信号的采样和恢复
- 格式:doc
- 大小:6.55 MB
- 文档页数:8
信号的采样与恢复实验一、任务与目的1. 熟悉信号的采样与恢复的过程。
2. 学习和掌握采样定理。
3. 了解采样频率对信号恢复的影响。
二、原理(条件)PC机一台,TD-SAS系列教学实验系统一套。
1. 采样定理采样定理论述了在一定条件下,一个连续时间信号完全可以用该信号在等时间间隔上的瞬时值表示。
这些值包含了该连续信号全部信息,利用这些值可以恢复原信号。
采样定理是连续时间信号与离散时间信号之间的桥梁。
采样定理:对于一个具有有限频谱,且最高频率为ωmax的连续信号进行采样,当采样频率ωs满足ωs>=ωmax时,采样信号能够无失真地恢复出原信号。
三角波信号的采样如图4-1-1所示。
图4-1-1信号的采样2. 采样信号的频谱连续周期信号经过周期矩形脉冲抽样后,抽样信号的频谱为它包含了原信号频谱以及重复周期为的原信号频谱的搬移,且幅度按规律变化。
所以抽样信号的频谱便是原信号频谱的周期性拓延。
某频带有限信号被采样前后频谱如图4-1-2。
图4-1-2 限带信号采样前后频谱从图中可以看出,当ωs ≥2Bf 时拓延的频谱不会与原信号的频谱发生重叠。
这样只需要利用截止频率适当的滤波器便可以恢复出原信号。
3. 采样信号的恢复将采样信号恢复成原信号,可以用低通滤波器。
低通滤波器的截止频率f c 应当满足f max ≤f c ≤f x -f max 。
实验中采用的低通滤波器原理图如图4-1-3所示,其截止频率固定为1802f Hz RCπ=≈图4-1-3 滤波器电路4. 单元构成本实验电路由脉冲采样电路和滤波器两个部分构成,滤波器部分不再赘述。
其中的采样保持部分电路由一片CD4052完成。
此电路由两个输入端,其中IN1端输入被采样信号,Pu 端输入采样脉冲,经过采样后的信号如图4-1-1所示。
三、内容与步骤本实验在脉冲采样与恢复单元完成。
1. 信号的采样(1)使信号发生器第一路输出幅值3V、频率10Hz的三角波信号;第二路输出幅值5V,频率100Hz、占空比50%的脉冲信号。
信号恢复原理
信号恢复原理是指通过对失真、噪声或其他干扰进行补偿和处理,使原始信号恢复到其原始状态或接近原始状态的过程。
在信号传输过程中,由于各种因素的影响,信号会发生失真、衰减、干扰等问题,导致信号质量下降。
为了解决这些问题,信号恢复原理被应用于信号处理和通信领域。
信号恢复原理主要依靠数学和工程技术手段进行实现。
在信号恢复过程中,一般会有以下几个关键步骤:
1. 信号采样:将原始信号转化为离散的采样信号。
采样过程会导致信号失真和信息损失,因此在信号恢复中需要考虑采样频率和采样精度等参数的选择。
2. 信号重构:通过采样信号恢复原始信号的形态和特征。
重构过程可以使用插值、滤波等方法进行,以尽可能减小失真和抽样误差。
3. 信号增强:对恢复后的信号进行增强和处理,以提高信号质量和还原度。
常见的信号增强方法包括降噪、滤波、增益控制等。
4. 信号校正:在信号恢复过程中,可能会出现偏差、非线性等问题,需要通过校正方法修正信号的偏差和失真。
5. 信号补偿:对于由于信道衰减、不完美的传输介质等因素引起的信号衰减和失真,需要通过补偿方法进行修复。
补偿手段
包括均衡、增益补偿、时钟回复等。
通过以上步骤的综合应用,信号恢复原理能够在很大程度上提高信号质量和还原度。
然而,鉴于信号传输过程中可能存在的复杂和多样化的干扰因素,实际的信号恢复往往需要结合具体应用场景进行优化和调整。
因此,在实际应用中,针对特定信号类型和环境条件,可能会有不同的信号恢复原理和方法。
信号与系统实验四-信号的采样及恢复实验四信号的采样及恢复⼀、实验⽬的1、加深理解连续时间信号离散化过程中的数学概念和物理概念;2、掌握对连续时间信号进⾏抽样和恢复的基本⽅法;3、通过实验验证抽样定理。
⼆、实验内容1、为了观察连续信号时域抽样时,抽样频率对抽样过程的影响,在[0,0.1]区间上以50Hz 的抽样频率对下列3个信号分别进⾏抽样,试画出抽样后序列的波形,并分析产⽣不同波形的原因,提出改进措施。
(1))102cos()(1t t x ?=π(2))502cos()(2t t x ?=π(3))1002cos()(3t t x ?=π2、产⽣幅度调制信号)200cos()2cos()(t t t x ππ=,推导其频率特性,确定抽样频率,并绘出波形。
3、对连续信号)4cos()(t t x π=进⾏抽样以得到离散序列,并进⾏重建。
(1)⽣成信号)(t x ,时间t=0:0.001:4,画出)(t x 的波形。
(2)以10=sam f Hz 对信号进⾏抽样,画出在10≤≤t 范围内的抽样序列)(k x ;利⽤抽样内插函数)/1()(sam r f T T t Sa t h =??=π恢复连续信号,画出重建信号)(t x r 的波形。
)(t x 与)(t x r 是否相同,为什么?(3)将抽样频率改为3=sam f Hz ,重做(2)。
4、利⽤MATLAB 编程实现采样函数Sa 的采样与重构。
三、实验仪器及环境计算机1台,MATLAB7.0软件。
四、实验原理对连续时间信号进⾏抽样可获得离散时间信号,其原理如图8-1。
采样信号)()()(t s t f t f s ?=,)(t s 是周期为s T 的冲激函数序列,即)()()(∑∞-∞=-==n sT nT t t t s sδδ则该过程为理想冲激抽样。
其中s T 称为采样周期,ss T f 1=称为抽样频率, ss s T f π⼤于等于2倍的原信号频率m f 时,即m s f f 2≥(抽样时间间隔满⾜ms f T 21≤),抽样信号的频谱才不会发⽣混叠,可⽤理想低通滤波器将原信号从采样信号中⽆失真地恢复。
信号的采样与恢复实验注意事项
1. 实验前应确认所需的信号源和采样设备正常工作,以确保实验结果的准确性。
2. 在采样过程中要注意采样频率的选择,采样频率应满足奈奎斯特采样定理,即采样频率应大于信号的最高频率的两倍。
3. 在采样时,应记录下采样间隔和采样点数,以便后续的数据分析和信号恢复处理。
4. 为了保证采样的准确性,需要尽量避免信号与噪声的干扰。
可以采取一些减小噪声的措施,如使用滤波器对信号进行预处理。
5. 实验中可以尝试不同的采样频率和采样点数,观察采样结果的差异,并对比恢复后的信号与原始信号的差异。
6. 在恢复信号时,可以利用插值等方法对采样数据进行处理,以恢复原始信号。
7. 实验结束后,应及时保存实验数据和实验结果,以备后续分析和报告使用。
8. 在实验过程中,应注意安全和操作规范,避免在实验室中发生意外或损坏设备。
深圳大学实验报告课程名称:信号与系统实验项目名称:信号的采样与恢复学院:信息工程专业:电子信息指导教师:报告人:学号:班级:实验时间:实验报告提交时间:教务部制一、实验目的和要求1、了解信号的采样方法与过程以及信号恢复的方法。
2、验证采样定理。
二、实验内容和原理实验原理1、离散时间信号可以从离散信号源获得,也可以从连续时间信号采样而得。
采样信号x s (t )可以看成连续信号x (t )和一组开关函数s (t )的乘积。
s (t )是一组周期性窄脉冲,如图2-5-1,T s 称为采样周期,其倒数f s =1/T s 称采样频率。
图2-5-1 矩形采样信号对采样信号进行傅里叶分析可知,采样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。
平移的频率等于采样频率f s 及其谐波频率2f s 、3f s ……。
当采样信号是周期性窄脉冲时,平移后的频率幅度按sinx/x 规律衰减。
采样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。
2、采样信号在一定条件下可以恢复到原信号。
只要用一截止频率等于原信号频谱中最高频率f n 的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出端可以得到恢复后的原信号。
3、原信号得以恢复的条件是f s ≥2f max ,f s 为采样频率,f max 为原信号的最高频率。
当fs <2 f max 时,采样信号的频谱会发生混迭,从发生混迭后的频谱中无法用低通滤波器获得原信号频谱的全部内容。
在实际使用中,仅包含有限频率的信号是极少的,因此即使f s =2 f max ,恢复后的信号失真还是难免的。
实验中选用f s <2 f max 、f s =2 f max 、f s >2 f max 三种采样频率对连续信号进行采样,以验证采样定理:要使信号采样后能不失真地还原,采样频率f s 必须大于信号最高频率的两倍。
4、连续信号的采样和采样信号的复原原理框图如图2-5-2所示。
信号的抽样与恢复(抽样定理)信号的抽样和恢复是数字信号处理中的基本操作。
它是将连续时间信号(模拟信号)转化为离散时间信号(数字信号)的过程,也是将数字信号转化为连续时间信号的过程。
抽样定理是信号的抽样和恢复中一个十分重要的定理,它的证明也是数字信号处理中的一个重要课题。
一、信号的抽样在信号处理中,可以通过对连续时间信号进行离散化处理,使其转化为离散时间信号,便于数字处理。
抽样是指在每隔一定的时间间隔内对连续时间信号进行采样,得到一系列离散的采样值。
抽样操作可以用如下公式进行表示:x(nT) = x(t)|t=nT其中,x(t)是原始连续时间信号,x(nT)是在时刻nT处采样得到的值,T为采样周期。
具体来说,采样过程可以通过模拟信号经过一个采样和保持电路,将连续时间信号转换为离散信号的形式。
这里的采样周期越小,采样得到的离散信号的数量就越多,离散信号在时间轴的表示就越密集。
抽样后得到的信号形式如下:二、抽样定理抽样定理又称为奈奎斯特定理,是数字信号处理中的基础理论之一。
它指出,如果连续时间信号x(t)的带宽为B,则在抽样周期为T时,可以恰好通过抽样重建出原始信号x(t),当且仅当:T ≤ 1/(2B)即抽样周期T应小于等于原始信号的最大频率的倒数的一半。
这个定理的物理意义是,需要对至少每个周期内的信号进行采样,才能够恢复出连续信号。
如果采样周期过大,将会丢失信号的高频成分,从而无法准确重建原始信号。
抽样定理说明了作为采样频率的一个下限值2B,因为将采样频率设置为低于此值会失去信号的唯一信息(高频成分)。
当采样频率等于2B时,可以从这些采样值恢复出信号的完整频率谱,即避免了信息损失。
三、信号的恢复当原始信号被采样后,需要对采样得到的离散信号进行恢复,以便生成一个趋近于原始信号的连续信号。
采样定理的证明告诉了我们如何确保在扫描连续信号的采样点时,可以正确地还原其原始形式。
例如,可以通过插值的方式将采样点之间的值计算出来,从而恢复出连续时间信号。
实验三 信号的采样与恢复一、实验目的1、了解电信号的采样方法与过程以及信号恢复的方法。
2、验证抽样定理。
二、实验仪器1、信号与系统实验箱一台(主板)。
2、系统时域与频域分析模块一块。
3、20M 双踪示波器一台。
三、实验内容、过程及结果1)实验内容:观察低中高三种频率下不混叠时(即f ≥2B )原信号与抽样信号以及抽样恢复信号的波形然后进行对比。
2)实验步骤:1、把系统时域与频域分析模块插在主板上,用导线接通此模块“电源接入”和主板上的电源(看清标识,防止接错,带保护电路),并打开此模块的电源开关。
2、将函数信号发生器产生一正弦波(幅度(峰值)为2V 左右,为便于观察,抽样信号频率一般选择50HZ ~400HZ 的范围,抽样脉冲的频段由开关SK1000进行选择,有“高”“中”“低”档,频率则是通过电位器“频率调节”来调节的,抽样脉冲的脉宽则是由电位器“脉宽调节”进行调节的(一般取30%)),将其送入抽样器,即用导线将函数信号发生器的输出端与本实验模块的输入端相连,用示波器测试“抽样信号”的波形,观察经抽样后的正弦波。
3、改变抽样脉冲的频率为B f s 2 ,用导线将“抽样信号”和“低通输入”相连,用示波器测试测试钩“抽样恢复”,观察复原后的信号,比较其失真程度。
3)实验结果:①低频下:原信号与抽样信号 原信号与抽样恢复信号②中频下:原信号与抽样信号原信号与抽样恢复信号③高频下:原信号与抽样信号原信号与抽样恢复信号四、实验结果分析1)由原信号、抽样信号以及复原信号的波形,能得出什么结论?答:抽样信号是从原信号中获得的离散周期性的信号,其包含了部分乃至绝大部分的原信号内容,通过对这些抽样信号内容进行还原,就可以得到近似原信号波形的结果,但是不能得到跟原信号完全一致的波形,因为失真无法完全避免,只能调试到最佳结果。
2)比较三种不同抽样频率下的fs(t)的波形,能得出什么结论?答:当fs<2B时,抽样信号的频谱会发生混叠,从发生混叠后的频谱中无法用低通滤波器获得原信号频谱的全部内容,即使fs=2B,复原后的信号失真还是难免的。
深圳大学实验报告课程名称:信号与系统实验
实验项目名称:信号的采样和恢复
学院:信息工程学院
专业:通信工程
指导教师:张坤华
报告人:学号:班级:
实验时间:
实验报告提交时间:
教务处制
一、实验目的
1、了解信号的采样方法与过程以及信号恢复的方法。
2、验证抽样定理。
二、实验内容
1、观察抽样脉冲、抽样信号、抽样恢复信号。
2、观察抽样过程中,发生混叠和非混叠时的波形。
三、实验仪器
1、信号与系统实验箱一台(主板)。
2、系统时域与频域分析模块一块。
3、20M 双踪示波器一台。
四、实验原理
1、离散时间信号可以从离散信号源获得,也可以从连续时间信号抽样而得。
抽样信号
()t f s 可以看成连续信号()t f 和一组开关函数()t s 的乘积。
()t s 是一组周期性窄脉冲,见图
5-1,T S
图 5-1矩形抽样脉冲
对抽样信号进行傅里叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。
平移的频率等于抽样频率s f 及其谐波频率s f 2、s f 3……。
当抽样信号是周期性窄脉冲时,平移后的频率幅度按
()
x x sin 规律衰减。
抽样信号的频谱是原信号频谱周
期的延拓,它占有的频带要比原信号频谱宽得多。
2、正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。
只要用一截止频率等于原信号频谱中最高频率f n 的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出可以得到恢复后的原信号。
3、但原信号得以恢复的条件是B f s 2≥,其中s f 为抽样频率,B 为原信号占有的频带宽度。
而B f 2min =为最低抽样频率又称“奈奎斯特抽样率”。
当B f s 2<时,抽样信号的频谱会发生混迭,从发生混迭后的频谱中我们无法用低通滤波器获得原信号频谱的全部内容。
在实际使用中,仅包含有限频率的信号是极少的。
因此即使B f s 2=,恢复后的信号失
真还是难免的。
图5-2画出了当抽样频率B f s 2≥(不混叠时)及当抽样频率B f s 2<(混叠时)两种情况下冲激抽样信号的频谱。
(a) 连续信号的频谱
(b ) 高抽样频率时的抽样信号及频谱(不混叠)
(c ) 低抽样频率时的抽样信号及频谱(混叠)
图5-2 抽样过程中出现的两种情况
4、点频抽样还原实验采用分立方式,对2kHz 正弦波进行抽样和还原,首先2kHz 的方波经过截止频率为2.56kHz 低通滤波器得到2kHz 的正弦波,然后用可调窄脉冲对正弦波进行抽样得到抽样信号,抽样信号经低通滤波器后还原出正弦波。
考虑下面的正弦信号: ()cos(
)2
s
x t t ωφ=+
假定以两倍于该正弦信号的频率s ω对它进行脉冲串采样,若这个已采样的冲激信号作为输入加到一个截止频率为/2s ω的理想低通滤波器上,其所产生的输出是:
()(cos )cos(
)2
s
r x t t ωφ=
由此可见,当φ=0或是2π的整数倍时,如右图,x(t)可以完全恢复。
当2
π
φ=-时,()sin(
)2
s
x t t ω=
该信号在采样周期2s π整数倍点上的值
m m s s
都是零;因此在这个采样频率下所产生的信号全是零。
当这个零输入加到理想低通滤波器上时,所得输出当然也都是零。
五、实验步骤
1、把系统时域与频域分析模块插在主板上,用导线接通此模块“电源接入”和主板上的电源(看清标识,防止接错),并打开此模块的电源开关(S1、S2)。
2、用示波器测试H07“CLKR”的波形,为256kHz的方波,用导线将H07“CLKR”和H12连接起来。
3、用示波器测试H01“2kHz”的输出波形,为2kHz的方波,用导线连接H01“2kHz”和H02“输入”。
4、通过测试钩T01观察输入的方波经过截止频率为2kHz的低通滤波器后得到2kHz的正弦波。
抽样电路将对此正弦波进行抽样,然后经过还原电路还原出此正弦波。
5、用示波器观察测试钩T08“抽样脉冲序列”的波形。
通过按键“频率粗调”和按键“频率细调”可以改变抽样脉冲序列的频率。
抽样脉冲序列的频率的最小值为500Hz最大值为11.5kHz。
同样通过“占空比粗调”按键和“占空比细调”按键可以调节抽样脉冲序列的占空比。
“复位”按键可以使抽样脉冲序列的频率复位为500Hz且占空比最小。
通过调节抽样脉冲的频率可以实现欠采样、临界采样、过采样。
6、用示波器观察T02“抽样信号”的波形。
7、观察抽样信号经低通滤波器还原后的波形T03。
8、改变抽样频率为fs<2B和fs≥2B,观察抽样信号(T02)和复原后的信号(T03),比较其失真程度。
六、实验记录
f=2.000kHz
“抽样信号”的波形(T02) 抽样信号经低通滤波器还原后的波形(T03) f=1.000kHz f=1kHz
(2)f=4Khz=2B
“抽样脉冲序列”的波形(T08) f=3.960=2B
抽样信号经低通滤波器还原后的波形(T03) f=4kHz f=4kHz
“抽样脉冲序列”的波形(T08) f=6000Hz>2B
抽样信号经低通滤波器还原后的波形(T03)
f=6000Hz f=6000Hz
通过调节频率和占空比,改变抽样脉冲序列的波形,
)和复原后的信号(T03),改变频率对
占空比对信号波形影响较小。
欠抽样时信号
注:1、报告内的项目或内容设置,可根据实际情况加以调整和补充。
2、教师批改学生实验报告时间应在学生提交实验报告时间后10日内。