷5=108°,所以正五边形的一个内角的度数是108度.点评:本题考查正多边形的基本性质,解题时应先算出正n边形的内角和再除以n即可得到答案.57.〔2005•##〕有一个多边形的内角和是它外角和的5倍,则这个多边形是12边形.考点:多边形内角与外角.分析:一个多边形的内角和等于它的外角和的5倍,任何多边形的外角和是360度,因而这个正多边形的内角和为5×360度.n边形的内角和是〔n﹣2〕•180°,代入就得到一个关于n的方程,就可以解得边数n.解答:解:根据题意,得〔n﹣2〕•180=5×360,解得:n=12.所以此多边形的边数为12.点评:已知多边形的内角和求边数,可以转化为解方程的问题解决.58.〔2005•##〕一个多边形的内角和为1080°,则这个多边形的边数是8.考点:多边形内角与外角.分析:n边形的内角和是〔n﹣2〕•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.解答:解:根据题意,得〔n﹣2〕•180=1080,解得n=8.所以这个多边形的边数是8.点评:已知多边形的内角和求边数,可以转化为方程的问题来解决.59.〔2004•##〕正n边形的内角和等于1080°,那么这个正n边形的边数n=8.考点:多边形内角与外角.分析:n边形的内角和是〔n﹣2〕•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.解答:解:设这个多边形是n边形,由题意知,〔n﹣2〕×180°=1080°,∴n=8.故该多边形的边数为8.点评:已知多边形的内角和求边数,可以转化为方程的问题来解决.60.一个多边形的每个内角都等于150°,则这个多边形是12边形.考点:多边形内角与外角.专题:计算题.分析:根据多边形的内角和定理:180°•〔n﹣2〕求解即可.解答:解:由题意可得:180°•〔n﹣2〕=150°•n,解得n=12.故多边形是12边形.点评:主要考查了多边形的内角和定理.n边形的内角和为:180°•〔n﹣2〕.此类题型直接根据内角和公式计算可得.参与本试卷答题和审题的老师有:hnaylzhyk;zhjh;feng;lanchong;开心;心若在;zzz;蓝月梦;HJJ;kuaile;HLing;CJX〔排名不分先后〕菁优网20##6月1日。
七年级数学下册第9章多边形重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、三个等边三角形的摆放位置如图所示,若12100∠+∠=°,则3∠的度数为( )A .80︒B .70︒C .45︒D .302、如图,已知AD AB =,C E ∠=∠,55CDE ∠=︒,则ABE ∠的度数为( )A .155°B .125°C .135°D .145°3、将一副三角板按不同位置摆放,下图中α∠与β∠互余的是( )A.B.\C.D.4、如图,在△ABC中,∠C=50°,∠BAC=60°,AD⊥BC于D,AE平分∠BAC,∠DAE=()A.10°B.15°C.20°D.25°5、多边形每一个内角都等于150°,则从该多边形一个顶点出发,可引出对角线的条数为()A.9条B.8条C.7条D.6条∠+∠+∠+∠=()6、如图,在六边形ABCDEF中,若1290∠+∠=︒,则3456A.180°B.240°C.270°D.360°7、如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外面时,此时测得∠1=112°,∠A=40°,则∠2的度数为()A .32°B .33°C .34°D .38°8、如图,AB 和CD 相交于点O ,则下列结论不正确的是( )A .12∠=∠B .1B ∠=∠C .2D ∠>∠ D .A D B C ∠+∠=∠+∠9、已知ABC 的三边长分别为a ,b ,c ,则a ,b ,c 的值可能分别是( )A .1,2,3B .3,4,7C .2,3,4D .4,5,1010、下列长度的三条线段与长度为4的线段首尾依次相连能组成四边形的是( ).A .1,1,2, B .1,1,1 C .1,2,2 D .1,1,6第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在Rt ABC 中,锐角50A ∠=︒,则另一个锐角B ∠=_______.2、如图是中国古代建筑中的一个正六边形的窗户,则它的内角和为 _____.3、等腰三角形中,一条边长是2cm ,另一条边长是3cm ,这个等腰三角形的周长是________.4、如图,在ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且ABC的面积等于24cm2,则阴影部分图形面积等于_____cm25、如图,已知BE、CD分别是△ABC的内角平分线,BE和CD相交于点O,且∠A=40°,则∠DOE=____________三、解答题(5小题,每小题10分,共计50分)1、平行线是平面几何中最基本、也是非常重要的图形.在解决某些几何问题时,若能根据问题的需要,添加适当的平行线,往往能使证明顺畅、简洁.请根据上述思想解决问题:(1)如图(1),AB∥CD,试判断∠B,∠D与∠E的关系;(2)如图(2),已知AB∥CD,在∠ACD的角平分线上取两个点M、N,使得∠AMN=∠ANM,求证:∠CAM=∠BAN.2、如图,在ABC中,AD是角平分线,54∠=︒.C∠=︒,76B(1)求BAD∠的度数;(2)若DE AC⊥,求EDC∠的度数.3、用无刻度的直尺作图,保留作图痕迹.(1)在图1中,BD是△ABC的角平分线,作△ABC的平分内角∠BCA的角平分线;(2)在图2中,AD是∠BAC的角平分线,作△ABC的∠BCA相邻的外角的角平分线.4、如图,在△ABC中,∠ABC=30°,∠C=80°,AD是△ABC的角平分线,BE是△ABD中AD边上的高,求∠ABE的度数.5、已知:如图,在△ABC中,AB=3,AC=5.(1)直接写出BC的取值范围是.(2)若点D是BC边上的一点,∠BAC=85°,∠ADC=140°,∠BAD=∠B,求∠C.-参考答案-一、单选题1、A【解析】【分析】利用三个平角的和减去中间三角形的内角和,再减去三个60︒的角即可.【详解】⨯︒=︒,解:3180540⨯︒=︒,360180∴︒-︒-︒=︒,540180180180123180∴∠+∠+∠=︒,∠+∠=︒,12100∴∠=︒,380故选:A.【点睛】本题主要考查了三角形的内角和定理,灵活运用三角形内角和定理成为解答本题的关键.2、B【解析】【分析】根据三角形外角的性质得出55CBE A E A C ∠=∠+∠=∠+∠=︒,再求ABE ∠即可.【详解】解:∵55CDE ∠=︒,∴55A C ∠+∠=︒,∵C E ∠=∠,∴55CBE A E ∠=∠+∠=︒,∴180125ABE CBE ∠=︒-∠=︒;故选:B .【点睛】本题考查了三角形外角的性质,解题关键是准确识图,理清角之间的关系.3、A【解析】【分析】根据平角的定义可判断A ,D ,根据同角的余角相等可判断B ,根据三角形的外角的性质可判断C ,从而可得答案.【详解】解:选项A :根据平角的定义得:∠α+90°+∠β=180°,∴∠α+∠β=90°, 即∠α与∠β互余;故A 符合题意;选项B :如图,3903,=,故B不符合题意;选项C:如图,9011,故C不符合题意;选项D:18045135,故D不符合题意;故选A【点睛】本题考查的是平角的定义,互余的含义,同角的余角相等,三角形的外角的性质,掌握“与直角三角形有关的角度的计算”是解本题的关键.4、A【解析】【分析】先由∠BAC和∠C求出∠B,然后由AE平分∠BAC求∠BAE,再结合AD⊥BC求∠BAD,最后求得∠EAD.【详解】解答:解:∵∠C=50°,∠BAC=60°,∴∠B=180°﹣∠BAC﹣∠C=70°.∵AE平分∠BAC,∠BAC=60°,∴∠BAE=12∠BAC=160=302⨯︒︒,∵AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣∠B=20°,∴∠EAD=∠BAE﹣∠BAD=30°﹣20°=10°.故选:A.【点睛】本题考查了三角形的内角和、角平分线的定义和高线的定义,通过角平分线和高线的定义求得∠BAE 和∠BAD的度数是解题的关键.5、A【解析】【分析】多边形从一个顶点出发的对角线共有(n-3)条.多边形的每一个内角都等于150°,多边形的内角与外角互为邻补角,则每个外角是30度,而任何多边形的外角是360°,则求得多边形的边数;再根据不相邻的两个顶点之间的连线就是对角线,则此多边形从一个顶点出发的对角线共有(n-3)条,即可求得对角线的条数.【详解】解:∵多边形的每一个内角都等于150°,∴每个外角是30°,∴多边形边数是360°÷30°=12,则此多边形从一个顶点出发的对角线共有12-3=9条.故选A.【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.6、C【解析】【分析】根据多边形外角和360︒求解即可.【详解】解:123456360∠+∠+∠+∠+∠+∠=︒ ,1290∠+∠=︒()345636012270∴∠+∠+∠+∠=︒-∠+∠=︒,故选:C【点睛】本题考查了多边形的外角和定理,掌握多边形外角和360︒是解题的关键.7、A【解析】【分析】由折叠的性质可知40A A '∠=∠=︒,再由三角形外角的性质即可求出DFA ∠的大小,再次利用三角形外角的性质即可求出2∠的大小.【详解】如图,设线段AC 和线段A D '交于点F .由折叠的性质可知40A A '∠=∠=︒.∵1A DFA ∠=∠+∠,即11240DFA ︒=︒+∠,∴72DFA ∠=︒.∵2DFA A '∠=∠+∠,即72240︒=∠+︒,∴232∠=︒.故选A .【点睛】本题考查折叠的性质,三角形外角的性质.利用数形结合的思想是解答本题的关键.8、B【解析】【分析】根据两直线相交对顶角相等、三角形角的外角性质即可确定答案.【详解】解:选项A 、∵∠1与∠2互为对顶角,∴∠1=∠2,故选项A 不符合题意;选项B 、∵∠1=∠B +∠C ,∴∠1>∠B ,故选项B 符合题意;选项C 、∵∠2=∠D +∠A ,∴∠2>∠D ,故选项C 不符合题意;选项D 、∵1A D ∠+∠=∠,1B C ∠+∠=∠,∴A D B C ∠+∠=∠+∠,故选项D 不符合题意; 故选:B .【点睛】本题主要考查了对顶角的性质、平行线的性质和三角形内角和、外角的性质,能熟记对顶角的性质是解此题的关键.9、C【解析】【分析】三角形的三边应满足两边之和大于第三边,两边之差小于第三边,据此求解.【详解】解:A、1+2=3,不能组成三角形,不符合题意;B、3+4=7,不能组成三角形,不符合题意;C、2+3>4,能组成三角形,符合题意;D、4+5<10,不能组成三角形,不符合题意;故选:C.【点睛】本题考查了三角形的三边关系,满足两条较小边的和大于最大边即可.10、C【解析】【分析】将每个选项中的四条线段进行比较,任意三条线段的和都需大于另一条线段的长度,由此可组成四边形,据此解答.【详解】解:A、因为1+1+2=4,所以不能构成四边形,故该项不符合题意;B、因为1+1+1<4,所以不能构成四边形,故该项不符合题意;C、因为1+2+2>4,所以能构成四边形,故该项符合题意;D、因为1+1+4=6,所以不能构成四边形,故该项不符合题意;故选:C.【点睛】此题考查了多边形的构成特点:任意几条边的和大于另一条边长,正确理解多边形的构成特点是解题的关键.二、填空题1、40【解析】【分析】根据直角三角形两锐角互余,即可求解.【详解】解:在Rt ABC 中,∵锐角50A ∠=︒,∴另一个锐角90905040B A ∠=︒-∠=︒-︒=︒ .故答案为:40︒【点睛】本题主要考查了直角三角形的性质,熟练掌握直角三角形两锐角互余是解题的关键.2、720°##720度【解析】【分析】根据多边形内角和可直接进行求解.【详解】解:由题意得:该正六边形的内角和为()()180218062720n ︒⨯-=︒⨯-=︒;故答案为720°.【点睛】本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关键.3、8cm 或7cm ##7cm 或8cm【解析】【分析】因为已知长度为2cm和3cm两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.【详解】解:①当2cm为底时,其它两边都为3cm,2cm、3cm、3cm可以构成三角形,周长为8cm;②当3cm为底时,其它两边都为2cm,2cm、2cm、3cm可以构成三角形,周长为7cm;故答案为:8cm或7cm.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,解题的关键是利用分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要.4、6【解析】【分析】因为点F是CE的中点,所以△BEF的底是△BEC的底的一半,△BEF高等于△BEC的高;同理,D、E、分别是BC、AD的中点,可得△EBC的面积是△ABC面积的一半;利用三角形的等积变换可解答.【详解】解:如图,点F是CE的中点,EC,而高相等,∴△BEF的底是EF,△BEC的底是EC,即EF=12S△BEC,∴S△BEF=12∵E是AD的中点,∴S△BDE=12S△ABD,S△CDE=12S△ACD,∴S△EBC=12S△ABC,∴S△BEF=14S△ABC,且S△ABC=24cm2,∴S△BEF=6cm2,即阴影部分的面积为6cm2.故答案为6.【点睛】本题考查了三角形面积的等积变换:若两个三角形的高(或底)相等,面积之比等于底边(高)之比.5、110°##110度【解析】【分析】根据∠A=40°求出∠ABC+∠ACB=140°,根据角平分线的定义求出∠EBC+∠BCD=70°,进而求出∠BOC=110°,最后根据对顶角相等即可求解.【详解】解:如图,∵∠A=40°,∴∠ABC+∠ACB=180°-∠A=140°,∵BE、CD分别是△ABC的内角平分线,∴∠EBC=12∠ABC,∠BCD==12∠ACB,∴∠EBC+∠BCD=12∠ABC+12∠ACB=12(∠ABC+∠ACB)=70°,∴∠BOC=180°-(∠EBC+∠BCD)=110°,∴∠DOE=∠BOC=110°.故答案为:110°【点睛】本题考查了三角形内角和定理,角平分线的定义,对顶角相等等知识,熟知相关知识,运用整体思想求出∠EBC+∠BCD=70°是解题关键.三、解答题1、(1)∠BED=∠B+∠D;(2)证明见详解.【解析】【分析】(1)作EF∥AB,证明AB∥EF∥CD,得到∠B=∠BEF,∠D=∠DEF,即可证明∠BED=∠B+∠D;(2)根据(1)结论得到∠N=∠BAN+∠DCN,进而得到∠AMN=∠BAN+∠DCN,根据三角形外角定理得到∠AMN=∠ACM+∠CAM,∠BAN+∠DCN=∠ACM+∠CAM,再根据∠DCN=∠CAN,即可证明∠CAM=∠BAN.【详解】解:如图1,作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠BEF,∠D=∠DEF,∵∠BED=∠BEF+∠DEF,∴∠BED=∠B+∠D;(2)证明:∵AB∥CD,∴由(1)得∠N=∠BAN+∠DCN,∵∠AMN=∠ANM,∴∠AMN=∠BAN+∠DCN,∵∠AMN是△ACM外角,∴∠AMN=∠ACM+∠CAM,∴∠BAN+∠DCN=∠ACM+∠CAM,∵CN平分∠ACD,∴∠DCN=∠CAN,∴∠CAM=∠BAN.【点睛】本题考查了平行线的性质,角平分线的定义,三角形的外角定理等知识,熟知相关定理并根据题意添加辅助线进行角的转化是解题关键.2、 (1)25∠=︒;BAD(2)14∠=︒.EDC【分析】(1)根据三角形内角和定理可求出50BAC∠=︒,然后利用角平分线进行计算即可得;(2)根据垂直得出90AED∠=︒,然后根据三角形内角和定理即可得.(1)解:∵54B∠︒=,76C∠︒=,∴180180547650BAC B C∠=︒-∠-∠=︒-︒-︒=︒,∵AD是角平分线,∴1252BAD BAC∠=∠=︒,∴25BAD∠=︒;(2)∵DE AC⊥,∴90AED∠=︒,∴180180907614EDC AED C∠=︒-∠-∠=︒-︒-︒=︒,∴14EDC∠=︒.【点睛】题目主要考查三角形内角和定理,角平分线的计算等,熟练运用三角形内角和定理是解题关键.3、(1)见解析;(2)见解析.【解析】【分析】(1)作∠BAC的平分线交BD于点O,作射线CO交AB于E,线段CE即为所求;(2)作△ABC的∠ABC的外角的平分线交AD与D,作射线CD,射线CD即为所求.(1)如图1,线段CE为所求;(2)如图2,线段CD为所求.【点睛】本题主要考查了基本作图、三角形的外角、三角形的角平分线等知识点,理解三角形的内角平分线交于一点成为解答本题的关键.4、55°【解析】【分析】先根据三角形内角和定理及角平分线的性质求出∠BAD度数,由AE⊥BE可求出∠AEB=90°,再由三角形的内角和定理即可解答.【详解】解:∵∠ABC=30°,∠C=80°,∴∠BAC=180°-30°-80°=70°,∵AD是∠BAC的平分线,×70°=35°,∴∠BAD=12∴∠AEB=90°,∴∠ABE=180°-∠AEB-∠BAE=180°-90°-35°=55°.【点睛】本题考查的是角平分线的定义,高的定义及三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.5、(1)2<BC<8;(2)25°【解析】【分析】(1)根据三角形三边关系解答即可;(2)根据三角形外角性质和三角形内角和解答即可.【详解】解:(1)∵AC-AB<BC<AC+AB,AB=3,AC=5.∴2<BC<8,故答案为:2<BC<8(2)∵∠ADC是△ABD的外角∴∠ADC=∠B+∠BAD=140︒∵∠B=∠BAD∴∠B=114070 2⨯︒=︒∵∠B+∠BAC+∠C=180︒∴∠C=180︒﹣∠B﹣∠BAC 即∠C=180︒﹣70︒﹣85︒=25︒【点睛】本题考查了三角形第三边的取值范围,三角形内角和定理和三角形外角的性质,能根据三角形的外角的性质求出∠B的度数是解此题的关键.。
认识三角形三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.有关三角形的概念:①三角形的边:即组成三角形的线段;②三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角;③三角形的顶点:即相邻两边的公共端点.④三角形的外角:三角形的角的一边与另一边的反向延长线组成的角叫做三角形的外角.注意:(1)三角形的定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”.三角形外角的特征:①顶点在三角形的一个顶点上;②一条边是三角形的一边;③另一条边是三角形某条边的延长线.注意:(1)三角形每个顶点处有两个外角,它们是对顶角.所以三角形共有六个外角,通常每个顶点处取一个外角,因此,我们常说三角形有三个外角.三角形的表示:三角形用符号“△”表示,顶点为A、B、C的三角形记作“△ABC”,读作“三角形ABC”,注意单独的△没有意义;△ABC的三边可以用大写字母AB、BC、AC来表示,也可以用小写字母a、b、c来表示,边BC用a表示,边AC、AB分别用b、c表示.三角形的分类:按角分⎩⎨⎧直角三角形斜三角形⎩⎨⎧锐角三角形钝角三角形按边分⎩⎨⎧不等边三角形(不规则三角形)等腰三角形⎩⎨⎧只有两条边相等的等腰三角形等边三角形锐角三角形 直角三角形 钝角三角形三个角都是锐角 有一个角为直角 有一个角是钝角不等边三角形 等腰三角形 等边三角形 三边不相等 有两条边相等 三条边都相等①锐角三角形:三个内角都是锐角的三角形; ②钝角三角形:有一个内角为钝角的三角形; ③直角三角形:有一个角为90°的三角形。
①不等边三角形:三边都不相等的三角形;②等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角; ③等边三角形:三边都相等的三角形。
三角形的三线:三角形的中线:三角形的一个顶点与它的对边中点的连线叫三角形的中线.这个角的顶点与交点之间的线段.三角形的角平分线:三角形内角的平分线与对边的交点和这个内角顶点之间的线段叫三角形的角平分线.三角形的高:过三角形顶点作对边的垂线,垂足与顶点间的线段叫做三角形的高.注意:(1)三角形分别有三条高线,三条中线,三条角平分线;(2)任意三角形三条角平分线,三条中线,分别交于一点,且都在三角形的内部;(3)直角三角形的三条高线的交点就是直角顶点,钝角三角形的三条高线的交点在三角形的外部,锐角三角形的三条高线在三角形的内部。
第九章多边形章末测试(一)一.选择题(共8小题,每题3分)1.如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是()A.70°B.80°C.65°D.60°2.一个正多边形的每个外角都等于36°,那么它是()A.正六边形B.正八边形C.正十边形D.正十二边形3.如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A.60°B.70°C.80°D. 90°4.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°5.有3cm,6cm,8cm,9cm的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为()A. 1 B. 2 C. 3 D. 4A.30°B.20°C.10°D. 40°7.一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形8.一个多边形的每个外角都等于72°,则这个多边形的边数为()A. 5 B. 6 C. 7 D. 8二.填空题(共6小题,每题3分)9.如图,一束平行太阳光线照射到正五边形上,则∠1=_________ .10.在正三角形,正四边形,正五边形和正六边形中不能单独密铺的是_________ .11.将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF=_________ .12.如图,D,E分别是△ABC边AB,BC上的点,AD=2BD,BE=CE,设△ADC的面积为S1,△ACE的面积为S2,若S△ABC=6,则S1﹣S2的值为_________ .13.如图,点O是△ABC的两条角平分线的交点,若∠BOC=118°,则∠A的大小是_________ .14.如图,AB∥CD,BC与AD相交于点M,N是射线CD上的一点.若∠B=65°,∠MDN=135°,则∠AMB= _________ .三.解答题(共10小题)15.(6分)将一幅三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB.(2)求∠DFC的度数.16.(6分)已知,如图,AB∥CD,AE平分∠BAC,CE平分∠ACD,求∠E的度数.17.(6分)如图,AB∥CD,分别探讨下面四个图形中∠APC与∠PAB、∠PCD的关系,请你从所得到的关系中任选一个加以说明.(适当添加辅助线,其实并不难)18.(8分)△ABC中,AB=AC,△ABC周长为16cm,BD为中线,且将△ABC分成的两个小三角形周长的差为2cm.求△ABC各边的长.19.(8分)如图,已知△ABC的高AD,角平分线AE,∠B=26°,∠ACD=56°,求∠AED的度数.20.(8分)已知三角形的三边互不相等,且有两边长分别为5和7,第三边长为正整数.(1)请写出一个三角形符合上述条件的第三边长.(2)若符合上述条件的三角形共有n个,求n的值.(3)试求出(2)中这n个三角形的周长为偶数的三角形所占的比例.21.(8分)下面是有关三角形内外角平分线的探究,阅读后按要求作答:探究1:如图(1),在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现:∠BOC=90°+∠A (不要求证明).探究2:如图(2)中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的数量关系?请说明理由.探究3:如图(3)中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的数量关系?(只写结论,不需证明).结论:_________ .22.(8分)如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB 的度数.23.(10分)如图,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F.(1)试说明∠BCD=∠ECD;(2)请找出图中所有与∠B相等的角(直接写出结果).24.(10分)将一块直角三角板DEF放置在△ABC上,使得该三角板的两条直角边DE、DF恰好分别经过点B、C.(1)如图1,当∠A=45°时,∠ABC+∠ACB=_________ 度,∠DBC+∠DCB=_________ 度;(2)如图2,改变直角三角板DEF的位置,使该三角板的两条直角边DE、DF仍然分别经过点B、C,那么∠ABD+∠ACD的大小是否发生变化?若变化,请举例说明;若没有变化,请探究∠ABD+∠ACD与∠A的关系.第九章多边形章末测试(一)参考答案与试题解析一.选择题(共8小题)1.如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是()A.70°B.80°C.65°D.60°考点:平行线的性质;三角形的外角性质.分析:首先根据平行线的性质得出∠1=∠4=140°,进而得出∠5度数,再利用三角形内角和定理以及对顶角性质得出∠3的度数.解答:解:∵直线l1∥l2,∠1=140°,∴∠1=∠4=140°,∴∠5=180°﹣140°=40°,∵∠2=70°,∴∠6=180°﹣70°﹣40°=70°,∵∠3=∠6,∴∠3的度数是70°.故选:A.点评:此题主要考查了平行线的性质以及三角形内角和定理等知识,根据已知得出∠5的度数是解题关键.2.一个正多边形的每个外角都等于36°,那么它是()A.正六边形B.正八边形C.正十边形D.正十二边形考点:多边形内角与外角.分析:利用多边形的外角和360°,除以外角的度数,即可求得边数.解答:解:360÷36=10.故选C.点评:本题考查了多边形的外角和定理,理解任何多边形的外角和都是360度是关键.3.如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A.60°B.70°C.80°D.90°考点:三角形的外角性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和,知∠ACD=∠A+∠B,从而求出∠A的度数.解答:解:∵∠ACD=∠A+∠B,∴∠A=∠ACD﹣∠B=120°﹣40°=80°.故选C.点评:本题主要考查三角形外角的性质,解答的关键是沟通外角和内角的关系.4.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°考点:三角形的外角性质.专题:探究型.分析:先由三角形外角的性质求出∠BDF的度数,根据三角形内角和定理即可得出结论.解答:解:∵Rt△CDE中,∠C=90°,∠E=30°,∴∠BDF=∠C+∠E=90°+30°=120°,∵△BDF中,∠B=45°,∠BDF=120°,∴∠BFD=180°﹣45°﹣120°=15°.故选A.点评:本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.5.有3cm,6cm,8cm,9cm的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为()A.1 B.2 C.3 D.4考点:三角形三边关系.分析:从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.解答:解:四条木棒的所有组合:3,6,8和3,6,9和6,8,9和3,8,9;只有3,6,8和6,8,9;3,8,9能组成三角形.故选:C.点评:此题主要考查了三角形三边关系,三角形的三边关系:任意两边之和>第三边,任意两边之差<第三边;注意情况的多解和取舍.6.如图,AB∥CD,∠ABE=60°,∠D=50°,则∠E的度数为()A.30°B.20°C.10°D.40°考点:平行线的性质;三角形的外角性质.分析:由AB∥CD,根据两直线平行,同位角相等,即可求得∠CFE,又由三角形外角的性质,求得答案.解答:解:∵AB∥CD,∴∠CFE=∠ABE=60°,∵∠D=50°,∴∠E=∠CFE﹣∠D=10°.故选C.点评:此题考查了平行线的性质以及三角形外角的性质.此题比较简单,注意掌握数形结合思想的应用.7.一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形考点:多边形内角与外角.分析:首先求得外角的度数,然后利用360除以外角的度数即可求解.解答:解:外角的度数是:180﹣108=72°,则这个多边形的边数是:360÷72=5.故选C.点评:本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理8.一个多边形的每个外角都等于72°,则这个多边形的边数为()A.5 B.6 C.7 D.8考点:多边形内角与外角.分析:利用多边形的外角和360°,除以外角的度数,即可求得边数.解答:解:多边形的边数是:360÷72=5.故选A.点评:本题考查了多边形的外角和定理,理解任何多边形的外角和都是360度是关键.二.填空题(共6小题)9.如图,一束平行太阳光线照射到正五边形上,则∠1=30°.考点:平行线的性质;多边形内角与外角.分析:作出平行线,根据两直线平行:内错角相等、同位角相等,结合三角形的内角和定理,即可得出答案.解答:解:作出辅助线如图:则∠2=42°,∠1=∠3,∵五边形是正五边形,∴一个内角是108°,∴∠3=180°﹣∠2﹣∠3=30°,∴∠1=∠3=30°.故答案为:30°.点评:本题考查了平行线的性质,注意掌握两直线平行:内错角相等、同位角相等.10.在正三角形,正四边形,正五边形和正六边形中不能单独密铺的是正五边形.考点:平面镶嵌(密铺).分析:求出各个正多边形的每个内角的度数,结合密铺的条件即可求出答案.解答:解:正三角形的每个内角是60°,能整除360°,能密铺;正四边形的每个内角是90°,4个能密铺;正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能密铺;正六边形的每个内角是120°,能整除360°,能密铺.故不能单独密铺的是正五边形.点评:本题考查的知识点是:一种正多边形的镶嵌应符合一个内角度数能整除360°.11.将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF=25°.考点:三角形的外角性质;三角形内角和定理.分析:由∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,可求得∠ACE的度数,又由三角形外角的性质,可得∠CDF=∠ACE﹣∠F=∠BCE+∠ACB﹣∠F,继而求得答案.解答:解:∵AB=AC,∠A=90°,∴∠ACB=∠B=45°,∵∠EDF=90°,∠E=30°,∴∠F=90°﹣∠E=60°,∵∠ACE=∠CDF+∠F,∠BCE=40°,∴∠CDF=∠ACE﹣∠F=∠BCE+∠ACB﹣∠F=45°+40°﹣60°=25°.故答案为:25°.点评:本题考查三角形外角的性质以及直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.12.如图,D,E分别是△ABC边AB,BC上的点,AD=2BD,BE=CE,设△ADC的面积为S1,△ACE的面积为S2,若S△ABC=6,则S1﹣S2的值为 1 .考点:三角形的面积.分析:根据等底等高的三角形的面积相等求出△AEC的面积,再根据等高的三角形的面积的比等于底边的比求出△ACD的面积,然后根据S1﹣S2=S△ACD﹣S△ACE计算即可得解.解答:解:∵B E=CE,∴S△ACE=S△ABC=×6=3,∵AD=2BD,∴S △ACD=S△ABC=×6=4,∴S1﹣S2=S△ACD﹣S△ACE=4﹣3=1.故答案为:1.点评:本题考查了三角形的面积,主要利用了等底等高的三角形的面积相等,等高的三角形的面积的比等于底边的比,需熟记.13.如图,点O是△ABC的两条角平分线的交点,若∠BOC=118°,则∠A的大小是56°.考点:三角形内角和定理.分析:先根据三角形内角和定理求出∠1+∠2的度数,再根据角平分线的定义求出∠ABC+∠ACB的度数,由三角形内角和定理即可得出结论.解答:解:∵△BOC中,∠BOC=118°,∴∠1+∠2=180°﹣118°=62°.∵BO和CO是△ABC的角平分线,∴∠ABC+∠ACB=2(∠1+∠2)=2×62°=124°,在△ABC中,∵∠ABC+∠ACB=124°,∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣124°=56°.故答案为:56°.点评:本题考查的是角平分线的定义,三角形内角和定理,即三角形的内角和是180°.14.如图,AB∥CD,BC与AD相交于点M,N是射线CD上的一点.若∠B=65°,∠MDN=135°,则∠AMB= 70°.考点:平行线的性质;三角形的外角性质.分析:根据平行线的性质求出∠BAM,再由三角形的内角和定理可得出∠AMB.解答:解:∵AB∥CD,∴∠A+∠MDN=180°,∴∠A=180°﹣∠MDN=45°,在△ABM中,∠AMB=180°﹣∠A﹣∠B=70°.故答案为:70°.点评:本题考查了平行线的性质,解答本题的关键是掌握:两直线平行同胖内角互补,及三角形的内角和定理.三.解答题(共10小题)15将一幅三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB.(2)求∠DFC的度数.考点:平行线的判定;角平分线的定义;三角形内角和定理.专题:压轴题.分析:(1)首先根据角平分线的性质可得∠1=45°,再有∠3=45°,再根据内错角相等两直线平行可判定出AB∥CF;(2)利用三角形内角和定理进行计算即可.解答:(1)证明:∵CF平分∠DCE,∴∠1=∠2=∠DCE,∵∠DCE=90°,∴∠1=45°,∵∠3=45°,∴∠1=∠3,∴AB∥CF;(2)∵∠D=30°,∠1=45°,∴∠DFC=180°﹣30°﹣45°=105°.点评:此题主要考查了平行线的判定,以及三角形内角和定理,关键是掌握内错角相等,两直线平行.16.已知,如图,AB∥CD,AE平分∠BAC,CE平分∠ACD,求∠E的度数.考点:三角形内角和定理;平行线的性质.专题:计算题.分析:本题考查的是平行线的性质以及三角形内角和定理.解答:解:∵AB∥CD,AE平分∠BAC,CE平分∠ACD,又∠BAC+∠DCA=180°⇒∠CAE+∠ACE=(∠BAC+∠DCA)=90°,∠E=180°﹣(∠CAE+∠ACE)=90°,∴∠E=90°.点评:此类题解答的关键是求出∠CAE+∠ACE的度数,再求解即可.17.如图,AB∥CD,分别探讨下面四个图形中∠APC与∠PAB、∠PCD的关系,请你从所得到的关系中任选一个加以说明.(适当添加辅助线,其实并不难)考点:平行线的性质;三角形的外角性质.专题:开放型;探究型.分析:关键过转折点作出平行线,根据两直线平行,内错角相等,或结合三角形的外角性质求证即可.解答:解:如图:(1)∠APC=∠PAB+∠PCD;证明:过点P作PF∥AB,则AB∥CD∥PF,∴∠APC=∠PAB+∠PCD(两直线平行,内错角相等).(2)∠APC+∠PAB+∠PCD=360°;(3)∠APC=∠PAB﹣∠PCD;(4)∵AB∥CD,∴∠POB=∠PCD,∵∠POB是△AOP的外角,∴∠APC+∠PAB=∠POB,∴∠APC=∠POB﹣∠PAB,∴∠APC=∠PCD﹣∠PAB.点评:两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.18.△ABC中,AB=AC,△ABC周长为16cm,BD为中线,且将△ABC分成的两个小三角形周长的差为2cm.求△ABC各边的长.考点:三角形;二元一次方程组的应用.分析:首先画出图形,设AD=xcm,BC=ycm,根据将△ABC分成的两个小三角形周长的差为2cm可得此题要分两种情况:①AB+DA比BC+CD大2cm,②AB+DA比BC+CD小2cm,根据两种情况分别计算即可.解答:解:设AD=xcm,BC=ycm.∵BD为中线,AB=AC,∴DC=xcm,AB=2xcm.∴|3x﹣(x+y)|=2,∴|2x﹣y|=2,∴2x﹣y=2或2x﹣y=﹣2.又4x+y=16,∴6x=18,x=3,y=4或6x=14,.∴△ABC各边长分别是6,6,4或.点评:此题主要考查了三角形,关键是画出图形,分别分两种情况计算,不要漏解.19.如图,已知△ABC的高AD,角平分线AE,∠B=26°,∠ACD=56°,求∠AED的度数.考点:三角形的角平分线、中线和高.分析:由三角形的一个外角等于与它不相邻的两个内角和知,∠BAC=∠ACD﹣∠B,∠AEC=∠B+∠BAE,而AD平分∠BAC,故可求得∠AEC的度数.解答:解:∵∠B=26°,∠ACD=56°∴∠BAC=30°∵AE平分∠BAC∴∠BAE=15°∴∠AED=∠B+∠BAE=41°.点评:本题利用了三角形内角与外角的关系和角平分线的性质求解.20.已知三角形的三边互不相等,且有两边长分别为5和7,第三边长为正整数.(1)请写出一个三角形符合上述条件的第三边长.(2)若符合上述条件的三角形共有n个,求n的值.(3)试求出(2)中这n个三角形的周长为偶数的三角形所占的比例.考点:三角形三边关系.分析:(1)根据三角形三边关系求得第三边的取值范围,即可求解;(2)找到第三边的取值范围内的正整数的个数,即为所求;(3)用周长为偶数的三角形个数÷三角形的总个数,列式计算即可求解.解答:解:两边长分别为5和7,设第三边是a,则7﹣5<a<7+5,即2<a<12.(1)第三边长是3.(答案不唯一);(2)∵2<a<12,∴n=9;(3)周长为偶数的三角形个数是4,周长为偶数的三角形所占的比例为4:9.点评:考查了三角形三边关系定理:三角形两边之和大于第三边.在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.21.(2012•樊城区模拟)下面是有关三角形内外角平分线的探究,阅读后按要求作答:探究1:如图(1),在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现:∠BOC=90°+∠A (不要求证明).探究2:如图(2)中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BO C与∠A有怎样的数量关系?请说明理由.探究3:如图(3)中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的数量关系?(只写结论,不需证明).结论:∠BOC=90°﹣∠A.考点:三角形内角和定理;三角形的角平分线、中线和高.分析:(1)根据提供的信息,根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠1表示出∠2,再利用∠O与∠1表示出∠2,然后整理即可得到∠BOC与∠A的关系;(2)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠OBC与∠OCB,然后再根据三角形的内角和定理列式整理即可得解.解答:解:(1)探究2结论:∠BOC=∠A,理由如下:∵BO和CO分别是∠ABC和∠ACD的角平分线,∴∠1=∠ABC,∠2=∠ACD,又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠2=(∠A+∠ABC)=∠A+∠1,∵∠2是△BOC的一外角,∴∠BOC=∠2﹣∠1=∠A+∠1﹣∠1=∠A;(2)探究3:∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),∠BOC=180°﹣∠0BC﹣∠OCB,=180°﹣(∠A+∠ACB)﹣(∠A+∠ABC),=180°﹣∠A﹣(∠A+∠ABC+∠ACB),结论∠BOC=90°﹣∠A.点评:本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键,读懂题目提供的信息,然后利用提供信息的思路也很重要.22.如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.考点:三角形的角平分线、中线和高;三角形内角和定理.分析:根据AD是△ABC的角平分线,∠BAC=60°,得出∠BAD=30°,再利用CE是△ABC的高,∠BCE=40°,得出∠B的度数,进而得出∠ADB的度数.解答:解:∵AD是△ABC的角平分线,∠BAC=60°,∴∠DAC=∠BAD=30°,∵CE是△ABC的高,∠BCE=40°,∴∠B=50°,∴∠ADB=180°﹣∠B﹣∠BAD=180°﹣30°﹣50°=100°.点评:此题主要考查了角平分线的性质以及高线的性质和三角形内角和定理,根据已知得出∠B的度数是解题关键.23.如图,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F.(1)试说明∠BCD=∠ECD;(2)请找出图中所有与∠B相等的角(直接写出结果).考点:三角形的角平分线、中线和高;三角形内角和定理.分析:(1)根据直角三角形的两锐角互余求出∠BCD的度数,再利用三角形的内角和定理求出∠ACB,然后根据角平分线的定义求出∠BCE,从而可以求出∠ECD的度数,即可得解;(2)根据三角形的角度关系,找出度数是70°的角即可.解答:解:(1)∵∠B=70°,CD⊥AB于D,∴∠BCD=90°﹣70°=20°,在△ABC中,∵∠A=30°,∠B=70°,∴∠ACB=180°﹣30°﹣70°=80°,∵CE平分∠ACB,∴∠BCE=∠ACB=40°,∴∠ECD=∠BCE﹣∠BCD=40°﹣20°=20°,∴∠BCD=∠ECD;(2)∵CD⊥AB于D,DF⊥CE于F,∴∠CED=90°﹣∠ECD=90°﹣20°=70°,∠CDF=90°﹣∠ECD=90°﹣20°=70°,所以,与∠B相等的角有:∠CED和∠CDF.点评:本题主要考查了三角形的高线的定义,角平分线的定义,三角形的内角和定理,根据求出的角的度数相等得到相等关系是解题的关键.24.将一块直角三角板DEF放置在△ABC上,使得该三角板的两条直角边DE、DF恰好分别经过点B、C.(1)如图1,当∠A=45°时,∠ABC+∠ACB=135 度,∠DBC+∠DCB=90 度;(2)如图2,改变直角三角板DEF的位置,使该三角板的两条直角边DE、DF仍然分别经过点B、C,那么∠ABD+∠ACD的大小是否发生变化?若变化,请举例说明;若没有变化,请探究∠ABD+∠ACD与∠A的关系.考点:三角形内角和定理;三角形的外角性质.专题:计算题.分析:(1)根据三角形内角和定理∴∠ABC+∠ACB=180°﹣∠A=135°,∠DBC+∠DCB=180°﹣∠DBC=90°;(2)根据三角形内角和定义有90°+(∠ABD+∠ACD)+∠A=180°,则∠ABD+∠ACD=90°﹣∠A.解答:解:(1)在△ABC中,∵∠A=45°,∴∠ABC+∠ACB=180°﹣45°=135°,在△DBC中,∵∠DBC=90°,∴∠DBC+∠DCB=180°﹣90°=90°;(2)不变.理由如下:∵90°+(∠ABD+∠ACD)+∠A=180°,∴(∠ABD+∠ACD)+∠A=90°,∴∠ABD+∠ACD=90°﹣∠A.故答案135,90.点评:本题考查了三角形内角和定理:三角形内角和为180°.。
数学·华师大第四版·七年级(下)第九章多边形9.1.1 认识三角形(第一课时)新知识记1.三角形的概念中的“三条线段首尾顺次连结”的意思是 , 一线段的尾端点连另一线段的首端点 . 课前热身·前课之鉴右图是某小木屋的屋顶支架, 该2. 三角形的内角是三角形任意两边所夹的角图中的每个封闭图形都是三角形 , , 外角是一边与另一边的延长线所夹的角 . 请你在其中任意选出一个标上字母 ,3. 三角形的两种分类标准 : 表示出来它可以是: 它的顶点是,边是, 内角锐角三角形 : 每一个内角都是锐角 ;是, 外角有.按角分类直角三角形 : 有一个内角是直角 ;.钝角三角形 : 有一个内角是钝角 .课内过关·练习精选按边分类不等边三角形 : 三边互不相等{ 等腰三角形:至少两边相等1. 请你任意画一个锐角三角形、一个直角三角形和一个钝角三角形, 标上表.示顶点的字母 , 说出它的名称、各边、各角, 并画出它们的所有外角 : 一般等腰三角形 : 只有两边相等 ;等腰三角形 { 等边三角形:三边都相等.4.在研究图形的有关性质、关系时 , 观察、操作、想象、推理、交流等是常用的的学习方式 , “几何语言”、“图形语言” 、“符号语言”是几何学习常用的语言表达方式 .例题点拔例 1. 如图 , 判断下列说法是否正确?如果不正确 , 请改正 , 并说明理由 .A(1) 线段 AC,BD,AD组成△ AED,BF △ AED三边就是 AC,BD,AD; E DC(2)图中∠ AEB,∠BEC,∠ CED,∠ADF 都是△ AED 的外角 :(3)△AED中, 外角与外角相等 , 外角与内角互补 .锐角三角形直角三角形钝角三角形它的名称 : 它的名称 : 它的名称 :它的各边 : 它的各边 : 它的各边 :它的内角 : 它的内角 : 它的内角 :它的外角 :它的外角:它的外角:2. 小强用三根木棒组成的图形,其中符合三角形概念是()【点拔】运用三角形的有关概念进行判断.解 : (1) 不正确 . 线段 AC,BD,AD围成了△ AED,但这三条线段并不是首尾顺次连结的;(2) 不正确 . ∠AEB,∠CED是△ AED的外角 , ∠ BEC, ∠ADF 不是△ AED 的外角 , 因为三角形的外角由三角形的一边与另一边的延长线 ( 或反向延长线 ) 组成 , ∠ BEC的两边都是△ AED边的延长线 , ∠ADF的A B C D3. 指出图中等腰三角形、正三角形、H P RB锐角三角形、直角三角形、钝角三角形.F 等腰三角形 : M O K正三角形 :A C D E边 DF不是△ AED的边 ED的延长线 ;(3)不正确 . 三角形的同一顶点处的两个外角相...........等 , 每个外角和与它相邻的内角互补 . ........例 2. 下面说法正确的是 ( )A.三角形分为不等边三角形和等边三角形 ;B.等腰直角三角形既是等腰三角形又是直角三角形 ;C.因为等腰三角形是有两边相等的三角形 , 所以等边三角形不是等腰三角形 ;D.任何一个三角形中 , 不可能有两个内角都为直锐角三角形 :直角三角形 :钝角三角形:4.过 A、 B、 C、D、E 五个点中任意三点画三角形;( 1)其中以AB为一边可以画出个三角形;( 2)其中以C为顶点可以画出个三角形.5.画出下列三角形 :最大角为锐角最大角为直角的等腰三角形的等腰三角形第3题图EDCA B最大角为钝角的等腰三角形角或钝角 .【点拔】三角形分类中, 注意分类标准 , 并注意分类的本质 .数学·华师大第四版·七年级(下)第九章 多边形解:选 D.课外闯关·能力提升例 3. 下面的图形 ,图 n 中共有三角形多少个 ?观察下面的三角形,并把它们的标号填入相应图内:1.图 1图 2图 3图 4①③④【点拔】三角形的个数正好与底边上由点分割出 ②的线段数相同 .解 : 在上面的图形中 , 底边上的线段数分别为 :⑦图 1:1⑤⑥条锐角三角形直角三角形钝角三角形 等腰三角形图 2:1+2=3 条图 3:1+2+3=6 条;图 4:1+2+3+4=10 条n(n+1)条.∴ 图 n:1+2+3+ +n=2疑误剖析 1. 三角形是由三条首尾顺次连结而成的封闭平面图 1图 2图形 . 同样的三条线段 , 按图 1 连结而组成的就是 三角形 , 按图 2 拼搭而成的图形不是三角形 , 它们只是围成有一个三角形而也 .2. 三角形的外角的两边 , 一边是三角形的边 , 另一边是三角形边的延长线 . 注意认真领会例 1 中的第 (2) 问.方法导析清晰认识数学概念 , 正确理解图形的本质 , 才能更好的学好数学 .2. 图中被遮住的三角形的两个角是什么角 ?试着说明理由 . 讨论并与同伴交流 .(1)(2) (3)疑难思考·思维拓展如图所示 , 用火柴杆摆出一系列三角形图案 , 按这种方式摆下去 , 当摆到 20 层n=1 n=2 n=3 n=4(n=20) 时, 需要多少根火柴 ?9.1.1 认识三角形(第二课时)新知识记课前热身·前课之鉴1. 三角形的对边与对角 : 三角形中 , 一个内角所 1. 如图 , 以线段 AB 为一边 , 分别对的边 , 称为这个内角的对边 ; 一条边所对的内角 , 称为这条边的对角 .画一个锐角三角形 , 一个钝角三 ABABAB2. 三角形的中线 : 三角形的一个顶点和它对边中 角形和一个等腰直角三角形 .点的连线段 ;2. 按要求画图 :FM三角形的角平分线 : 三角形的内角的平分线与D对边交点 , 该交点与这个角的顶点之间的线段;CPQA BO EN三角形的高 : 过三角形顶点作对边的垂线, 垂足画线段 AB画∠ EOF 的过点 P 画 CD 过点 Q 画线段与顶点之间的线段的中点 M 平分线 OT的垂线 PKMN 的垂线 QS三角形的中线、角平分线和高都是线段 . 三角形 课内过关·练习精选 的三条中线、三条角平分线和三条高都分别相交1. 如图,画ABC 一边上的高,下列画法正确的是()于一点 .AA DA3. 学习图形知识 , 观察、操作、联想、推理等都DBC是重要的方法 . 会画图、勤画图是学习、研究图形DA问题最基本的要求 .BC C(B) B D BC(A)(C)(D)例题点拔2. 下列说法正确的是()数学·华师大第四版·七年级(下)第九章 多边形例 1. 如图 , △ABC 是钝角三角形 .A试分别画出它的中线 AM,角平分线 BE,高 AH.E【点拔】点 M 是顶点 A 对B MC HA. 三角形的中线就是过顶点平分对边的直线B. 三角形的角平分线就是三角形内角的平分线C. 任何三角形都有三条高D. 任何三角形的三条高必交于一点边的中点 ; 点 E 是∠ ABC 的平分线与它对边的交点 ; 3. 如图 ,AF 是△ ABC 的高 ,AD 是△ABC 的中线 ,AE 是△ ADC 的角平分线 , 填空:画高 AH,就是过点 A 画 BC 边的垂线 , 延长 BC 可画 ∵AF 是△ ABC 的高 , ∴∠=∠ =90 0;A解: 画图如上图 .A1例 2. 已知:BM 是 ABC 的 ∵AD 是△ ABC 的中线 , ∴==;2MBC中线 ,AB=5cm, BC=3cm,1D F EABM 与 BCM 周长差是多B C ∵AE 是△ ADC 的角平分线 , ∴∠= ∠ =2∠.第 3题图少 ? ABM 与 BCM 的面积H4. 如图 , (1)当=时, AD 是△ ABC 的中线 .有什么关系?【点拔】因为 BM 是中线 , 那么点 M 是边 AB 的中点 ,于是 AM=MC. ABM 的边 AM 上的高与BCM 的边 MC上的高相同 .解 : 画 ABC 的边 AC 上的高 BH.(2)当 =时, ED 是△ BEC 的角平分线 .(3)当 AD ⊥ BC 时, BD 是△的高,又是△的高 .AAE∵BM 是 ABC 的中线C ∴AM=MCBDCB∵Δ ABM 周长 =AB+BM+AM=5+BM+AM第 4 题图第5题图BCM 周长 =BC+BM+MC=3+BM+MC 5. 如图 , 在△ ABC 中, 分别画出中线 AD 、角平分线 BE 、高 CF.∴Δ ABM 与 BCM 周长之差是 2cm.6. △ABC 的高为 AD,角平分线为 AE, 中线为 AF,则把△ ABC 面积分成相等的两∵Δ ABM 的边 AM 上的高与 BCM 的边 MC 上的高 .都是 BH,则 S ABM =1A M · BH,S BCM =1MC ·BH部分的线段是 课外闯关·能力提升22∴Δ ABM 与 BCM 的面积相等 .1. 如图:( 1)AC 是哪些三角形的边 ?( 2)若 AB ⊥CD,垂足为 D, 则 CD 是哪些 例 3. 在下图 (1) 中 ,a 、 b 为已修好的两条平直铁 三角形的高 ?( 3)若 E 是 BC 中点 , 则 AE 是哪个三角形的中线 ?路 , 铁路前方是未开辟的小山丘. 现在要经过工厂P 增筑一条平直铁路, 使在开辟山丘后 , 能与 a 、b两铁路相会于同一点( 车站 ). 请你画图确定这条铁路的位置 .解: (1)AC 是△ BAC,△ EAC,△DAC,△ FAC 的公共边 ; A(2)CD可以是△ BAC, △ADC,△BDC,△FAC 的高 ;DF(3)AE 是△ ABC 的中线 .BECaD Aa2. 画一个三角形的三条高, 发现这三条高所在的直线正好相交于一点 , 且这个交点在这个三角形的外部, 则这个三角形是 ( )小 Q pE A. 锐角三角形 B. 直角三角形C. 钝角三角形D. 等腰三角形Q 山 P丘 bb图(1)CB3. 有一块三角形的优良品种试验田 , 现引进四个良种进行对比实验, 将这块图(2)土地分成面积相等的四块, 请你定出两种以上的划分方案, 画图说明 .【点拔】设 a,b 交于小山丘后的点 Q,点 P 到点 Q不可见 . 可利用三角形的三条高交于一点构造一 个三角形 .解 : 过点 P 画直线 a 的垂线 , 和 a 、b 分别交于 D 、 B; 同样过 P 画直线 b 的垂线 , 和 a 、b 分别交于 A 、C. 连结 AB,过 P 画 AB 的垂线 PE, 则 PE 经过点 Q.疑误剖析1. 三角形的中线、角平分线和高都是线段 , 三中线和三角平分线的交点都在三角形内部 ; 但三高交点与三角形的位置和三角形的形状有关 .疑难思考·思维拓展如图一 , 平地上一段公路在 BC 段是急弯 , 点P 处是一家工厂 , 点 M 处( 刚好是 AB 、 DC 延长线的交点 ) 是该工厂的原料场 . 由于 BC 段交通ADCBM图一P- 3 -数学·华师大第四版·七年级(下)第九章多边形2. 三角形的高 , 它的一个端点是三角形的顶点 , 事故频发 , 交通部门决定将此处改弯取直. 如果要求工厂经原料场到取直公路另一端点是过该顶点向对边所画的垂线的垂足.最近 , 应怎样设计取直公路 ?请画图说明 . D 方法导析F解: 如图二 , 过点 P画 AB的垂线 , 交 CD于 F; 再画三角形的“三线”时 , 注意依据它们的概念来 C画 , 不能“想当然”的画图 . 尤其是在画钝角三角过点 P 画 CD的垂线 , 交 AB于点 E. 连结 EF,则 EF B形的高时 , 更要注意这一点 . 就是满足要求的取直公路 . AEMP图二9.1.2 三角形的外角和(一课时)新知识记1.三角形的内角和等于 180° .2.三角形的外角性质 :(1) 三角形的一个外角等于与它不相邻的两个内.....角的和 ;(2) 三角形的一个外角大于任何一个与它..不相邻的内角 ....3.三角形的外角和 : 在三角形的每个顶点处取一个外角 , 这三个外角的和称为三角形的外角和. 三角形的外角和等于360°.4.图形的割补、拼接等是常用的研究图形问题的方法 .例题点拔例 1. 利用平行线的有关知识说明 :(1) 三角形的外角的性质 1;(2) 三角形的外角和等于 360° .【点拔】平行线有个重要性质是“转移角”: 两直线平行 , 同位角相等 , 内错角相等 . 课前热身·前课之鉴1. 如图, D、E 分别是△ ABC 边 AB、AC的中点,则下列说法不正确的是(D)A( A) DE是△ABE的中线D E( B) BE 是△ABC的中线( C) AD=BD,AE=CE B 第1题图 C第 2 题图(D) DE是△ABC的中线2.如图 , 在△ABC中, ∠BAC=90°, 则 AB边上的高是 AC ,AC边上的高是 AB ,BC 边上的高是 AD .3. 如图 ,D 为△ABC 的边 BC 上的任一点 ( 不与 B、 C 重第 3题图1合 ),AE 、AF 分别是△ ABD 与△ACD的角平分线 . 试说明∠ EAF=2∠BAC.∵AE 是△ABD的角平分线 ,AF 是△ACD的角平分线(已知)1 1∴∠ BAE=∠ EAD=2∠ BAD , ∠DAF=∠ FAC=2∠ DAC( 角平分线的性质 )解 :(1) 如图 , ∠ ACD是△ ABC的 A外角 , ∠A, ∠B 是与它不相邻的两内角 . 现过点 C 画CE∥AB,则 B C ∠ACE=∠A( 两直线平行 , 内错角相等 )∠E CD=∠ B(两直线平行 , 同位角相等 )E ∵∠ ACD=∠ACE+∠ECD111 1∴∠EAF=∠ EAD+∠ DAF=2∠BAD+2∠DAC=2( ∠ BAD+∠ DAC)=2∠BACE课内过关·练习精选D1. 若三角形的外角中有一个是锐角, 则这个三角形是钝角三角形.三角形的三个不同顶点的外角中, 至多能有1个是锐角.2.△ABC 中,若∠C- ∠B=∠A,则△ ABC 的外角中最小的角是直角(填“锐∴∠ ACD=∠A+∠B. 2A D角”、“直角”或“钝角”).(2) 如图 ,∠1,∠2,∠3是 B3 △ABC外角 , 过点 A 画 AD∥BC,则有1 3. 如图 ,x= 60.C A∠ 1=∠DAE,∠3=∠ BAD(两直线平行 , 同位角相等 )x o∵∠ DAE+∠2+∠BAD=360° ,A( x+20) o ( x+80) o∴∠ 1+∠2+∠ 3=360°F E B EC 例 2. 如图 , 求∠ A+∠B+∠C+∠D 第 3题图D 第4题图第5题图+∠E 等于多少度 ? B O4. 如图, △ABC 中, 点 D在 BC的延长线上 , 点 F 是 AB 边上一点 , 延长 CA到 E,C【点拔】利用三角形的外角性质1, 将五个角转移连 EF, 则∠1, ∠2, ∠3的大小关系是∠1>∠2>∠3 .到同一个三角形中来.解 : 延长线段 CD,交 AB于点 F, 则∠BOD是△ DOE的外角 , ∠BFO是∠ ACF的外角5.如图 , 在△ABC中,AE 是角平分线 , 且∠B=52°, ∠C=78°, 求∠AEB 的度数.解: 在△ABC中, ∠B=52°, ∠C=78°, 则数学·华师大第四版·七年级(下)第九章 多边形∴∠ BOD=∠ODE+∠E,∠BFO=∠A+∠C∠BAC=180° - ( ∠B+∠C)( 三角形的内角和是 180°)=50°∴∠ A+∠B+∠C+∠ODE+∠E=∠B+∠BFO+∠BOD1在△ BOF 中,∵AE 是角平分线 , ∴∠EAC=2∠BAC=25°∵∠ B+∠BFO+∠BOD=180°∵∠AEB 是△EAC 的外角 , ∴∠AEB=∠EAC+∠C=103°.∴∠ A+∠B+∠C+∠ODE+∠E=180°例 3. 如图 , 在△ ABC 中, 点 P 是角平分线的交点 .(1) 若点 P 是两内角平分线的交点 ( 如图① ), 则∠ P与∠ A 是什么数量关系 ?为什么 ?(2) 若点 P 是一内角和一不相邻外角平分线的交点( 如图② ), 则∠ P 与∠ A 是什么数量关系 ?为什么 ?6. 如图 , 在△ABC 中, ∠A=60°,BD 、 CE 分别是 AC 、AB 上的高 ,H 是 BD 、?CE 的交点 , 求∠BHC 的度数.解: ∵BD 、 CE 是△ABC 的高, ∴∠ADB=∠BEC=90°第6题图∴∠ABD=90° - ∠A=30°.(3) 若点 P 是两外角平分线的交点 ( 如图③ ), 则∠ P与∠ A 是什么数量关系 ?为什么 ? AAPAPBCBC BC D EF 图①图② 图③∵∠BHC 是△BHE 的外角 ,∴∠BHC=∠ABD+∠BEH=30°+90°=120°.课外闯关·能力提升1. 如图 , 在△ABC 中, ∠B=∠C,∠ADE=∠AED,∠BAD=60°, 求∠EDC 的度数.解: 设∠EDC 的度数为 x °, 则【点拔】充分运用角平分线的概念P∵∠ADC 、∠AED 分别是△ ABD 、△EDC 的外角 ,, 结合三角形的外角性质、三角形的内角和与外角和进 ∴∠ADC=∠B+∠BAD=∠B+60 0,行分析 .∠AED=∠EDC+∠C= x °+∠C第1题图解 :(1) ∠P=90O+0.5 ∠A.∵ BP,CP 分别平分∠ ABC,∠ ACB∵∠ADC=∠ADE+∠EDC=∠ADE+ x °, 且∠B=∠C,∠ADE=∠AED∴∠ PBC=0.5∠ ABC,∠PCB=0.5∠ACB,∴∠C+600 =( x °+∠C)+ x °, 解得 x =30°OO∴∠EDC 的度数为 30° .∵∠ ABC+∠ACB+∠ A=180( 三角形内角和是 180 )∠ PBC+∠PCB+∠P=180O ( 同上),2. 一个零件的形状如图 , 按规定∠A 应等于 900, ∠B , ∠D 应分别是 30°和O∴∠ ABC+∠ACB=180- ∠ A,O20°, 李叔叔量得∠ BCD=142°, 就断定这个零件不合格, 你能说出道理吗?∴∠ P=180-( ∠PBC+∠PCB)=180O -0.5( ∠ABC+∠ACB)解 : 延长 BC,交 AD 于点 E.=180O -0.5(180 O - ∠A)=∠P=90O +0.5 ∠A∵∠ DEC 是△ ABE 的外角 , 且∠A =900, ∠B =300,(2) ∠ P=0.5∠A .∴∠ DEC=∠A+∠B=900+300=1200E类似 (1) 有∠ PBC=0.5∠ABC,∠PCD=0.5∠ACD,∵∠ ACD,∠PCD 分别是△ ABC,△PBC 的外角又 ∵∠BCD 是△ CDE 的外角 , 且∠ D=20°∴∠ ACD=∠A+∠ABC,∠ PCD=∠PBC+∠P(三角形的∴∠BCD=∠D+∠DEC=20° +1200=140°第2题图一个外角等于与它不相邻的内角的和 )也就是说 , 如果零件是合格的 , 则∠BCD 的度数应为 140° . 现李叔叔量得∴∠ P=∠PCD-∠PBC=0.5∠ACD-0.5∠ ABC∠BCD=142° , 所以这个零件不合格 .=0.5( ∠ACD-∠ABC)=0.5∠A. O(3) ∠ P=90-0.5 ∠A .同理 , 有∠ PBC=0.5∠EBC,∠ PCB=0.5∠FCB,∵∠ EBC,∠FCB 是△的外角 ,∴∠ EBC=∠A+∠ACB,∠FCB=∠A+∠ABCOO∵∠ A+∠ABC+∠ACB=180, ∠ P+∠PBC+∠PCB=1803. 如图 , 求出∠ A+∠B+∠C+∠D+∠E+∠F 的度数.解 : ∵∠ AQO,∠OPB,∠ DOQ 分别是△ AQF,△ BCP,△ODE的外角第3题图∴∠ AQO=∠ A+∠ F, ∠ OPB=∠B+∠C, ∠DOQ=∠ D+∠ E∴∠ PBC+∠PCB=0.5(∠EBC+∠FCB)=0.5( ∠A+∠ACB+∠ ABC+∠A)=0.5(180 O +∠A)O=90 +0.5 ∠AOOO∴∠ P=180-( ∠ PBC+∠PCB)=180-(90 +0.5 ∠A) =90O-0.5 ∠ A .∵∠ AQO,∠ OPB,∠DOQ 是△ OPQ 的不相邻的外角 ,∴∠ AQO+∠ OPB+∠DOQ=360°, 即∠A+∠B+∠C+∠D+∠E+∠F =360°.疑难思考·思维拓展如图 , 在绿茵场上 , 足球队员带球进攻 , 总是向球门 AB冲近 . 说明这是为什么?疑误剖析数学·华师大第四版·七年级(下)第九章多边形运用三角形的外角性质时, 一定要找准外角是哪解: 如图 , 设球员接球时位于点C,他尽力向球门冲近个三角形的外角 , 不能张冠李戴 . 同时在说理时 ,到 D,此时不仅距离球门近, 射门更有力 , 而且对球门 AB的张角也扩大 , 球就更要做到步步有据 .方法导析三角形的内角和、外角的性质及外角和反映了三角形的内外角之间的联系与制约 , 我们可以用它来求三角形的内角或外角 . 解题时有时还需添加辅助线 , 或结合代数 , 用方程来解比较方便. 容易射中 . 理由说明如下:延长 CD交 AB于 E, 则∠ ADE>∠ACE,∠BDE>∠ BCE, ∴∠ ADE+∠ BDE>∠ACE+∠ BCE,即∠ ADB>∠ ACB.9.1.3 三角形的三边关系(一课时)新知识记1.以已知的三条线段为边画三角形 :(1)以最长的线段画底边 ;(2) 分别以底边的两个端点为圆心 , 另两较短的线段为半径画弧 ;(3) 两弧若有交点, 则这个交点就是三角形的第三个顶点 , 否则三角形不存在 .2.三角形的三边关系是 : 三角形任意两边之和大.......于第三边 , 任意两之差小于第三边 .........应用这个性质判别三条线段能否组成三角形的方法 : 若较短两条线段的和大于最长的线段, 则能组成三角形 ; 否则不能 .3.三角形的稳定性 : 指三角形的三边一经固定 ,它的形状、大小就确定了.例题点拔例 1. 有三条线段 , 它们的长分别为2x+3,5,7.如果用这三条线段能组成三角形, 求 x 的取值范围 .【点拔】根据“三角形任意两边之和大于第三边,任意两之差小于第三边”转化成不等式来解决.解:根据题意 , 可得7-5<2x+3<7+5 解得 :-0.5<x<4.5;∴当 -0.5<x<4.5时,已知的三条线段能组成三角形 .例2. 已知等腰三角形的周长24cm,一腰上的中线将它的周长分为 5∶3 两部分 , 求三角形三边的长 .【点拔】运用方程组模型解决. 注A意讨论三角形的存在性.D解 : 如图 , △ABC中 ,AB=AC,BD是x腰 AC边上的中线 , 设 AD=DC=cm B C则 AB=AC=2x cm, 再设 BC=y cm根据题意 , 得①{ 3x:4x+y=24(x+y)=5:3 或②{ 3x:4x+y=24(x+y)=3:5x=5 x=3解方程组① , 得{y=4 , 解方程组① , 得{y=12讨论 :(1) 当 x=5,y=4 时,AB=AC=2x=10cm,BC=4cm,此时三角形存在 , 三边长分别为10cm, 10cm,4cm. 课前热身·前课之鉴1.若一个三角形的一个外角小于与它相邻的内角, 则这个三角形是 ( C )A. 直角三角形B.锐角三角形C.钝角三角形D.无法确定2.已知三角形的三个外角的度数比为2:3:4, 则它的最大内角的度数为 ( C )A.90°B.110 °C.100 °D.120 ° A3. 如图 , ∠A=50°, ∠ B=40°, ∠ C=30°, 则∠ BDC=120 ° .D4. 如图 , 在△ ABC中 ,D 是 BC边上一点 , ∠ 1=∠ 2, ∠ 3=∠ 4, B C第 3题图∠ BAC=63, 求∠ DAC的度数 . A0 0 0解: 设∠ DAC的度数为x , 则∠ 1=∠ BAC-∠DAC=63- x .1∵∠ 3 是△ ABD的外角 , ∴∠ 3=∠1+∠22 3 4∵∠ 1=∠2, ∠3=∠4, ∴∠ 3=∠4=2∠1=2(63- x) 0;B D C第4题图在△ ACD中, ∠DAC+∠ 3+∠ 4=180 0 , 于是有x + 2(63- x) + 2(63- x) =180 0 ;解这个方程 , 得x=24° . 即∠ DAC的度数为 240 . Al 5. 如图 , 直线 l 表示一街道 , 点 AB 表示两个居民区 . 某人想B在街上开一家桶装纯水点P 向两居民区送水. 如果要使送水第5题图距离最短 , 请用图示开店位置.课内过关·练习精选1.有四组线段① 15cm,10cm,7cm; ② 4cm,5cm,10cm; ③3cm,8cm,5cm; ④ 4cm,5cm,6cm. 其中能组成三角形的有 ( )A.1 组B.2组C.3组D.4组2.有长分别为 37cn,12cm,15cm,22cm, 46cm 的五根木条 , 从中任选三根能钉成标准三角架的组合有 ( )A.3 组B.4组C.5组D.6组3.以下列三线段为边,不能构成三角形的是:A. a+1,a+2,a+3(a>0)B.三线段之比为1∶3∶4C.三线段比为3∶4∶5D. 4a,7a,3a+1(a>1)4.三线段a,b,c满足a>b>c,若能构成一个三角形, 则只需满足条件()数学·华师大第四版·七年级(下)第九章多边形(2) 当 x=3,y=12 时,AB=AC=2x=6cm,BC=12cm, A.a+b > c B.b+c >a C.c+a >b D.b+c ≠ a 因为 AB+AC=BC,所以此时三角形不存在 .5. 设三角形三边长分别为3,8,1-2a. 则 a 的取值范围为()10cm,10cm,4cm.∴三角形三边的长分别为A.-6<a<-3B.-5<a<-2C.-2<a<5D.a<-5 或 a>2 例 3. 三角形三边为整数 , 周长为 180cm,且最短边1 6. 点 D是等腰△ ABC底边 BC上的一点 ,BC=10, 且△ ADC的周长比△ ADB的周长为最长边的4,求三角形的三边的长 . 多 6, 则 BD∶DC为( )【点拔】可设三边中最短边为x cm, 则最长边为A.1 ∶4B.1 ∶ 3C.1 ∶2D.1 ∶14x cm, 另一边为 y cm, 此时可得不等式 x≤y ≤4x,7. 三角形两边长是3cm 和 4cm,则第三边长 x 的取值范围 1cm<x<7cm. 若 x 是再利用三角形三边不等关系及已知条件(周长奇数 , 则 x= 3 或 5 , 这样的三角形有 2 个.180cm,边为正整数)求出x 或 y 的范围 , 进而求三8. 等腰三角形的有两边长5cm,7cm, 则这个三角形的周长是17 或 19 cm. 边的长 . 9. 在△ ABC中 ,AB=AC,AC上的中线 BD把三角形的周长分为21cm和 12cm两部解 : 设最短边为 xcm, 则最长边为 4xcm,第三边为 ycm,则分 . 求三角形各边长 .x+y+4x=180① 1x+y>4x ②解:设 AB=xcm, 则 AD=DC=xcm.x ≤y ≤4x ③ 2分别由①② , 得 y=180-5x ④,y>3x ⑤ ; 由③④ 1⑤得 ,3x<180-5x ≤ 4x, 解得 20 ≤x<22.5 ( 1)若 AB+ AD=21cm,即 x+2x=21, 解得 x=14,第3题图∵三角形的边长都是整数 , ∴ x=20,21,22 即 AB=AC=14cm,∴ DC= 7cm.于是 BC=12-7=5cmx=20 x=21 x=22此时 AB+AC>BC,可构成三角形即{ y=80, { y=75, { y=701∴所有合条件三角形三边为( 2)若 AB+ AD=12cm,即 x+2x=12, 解得 x=8. 即 AB=AC=8cm,从而 DC=4cm. (20,80,80)(21,75,84)(22,70,88)例 4. 如图 ,P 是△ ABC内任一点 . 试比较 PB+PC与AB+AC的大小 , 并说明理由 .【点拔】三角形三边的关系有时可直接运用, 有时则需要添加辅助线, 创造条件才能运用.APDB C解 : PB+PC<AB+AC延.长 BP,交 AC于点 D.则在△ ABD中 ,BD<AB+DA,而 BD=PB+PD,∴PB+PD<AB+AD①在△ PDC中 ,PC<PD+DC②由① +② , 得 PB+PD+PC<AB+AD+PD+DC, 即 PB+PC<AB+AC.疑误剖析“三角形任何两边的和大于第三边,任意两边之差小于第三边”, 注意其中的“任何”两宇, 如三角形的三边分别为a、b、c, 则 a+b>c,a+c>b,b+c>a 都成立才可以, 但如果确定了最长的一条线段, 只要其余两条线段之和大于最长的一条, 它们必定可以构成三角角形. 如果已有两条线段, 要确定第三条应该是什么样的长度才能使它们构成三角形 ? 第三边的取值范围是大于这两边的差而小于这两边的和 .于是 BC=21-4=17 cm.∵AB+AC<BC,∴此时不能构成三角形.综上所述 , 所求三角形的边长分别为14cm,14cm 和 5cm.课外闯关·能力提升1.已知三角形的周长为 P, 且一边长是另一边长的 2 倍. 求最短边的范围 . 解:由已知可设三边的长分别为 x,2x,y. 则x+2x+y=P①, 由②得 ,x<y<3x ③2x-x<y<x+2x ②∴最短边的长为 x. 由①得 y=P-3x ④, 将④代入③ , 得 x<P-3x<3x.1 1 1 1解得6P<x<4P, 即最短边范围在6P~4P之间. AD2. 已知 : 如图 , △ABC的周长为L, P 是△ ABC内任BPC1意一点 . 试说明 :2L<PA+PB+PC<L解 : 延长 BP 交 AC于 D 点. 则在△ ABD中 , 有 BP+PD<AB+AD. 在△ PDC中, 有PC<PD+ DC.两式相加得 BP+ PC<AB+ AC. 同理 ,PA+ PC<AB+ BC,PA+ PB<BC+CA.把三式相加后除以 2, 得 PA+PB+PC <AB+BC+CA,即 PA+PB+PC <L.在△ PAB中,PA +PB>AB;在△ PBC中,PB +PC>BC;在△ PAC中,PA +PC>CA.三式1 1相加后除以 2, 得 PA+ PB+ PC> (AB+ BC+ CA), 即 PA+PB+PC> L.2 21综上所述:2L<PA+PB+PC<L.疑难思考·思维拓展如图 ,B,C 是线段 AD上两点 , 且 AB=x,AC=y,AD=z. 若 AB绕 B 点旋转 ,CD 点旋转 , 直至 A、D 两点正好重合于点E, 形成一个三角形为止. 那么下面三个不等式数学·华师大第四版·七年级(下)第九章多边形方法导析中哪些必须成立 ?说明你的结论 . E三角形的三边关系和等腰三角形的有关概念常z z z密切相关 , 尤其是周长、腰底关系等知识 , 结合数①x<2 ② y<2 ③ y<x+2 A B CD 形结合思想, 利用三边的关系列不等式进行代数解: ①③必须成立 . 由已知 , 有 AB=BE=x,BC=y-x,式化简 , 即采用代数的方法解决几何问题( 如通过方程及不等式解题), 包括计算及简单的证明. CD=CE=z-y.在△ BCE中 , ∵BE+BC>CE,BC+CE> BE,CE+BE>BC, ∴x+(y-x)>z-y,(y-x)+(z-y)>x,(z-y)+x>y-xz z z分别化简 , 得 y>2, x< 2, y<x+ 2. ∴①③必须成立.9.2 多边形的内角和与外角和(一课时)新知识记1.多边形 ( n 边形 ): 由 n 条不在同一直线上的线段首尾顺次连结组成的平面图形. 多边形的顶点、......边、内角、外角的概念与三角形一样.2.正多边形 ( 正 n 边形 ): 各边都相等 , 各个角也相等的多边形 .3.n 边形的对角线 : 不相邻顶点之间的连线段 . 从n 边形的一个顶点出发, 可引( n-3) 条对角线 , n 边形共有n( n-3)条对角线 .24.n 边形的内角和等于 ( n-2) ×180° .5.n 边形的外角和 : n 边形共有 2n 个外角 , 在它的每个顶点处只取一个外角, 这些外角的和称为n 边形的外角和 . n 边形外角和等于 360° . 多边形的外角和与它的边数无关.例题点拔例 1. 利用下面的图形 , 分别说明 n 边形的内角和是多少 ?图① A6 A5 图② A6 A5A 4 A 4A n A nA 3 A 3A 1 A2 A1 o A2图③A5 图④A5A 6 A6A 4 o A 4A n A no A3 A 3A 1 A2 A1 A2【点拔】三角形的内角和是基础. 图形分割后 , 弄清多边形的内角和与三角形的各角的关系.解: 图① , 过顶点 A1连对角线 , 可连出 ( n-3) 条对角线 , 将 n 边形分割成 ( n-2) 个三角形 , 这些三角形的内角组成了n 边形的内角 , 所以 n 边形的内角和=( n-2) ×180° ;图②, 在边A1A2上任取一点O,将点 O 与3 4, , A n 连结,可连出( n-2)条线段,正好将nA ,A 课前热身·前课之鉴1. 以下列各组线段长为边, 能组成三角形的是( B )A.1cm,2cm,4cmB.8cm,6cm,4cmC.12cm,5cm,6cm D .2cm,3cm,6cm2.在活动课上 , 小红已有两根长为 4cm、8cm 的小木棒 , 现打算拼一个等腰三角形 , 则小红应取的第三根小木棒长是8 _cm.3. 用 12 根火柴棒(等长)拼成一个三角形, 火柴棒不允许剩余、重叠和折断, 则能摆出不同的三角形的个数是(C)A.1B.2C.3D.44. 已知三角形有两边上的高分别为 4 和 6, 求第三边上的高的取值范围.解 : 设高为 4 和 6 的对应的边为a、b, 第三边为 c, 这边上对应的高为h. 则11111 2S=2×4a=2×6b=2ch, 由此可得 a=2S,b= 3S,c= h S. 由三角形的三边关系得,11 2 1 12S- 3S< h S<2S+ 3S, 得 2.4<h<12, 即第三边上的高的取值范围是 2.4<h<12. 课内过关·练习精选1. 从七边形的一个顶点可引4条对角线,七边形共有14条对角线.2. 一台机器人在平地上从一个多边形的一个顶点出发, 沿着多边形走一圈后回到出发点 . 在此过程中 , 机器人共转过了360度.3.填写下表 :多边形的边数 n 4 8 17 14 6从一顶点引出1 5 14 11 3的对角线数对角线总数 2 20 119 77 9 内角和360°1080°2700°2160°720°外角和360°360°360°360°360°4. 正五边形的每个内角是108 度 , 每个外角是72 度.5.一个正多边形 , 它的每个内角都是 150° , 则它是 12 边形 .6. 在四边形 ABCD中 , 如果∠ A:∠B:∠C:∠D=1:2:3:4, 则∠D= 144 ° .7. 下列数据中 , 可以是某一个多边形的内角和的是( C )数学·华师大第四版·七年级(下)第九章多边形边形分割成 ( n-2) 个三角形 , 这些三角形的内角组 A. 240 ° B. 600 ° C. 1980 ° D.2180 °成 n 边形的内角 , 所以 n 边形的内角和 =( n-2) ×8. 甲、乙、丙、丁四名同学在讨论数学问题时作了如下发言: 甲: 因为三角形180° ;图③ , 在 n边形内部任取一点O,将它与各个顶点连结起来 , 可将 n 边形分割成n 个三角形 , 这些三角形除顶点在点O 处的内角外 , 其它内角组成n 边形的内角 , 而顶点在点 O处的内角刚好组成一个周角 , 所以 n 边形的内角和 =n× 180°-360° =( n-2) ×180°;图④ , 在 n 边形外取点 O,使点 O与 n 边形的任何中最多有一个钝角, 因此三角形的外角之中最多只有一个锐角;; 乙:在求 n 个1角都相等的n 边形一个内角的度数时, 可用结论 : 180°-n×360°;丙:多边形的内角和总比外角和大; 丁: n 边形的边数每增加一条, 内角和增加180°, 对角线增加n 条 . 四位同学的说法正确的是(C).A. 甲、丙B. 乙、丁C.甲、乙D. 乙、丙两个顶点都不在同一直线上, 则点 O 与 n 边形的 n 个顶点组成一个(n+1)边形 .按图①分割法,可知它00的内角和为 [( n+1)-2] × 180 =( n- 1) × 180 , 此时 n边形的内角和就是这个(n+1)边形的内角和减去一个三角形的内角和,即( n- 1) × 1800 -180 0=( n- 1) ×180 .例 2. 一个凸多边形 , 除了一个内角外 , 其余各内角的和为 2750° . 求这个多边形的边数及这个内角的度数 .【点拔】多边形的边数是不小于 2 的正整数 , 多边形的每个内角大于0 0 0 且小于 180 .解: 设这个多边形的边数为n, 这个内角为α , 则00(n-2)×180=2750+α① ,且0 <α<180② .由① , 得α =180n-3110, 将它代入② , 得5 50<180n-3110<180, 解得:17 18<n<1818.因为 n 是正整数 , 所以 n=18.当 n=18 时 , α=180×18-3110=130 0.即这是个 18 边形, 这个内角为 130°.例 3. 在一个多边形的内角中 , 最多能有几个是锐角 ?为什么 ?【点拔】从内角考虑, 无法入手 . 根据外角和是一定值 360°, 从外角分情况分析要简便得多.解: 一个多边形的内角中, 最多能有 3 个是锐角 . 假设一个多边形有 4 个或 4 个以上的内角是锐角,9.已知一个多边形每一个内角都等于 150° , 则从这个多边形的一个顶点发出的对角线有( C )A.7 条B.8 条C.9 条D.10 条10. 若一个正n 边形的每个外角都不大于40°, 则满足这个条件的多边形中,边数最少为( C ).A. 七边形B. 八边形C.九边形D.十边形11.有两个正多边形 , 它们的边数的比是 1:2, 内角和之比为 3:8, 则这两个多边形的边数之和为(B).A. 12B. 15C. 18D. 2112.已知一个多边形各个内角都相等, 且每个内角与外角之差的绝对值都为60°. 求此多边形的边数.解:设这个多边形的边数为n. 由于多边形的每个内角相等, 所以它的每个外360360角也相等 , 都为n 度.于是,每个内角为(180-n)度.根据题意,得360360|(180-n)-n |=60, 解得:n=3或6.即这个多边形的边数为3或6.13. 已知一个多边形的内角和与它的一个外角之和是2400 度, 求这个多边形的边数 .解: 设这个外角为α度 , 则 0<α <180, 根据题意得: (n-2) × 180=2400- α,即α =2400-(n-2) × 180, 将它代入 0<α<180 得, 0<2400-(n-2) ×180<180.1 1解得: 143 <n<153 . 因为 n 为整数 , 所以 n=15, 即这个多边形是15 边形.那么与这些锐角相邻的外角一定都是钝角,这样它们的和大于 360° , 那么这个多边形的外角和就课外闯关·能力提升一定大于 360° , 这不符合多边形外角和等于如图 , 求图中∠ A+∠ B+∠ C+∠ D+∠ E+∠ F+∠ G+∠ H+∠ M+∠ N 的度数360°. 因此 , 多边形的内角中 , 锐角的个数不能多之和 .N MA H于 3个.解: 根据三角形的外角性质 1, ∠ A+∠ B, ∠C+∠ D B G 疑误剖析∠ E+∠ F, ∠G+∠ H, ∠M+∠ N正好是中间五边形的外 C F 1.n 边形从一个顶点引出对角线 (n-3) 条 , 对角线 D E总共n( n-3)条. 同时 n 边形被分割成 (n-2) 个三角角 , 这些角的和正是这个五边形的外角和, 所以所求角的和为360° .2 疑难思考·思维拓展形 , 内角和是 (n-2) ×180°. 外角和是 360°, 与多一块多边形木板 , 如果将它的一个角截去,边形的边数无关 .那么截去该角后的多边形与原多边形比图①图③图③。