第一章 1.1.3 第2课时
- 格式:pptx
- 大小:2.50 MB
- 文档页数:24
第2课时 集合的全集、补集学习目标 1.理解全集、补集的概念.2.准确翻译和使用补集符号和Venn 图.3.会求补集,并能解决一些集合的综合运算问题.知识点一 全 集定义:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集. 记法:全集通常记作U .思考1 为了研究集合A ={1,2,3,4,5,6},B ={1,2,3},C ={1,3,5}之间的关系,要从中选一个集合作为全集,这个集合应该是________. 答案 A思考2 全集一定包含任何一个元素吗?若全集是数集,则一定是实数集R 吗? 答案 不一定;不一定. 知识点二 补 集1.根据研究问题的不同,可以指定不同的全集.( √ )2.存在x 0∈U ,x 0∉A ,且x 0∉∁U A .( × )3.设全集U =R ,A =⎩⎨⎧⎭⎬⎫x ⎪⎪ 1x >1,则∁U A =⎩⎨⎧⎭⎬⎫x ⎪⎪1x ≤1.( × ) 4.设全集U ={}(x ,y )|x ∈R ,y ∈R ,A ={}(x ,y )|x >0且y >0,则∁U A ={}(x ,y )|x ≤0且y ≤0.( × )题型一 补集的运算例1 (1)已知全集U ={a ,b ,c },集合A ={a },则∁U A 等于( ) A.{a ,b } B.{a ,c } C.{b ,c } D.{a ,b ,c } 考点 补集的概念及运算 题点 有限集合的补集 答案 C解析 ∁U A ={}x |x ∈U 且x ∉A ={}b ,c .(2)若全集U ={x ∈R |-2≤x ≤2},A ={x ∈R |-2≤x ≤0},则∁U A 等于( ) A.{x |0<x <2} B.{x |0≤x <2} C.{x |0<x ≤2}D.{x |0≤x ≤2}考点 补集的概念及运算 题点 无限集合的补集 答案 C解析 ∵U ={x ∈R |-2≤x ≤2}, A ={x ∈R |-2≤x ≤0}, ∴∁U A ={x |0<x ≤2},故选C.反思感悟 求集合的补集,需关注两处:一是确认全集的范围;二是善于利用数形结合求其补集,如借助Venn 图、数轴、坐标系来求解.跟踪训练1 (1)设集合U ={1,2,3,4,5},集合A ={1,2},则∁U A =________. 考点 补集的概念及运算 题点 有限集合的补集 答案 {3,4,5}(2)已知全集U ={a ,b ,c ,d ,e },集合A ={b ,c ,d },B ={c ,e },则(∁U A )∪B 等于( ) A.{b ,c ,e } B.{c ,d ,e } C.{a ,c ,e } D.{a ,c ,d ,e } 答案 C解析 ∁U A ={a ,e },(∁U A )∪B ={a ,c ,e }.(3)若全集U =R ,集合A ={x |1<x ≤3},则∁U A 等于( ) A.{x |x <1或x ≥3} B.{x |x ≤1或x >3} C.{x |x <1或x >3} D.{x |x ≤1或x ≥3} 答案 B解析 U =R ,∁U A ={x |x ≤1或x >3}. 题型二 补集的应用例2 (1)设全集U ={1,3,5,7},集合M ={1,|a -5|},∁U M ={5,7},则a 的值为________.答案 2或8解析 由U ={1,3,5,7},M ={1,|a -5|},∁U M ={5,7}知M ={1,3}. ∴|a -5|=3,∴a =8或2.(2)已知A ={0,2,4,6},∁U A ={-1,-3,1,3},∁U B ={-1,0,2},用列举法写出集合B . 考点 补集的概念及运算 题点 有限集合的补集解 ∵A ={0,2,4,6},∁U A ={-1,-3,1,3}, ∴U ={-3,-1,0,1,2,3,4,6}. 而∁U B ={-1,0,2},∴B =∁U (∁U B )={-3,1,3,4,6}.反思感悟 从Venn 图的角度讲,A 与∁U A 就是圈内和圈外的问题,由于(∁U A )∩A =∅,(∁U A )∪A =U ,所以可以借助圈内推知圈外,也可以反推.跟踪训练2 (1)已知集合A ={x |x ≥1},B ={x |x >2a +1},若A ∩(∁R B )=∅,则实数a 的取值范围是________________________________________________________________________. 答案 {a |a <0}解析 ∁R B ={x |x ≤2a +1}. 由A ∩(∁R B )=∅, ∴2a +1<1,∴a <0.(2)设全集U ={0,1,2,3},集合A ={x |x 2+mx =0},若∁U A ={1,2},则实数m =________. 答案 -3解析 ∵U ={0,1,2,3},∁U A ={1,2}, ∴A ={0,3}.∴0,3是x 2+mx =0的两个根,∴m =-3. 题型三 集合的综合运算例3 (1)已知全集U ={}1,2,3,4,5,6,集合P ={}1,3,5,Q ={}1,2,4,则(∁U P )∪Q等于( )A.{}1B.{}3,5C.{}1,2,4,6D.{}1,2,3,4,5考点 交并补集的综合问题 题点 有限集合的交并补运算 答案 C解析 ∵∁U P ={}2,4,6, ∴(∁U P )∪Q ={}1,2,4,6.(2)已知集合A ={x |x ≤a },B ={x |1≤x ≤2},且A ∪(∁R B )=R ,则实数a 的取值范围是________.考点 交并补集的综合问题题点 与交并补集运算有关的参数问题 答案 {a |a ≥2}解析 ∵∁R B ={x |x <1或x >2}且A ∪(∁R B )=R , ∴{x |1≤x ≤2}⊆A ,∴a ≥2.反思感悟 解决集合的混合运算时,一般先计算括号内的部分,再计算其他部分.有限集合混合运算可借助Venn 图,与不等式有关的可借助数轴.跟踪训练3 (1)已知M ,N 为集合I 的非空真子集,且M ≠N ,若N ∩(∁I M )=∅,则M ∪N 等于( )A.MB.NC.ID.∅ 答案 A解析 如图所示,因为N ∩(∁I M )=∅,所以N ⊆M ,所以M ∪N =M .(2)设集合A ={x |2x 2+ax +2=0},B ={x |x 2+3x +2a =0},A ∩B ={2}. ①求a 的值及A ,B ;②设全集U =A ∪B ,求(∁U A )∪(∁U B );③设全集U =A ∪B ,写出(∁U A )∪(∁U B )的所有子集.解 ①因为A ∩B ={2},所以2∈A ,且2∈B ,代入可求得a =-5,所以A ={x |2x 2-5x +2=0}=⎩⎨⎧⎭⎬⎫12,2,B ={x |x 2+3x -10=0}={-5,2}.②由①可知U =⎩⎨⎧⎭⎬⎫-5,12,2,所以∁U A ={-5},∁U B =⎩⎨⎧⎭⎬⎫12,所以(∁U A )∪(∁U B )=⎩⎨⎧⎭⎬⎫-5,12.③由②可知(∁U A )∪(∁U B )的所有子集为∅,{-5},⎩⎨⎧⎭⎬⎫12,⎩⎨⎧⎭⎬⎫-5,12.根据补集的运算求参数典例 (1)设全集U ={3,6,m 2-m -1},A ={|3-2m |,6},∁U A ={5},求实数m . 解 ∵∁U A ={5}, ∴5∈U 且5∉A ,∴⎩⎪⎨⎪⎧m 2-m -1=5,|3-2m |≠5, 由m 2-m -1=5,得m 2-m -6=0,∴m =-2或m =3.①当m =-2时,|3-2m |=7≠5, 此时U ={3,5,6},A ={6,7}, 不符合要求,舍去; ②当m =3时,|3-2m |=3,此时,U ={3,5,6},A ={3,6}满足∁U A ={5}. 综上所述m =3.(2)已知全集U =R ,集合A ={x |-2≤x ≤5},B ={x |a +1≤x ≤2a -1},且A ⊆(∁U B ),求实数a 的取值范围.解 若B =∅,则a +1>2a -1,即a <2,此时∁U B =R ,所以A ⊆(∁U B ). 若B ≠∅,则a +1≤2a -1,即a ≥2,此时∁U B ={x |x <a +1或x >2a -1}, 又A ⊆(∁U B ),所以a +1>5或2a -1<-2,所以a >4或a <-12(舍去).所以实数a 的取值范围为{a |a <2或a >4}. [素养评析] (1)由集合的补集求解参数的方法①有限集:由补集求参数问题,若集合中元素个数有限时,可利用补集定义并结合集合知识求解.②无限集:与集合交、并、补运算有关的求参数问题,若集合中元素有无限个时,一般利用数轴分析法求解.(2)理解运算对象,掌握运算法则,选择运算方法,求得运算结果,充分体现了数学运算的数学核心素养.1.设集合U ={1,2,3,4,5,6},M ={1,2,4},则∁U M 等于( ) A.U B.{1,3,5} C.{3,5,6} D.{2,4,6} 考点 补集的概念及运算 题点 有限集合的补集 答案 C2.已知全集U ={1,2,3,4},集合A ={1,2},B ={2,3},则∁U (A ∪B )等于( ) A.{1,3,4} B.{3,4} C.{3} D.{4} 考点 交并补集的综合问题 题点 有限集合的交并补运算 答案 D3.设集合S ={x |x >-2},T ={x |-4≤x ≤1},则(∁R S )∪T 等于( )A.{x|-2<x≤1}B.{x|x≤-4}C.{x|x≤1}D.{x|x≥1}考点交并补集的综合问题题点无限集合的交并补运算答案 C4.设集合U={0,1,2,3,4},M={1,2,4},N={2,3},则(∁U M)∪N=________.答案{0,2,3}5.设全集U=Z,A={x∈Z|x<4},B={x∈Z|x≤2},则∁U A与∁U B的关系是________.答案∁U A∁U B解析∁U A={4,5,6,…},∁U B={3,4,5,6,…},∴∁U A∁U B.1.全集与补集的互相依存关系(1)补集是集合之间的一种运算.求集合A的补集的前提是A是全集U的子集,随着所选全集的不同,得到的补集也是不同的,因此,它们是互相依存、不可分割的两个概念.(2)∁U A的数学意义包括两个方面:首先必须具备A⊆U;其次是定义∁U A={x|x∈U,且x∉A},补集是集合间的运算关系.2.补集思想做题时“正难则反”策略运用的是补集思想,即已知全集U,求子集A,若直接求A困难,可先求∁U A,再由∁U(∁U A)=A,求A.一、选择题1.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为()A.{1,2,4}B.{2,3,4}C.{0,2,4}D.{0,2,3,4}考点交并补集的综合问题题点有限集合的交并补运算答案 C解析∁U A={0,4},所以(∁U A)∪B={0,2,4},故选C.2.设全集U={1,2,3,4,5},集合A={1,3,5},B={2,5},则A∪(∁U B)等于()A.{2}B.{1,3}C.{3}D.{1,3,4,5}答案 D3.已知U=R,集合A={x|x<-2或x>2},则∁U A等于()A.{x |-2<x <2}B.{x |x <-2或x >2}C.{x |-2≤x ≤2}D.{x |x ≤-2或x ≥2}考点 补集的的概念及运算 题点 无限集合的补集 答案 C解析 ∁U A 为数轴上去掉集合A 的剩余部分.4.设全集U ={1,2,3,4,5},集合A ={2,4},B ={1,2,3},则图中阴影部分所表示的集合是( )A.{4}B.{2,4}C.{4,5}D.{1,3,4}答案 A解析 (∁U B )∩A ={4,5}∩{2,4}={4}.5.设全集U =R ,集合A ={x |x >0},B ={x |x >1},则A ∩(∁U B )等于( ) A.{x |0≤x <1} B.{x |0<x ≤1} C.{x |x <0} D.{x |x >1}答案 B解析 ∵∁U B ={x |x ≤1}, ∴A ∩(∁U B )={x |0<x ≤1}.6.若全集U ={0,1,2,3,4,5},且∁U A ={x ∈N *|1≤x ≤3},则集合A 的真子集共有( ) A.3个 B.4个 C.7个 D.8个 答案 C解析 ∁U A ={x ∈N *|1≤x ≤3}={1,2,3},∴A ={0,4,5},∴集合A 的真子集共有23-1=7(个).7.已知全集U ={1,2,a 2-2a +3},A ={1,a },∁U A ={3},则实数a 等于( ) A.0或2 B.0 C.1或2 D.2 考点 补集的概念及运算 题点 由补集运算结果求参数的值 答案 D解析 由题意,知⎩⎪⎨⎪⎧a =2,a 2-2a +3=3,则a =2.8.已知A ,B 均为集合U ={1,3,5,7,9}的子集,且A ∩B ={3},A ∩(∁U B )={9},则A 等于( ) A.{1,3} B.{3,7,9} C.{3,5,9} D.{3,9} 答案 D解析画Venn图,由图可知A={3,9}.二、填空题9.设全集U={1,2,3,4,5},集合A={1,2,3},B={3,4,5},则∁U(A∩B)=________.答案{1,2,4,5}10.已知全集U={x|-3≤x<2},集合M={x|-1<x<1},∁U N={x|0<x<2},则M∪N=________. 答案{x|-3≤x<1}解析∵U={x|-3≤x<2},∁U N={x|0<x<2},∴N=∁U(∁U N)={x|-3≤x≤0}.∴M∪N={x|-3≤x<1}.11.若集合A={x|0≤x≤2},B={x|x<0或x>1},则图中阴影部分所表示的集合为________________.考点Venn图表达的集合关系及运用题点Venn图表达的集合关系答案{x|x≤1或x>2}解析如图,设U=A∪B=R,A∩B={x|1<x≤2},∴阴影部分为∁U(A∩B)={x|x≤1或x>2}.三、解答题12.已知全集U=R,集合A={x|1≤x≤2},若B∪(∁U A)=R,B∩(∁U A)={x|0<x<1或2<x<3},求集合B.考点交并补集的综合问题题点无限集合的交并补运算解∵A={x|1≤x≤2},∴∁U A={x|x<1或x>2}.又B∪(∁U A)=R,A∪(∁U A)=R,可得A⊆B.而B∩(∁U A)={x|0<x<1或2<x<3},∴{x |0<x <1或2<x <3}⊆B . 借助于数轴可得B =A ∪{x |0<x <1或2<x <3}={x |0<x <3}. 13.已知A ={x |-1<x ≤3},B ={x |m ≤x <1+3m }. (1)当m =1时,求A ∪B ;(2)若B ⊆∁R A ,求实数m 的取值范围. 考点 交并补集的综合问题题点 与交并补集运算有关的参数问题 解 (1)m =1,B ={x |1≤x <4}, A ∪B ={x |-1<x <4}. (2)∁R A ={x |x ≤-1或x >3}. 当B =∅时,即m ≥1+3m 得m ≤-12,满足B ⊆∁R A ,当B ≠∅时,要使B ⊆∁R A 成立,则⎩⎪⎨⎪⎧ m <1+3m ,1+3m ≤-1或⎩⎪⎨⎪⎧m <1+3m ,m >3,解得m >3. 综上可知,实数m 的取值范围是 ⎩⎨⎧⎭⎬⎫m |m >3或m ≤-12.14.如图,已知I 是全集,A ,B ,C 是它的子集,则阴影部分所表示的集合是( )A.(∁I A ∩B )∩CB.(∁I B ∪A )∩CC.(A ∩B )∩(∁I C )D.(A ∩∁I B )∩C考点 Venn 图表达的集合关系及运用 题点 Venn 图表达的集合关系 答案 D解析 由题图可知阴影部分中的元素属于A ,不属于B ,属于C ,则阴影部分表示的集合是(A ∩∁I B )∩C .15.已知集合A ={x |x 2+ax +12b =0}和B ={x |x 2-ax +b =0}满足(∁R A )∩B ={2},A ∩(∁R B )={4},求实数a ,b 的值.解 由(∁R A )∩B ={2}和A ∩(∁R B )={4}, 知2∈B ,但2∉A ;4∈A ,但4∉B .将x =2和x =4分别代入集合B ,A 中的方程,得⎩⎪⎨⎪⎧22-2a +b =0, 42+4a +12b =0, 即⎩⎪⎨⎪⎧4-2a +b =0,4+a +3b =0, 解得a =87,b =-127.经检验,a =87,b =-127符合题意.。
2018-2019学年高中数学第一章集合与函数概念1.1 集合1.1.3 第2课时补集及集合运算的综合应用练习新人教A版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年高中数学第一章集合与函数概念1.1 集合1.1.3 第2课时补集及集合运算的综合应用练习新人教A版必修1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年高中数学第一章集合与函数概念1.1 集合1.1.3 第2课时补集及集合运算的综合应用练习新人教A版必修1的全部内容。
第一章 1.1 1.1.3 第2课时补集及集合运算的综合应用1.设全集U={1,2,3,4,5,6},A={1,2},B={2,3,4},则A∩{∁U B}=( ) A.{1,2,5,6} B.{1}C.{2}D.{1,2,3,4}解析:因为∁U B={1,5,6},所以A∩(∁U B)={1},故选B.答案:B2.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=( )A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}解析:由题意可知,A∪B={x|x≤0或x≥1},所以∁U(A∪B)={x|0<x<1}.答案:D3.设全集U=R,集合A={x|x≥1},B={x|0≤x≤2},则∁U(A∩B)是( )A.{x|1≤x≤2}B.{x|0≤x≤1}C.{x|x>2或x<1} D.{x|0≤x<1}解析:∵A∩B={x|1≤x≤2},∴∁U(A∩B)={x|x>2或x<1}.答案:C4.设集合S={三角形},A={直角三角形},则∁S A=____________________.答案:{锐角三角形或钝角三角形}5.设集合U={1,2,3,4,5},A={2,4},B={3,4,5},C={3,4},则(A∪B)∩(∁C)=________.U解析:A∪B={2,3,4,5},∁U C={1,2,5},故(A∪B)∩(∁U C)={2,5}.答案:{2,5}6.设U=R,A={x|a≤x≤b},∁U A={x|x<3或x>4},求a,b的值.解:∵A={x|a≤x≤b},∴∁U A={x|x<a或x>b}.又∁U A={x|x<3或x>4},∴a=3,b=4.。
本节课是集合这一章的核心内容,高考常考考点之一,所以一定要掌握并集,补集,交集的概念。
集合的基本运算是在学习集合定义以及集合的性质之后学到的,它对日后学习研究函数的定义域、值域、单调区间等内容起到知识储备作用。
1.教学重点:交集与并集,全集与补集的概念。
2.教学难点:理解交集与并集的概念,以及符号之间的区别与联系。
一、知识梳理1、集合的运算A∩B={x|x∈A且x∈B}.A∪B={x|x∈A或x∈B}.∁U A={x|x∈U,且x∉A}2、性质:A∪B=B∪A,A∪A=A,A∪∅=A,A∪B=A⇔B⊆A,A⊆(A∪B).A∩B=B∩A,A∩A=A,A∩∅=∅,A∩B=A⇔A⊆B,A∩B⊆A∪B,A∩B⊆A,A∩B⊆B.A∪(∁U A)=U,A∩(∁U A)=∅,∁U(∁U A)=A二、题型探究例1.已知A ={ (x,y) | 4 x+y = 6 },B ={ (x,y) | 3 x+2 y = 7 }.求A ∩ B.解:A∩B = {(x,y) | 4 x+y = 6 }∩{(x,y) | 3 x+2 y = 7 }== {(1,2)}.例2.已知x∈R,集合A={-3,x2,x+1},B={x-3,2x-1,x2+1},如果A∩B={-3},求A∪B。
例3.已知集合,且有4个子集,则实数的取值范围是()A.B.C.D.【答案】B.【解析】∵有4个子集,∴有2个元素,∴,∴且,即实数的取值范围是,故选B.例4.已知集合,且,求实数的取值范围.三、达标检测1、设集合Α={1,2,4},Β={x|x2-4x+m=0}.若Α∩Β={1},则Β=( ) A.{1,-3} B.{1,0} C.{1,3} D.{1,5}【答案】C2、设集合,,全集,若,则有( )A. B. C. D. 【解析】由,解得,又,如图则,满足条件.【答案】C 3、已知集合,集合,若,则实数的值为 . 【答案】1或-1或0. 【解析】∵,∵,,对集合B 。
1.(2011·高考浙江卷)若P={x|x<1},Q={x|x>-1},则()A.P⊆QB.Q⊆PC.∁R P⊆QD.Q⊆∁R P解析:选C.∵P={x|x<1},∴∁R P={x|x≥1},∴∁R P⊆Q.2.设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有() A.3个B.4个C.5个D.6个解析:选A.∵U=A∪B={3,4,5,7,8,9},A∩B={4,7,9},∴∁U(A∩B)={3,5,8}.故选A.3.设集合U={1,2,3,4,5},A={2,4},B={3,4,5},C={3,4},则(A∪B)∩(∁U C)=________. 解析:∵A∪B={2,3,4,5},∁U C={1,2,5},∴(A∪B)∩(∁U C)={2,3,4,5}∩{1,2,5}={2,5}.答案:{2,5}4.已知全集U={2,3,a2-a-1},A={2,3},若∁U A={1},则实数a的值是________.解析:∵U={2,3,a2-a-1},A={2,3},∁U A={1},∴a2-a-1=1,即a2-a-2=0,解得a=-1或a=2.答案:-1或2[A级基础达标]1.(2011·高考大纲全国卷)设集合U={1,2,3,4},M={1,2,3},N={2,3,4},则∁U(M∩N)=() A.{1,2}B.{2,3}C.{2,4}D.{1,4}解析:选D.∵M={1,2,3},N={2,3,4},∴M∩N={2,3}.又∵U={1,2,3,4},∴∁U(M∩N)={1,4}.2.已知集合U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},则()A.M∩N={4,6}B.M∪N=UC.(∁U N)∪M=UD.(∁U M)∩N=N解析:选B.由U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},得M∩N={4,5},(∁U N)∪M={3,4,5,7},(∁U M )∩N ={2,6},M ∪N ={2,3,4,5,6,7}=U .3.(2010·高考陕西卷)集合A ={x |-1≤x ≤2},B ={x |x <1},则A ∩(∁R B )=( )A .{x |x >1}B .{x |x ≥1}C .{x |1<x ≤2}D .{x |1≤x ≤2}解析:选D.∵B ={x |x <1},∴∁R B ={x |x ≥1},∴A ∩∁R B ={x |1≤x ≤2}.4.已知全集U ={x |1≤x ≤5},A ={x |1≤x <a },若∁U A ={x |2≤x ≤5},则a =________. 解析:∵A ∪∁U A =U ,∴A ={x |1≤x <2}.∴a =2.答案:25.设集合A ={x |0≤x ≤4},B ={y |y =x -3,-1≤x ≤3},则∁R (A ∩B )=________. 解析:∵A ={x |0≤x ≤4},B ={y |-4≤y ≤0},∴A ∩B ={0},∴∁R (A ∩B )={x |x ∈R ,且x ≠0}.答案:{x |x ∈R ,且x ≠0}6.已知全集U =R ,A ={x |-4≤x <2},B ={x |-1<x ≤3},P ={x |x ≤0或x ≥52},求A ∩B ,(∁U B )∪P ,(A ∩B )∩(∁U P ).解:将集合A 、B 、P 表示在数轴上,如图.∵A ={x |-4≤x <2},B ={x |-1<x ≤3},∴A ∩B ={x |-1<x <2}.∵∁U B ={x |x ≤-1或x >3},∴(∁U B )∪P ={x |x ≤0或x ≥52}, (A ∩B )∩(∁U P )={x |-1<x <2}∩{x |0<x <52} ={x |0<x <2}.[B 级 能力提升]7.已知集合U =R ,集合A ={x |x <-2或x >4},B ={x |-3≤x ≤3},则(∁U A )∩B =( )A .{x |-3≤x ≤4}B .{x |-2≤x ≤3}C .{x |-3≤x ≤-2或3≤x ≤4}D .{x |-2≤x ≤4}解析:选B.∁U A ={x |-2≤x ≤4}.由图可知:(∁U A )∩B ={x |-2≤x ≤3}. 8.已知全集U =Z ,集合A ={x |x 2=x },B ={-1,0,1,2},则图中的阴影部分所表示的集合等于( )A .{-1,2}B .{-1,0}C .{0,1}D .{1,2}解析:选A.依题意知A={0,1},(∁U A)∩B表示全集U中不在集合A中,但在集合B中的所有元素,故图中的阴影部分所表示的集合等于{-1,2}.9.设全集U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m的值为________.解析:如图,∵U={0,1,2,3},∁U A={1,2},∴A={0,3},∴方程x2+mx=0的两根为x1=0,x2=3,∴0+3=-m,即m=-3.答案:-310.设全集U={x|0<x<10,x∈N*},且A∩B={3},A∩(∁U B)={1,5,7},(∁U A)∩(∁U B)={9},求A,B.解:如图所示,由图可得A={1,3,5,7},B={2,3,4,6,8}.11.设集合A={x|x+m≥0},B={x|-2<x<4},全集U=R,且(∁U A)∩B=∅,求实数m的取值范围.解:由已知A={x|x≥-m},∴∁U A={x|x<-m},∵B={x|-2<x<4},(∁U A)∩B=∅,∴-m≤-2,即m≥2,∴m的取值范围是m≥2.。
第一章 1.1 1.1.3第2课时A级基础巩固一、选择题1.(2019·山东烟台高一期中测试)设全集U={x|x是小于5的非负整数},A={2,4},则∁U A=(C)A.{1,3}B.{1,3,5}C.{0,1,3} D.{0,1,3,5}[解析]∵U={0,1,2,3,4},A={2,4},∴∁A={0,1,3}.U2.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为(C)A.{1,2,4} B.{2,3,4}C.{0,2,4} D.{0,2,3,4}[解析]因为U={0,1,2,3,4},A={1,2,3},所以∁A={0,4},故(∁U A)∪B={0,2,4}.U3.已知集合U={x|x>0},∁U A={x|0<x<2},那么集合A=(C)A.{x|x≤0或x≥2} B.{x|x<0或x>2}C.{x|x≥2} D.{x|x>2}[解析]利用数轴分析,可知A={x|x≥2}.4.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=(D)A.{x|x≥0} B{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}[解析]∵A∪B={x|x≤0或x≥1},∴∁(A∪B)={x|0<x<1}.故选D.U5.(2019·南阳市高一期末测试)如图,集合U为全集,则图中阴影部分表示的集合是(C)A.∁U(A∩B)∩C B.∁U(B∩C)∩AC.A∩∁U(B∪C) D.∁U(A∪B)∩C[解析]由图可知图中阴影部分表示的集合是A∩∁(B∪C).U6.已知集合A ={x |x <a },B ={x |x <2},且A ∪(∁R B )=R ,则a 满足( A ) A .a ≥2 B .a >2 C .a <2D .a ≤2[解析] ∁R B ={x |x ≥2},则由A ∪(∁R B )=R 得a ≥2,故选A . 二、填空题7.设U ={0,1,2,3},A ={x ∈U |x 2+mx =0},若∁U A ={1,2},则实数m =__-3__. [解析] ∵∁U A =={1,2},∴A ={0,3}. ∴0,3是方程x 2+mx =0的两根. ∴0+3=-m .∴m =-3.8.已知全集U =R ,M ={x |-1<x <1},∁U N ={x |0<x <2},那么集合M ∪N =__{x <1或x ≥2}__.[解析] ∵U =R ,∁U N ={x |0<x <2}, ∴N ={x |x ≤0或x ≥2},∴M ∪N ={x |-1<x <1}∪{x |x ≤0或x ≥2} ={x |x <1或x ≥2}. 三、解答题9.已知全集U =R ,A ={x |-4≤x <2},B ={x |-1<x ≤3},P ={x |x ≤0或x ≥52},求A ∩B ,(∁U B )∪P ,(A ∩B )∩(∁U P ).[解析] 将集合A ,B ,P 表示在数轴上,如图.∵A ={x |-4≤x <2},B ={x |-1<x ≤3}, ∴A ∩B ={x |-1<x <2}. ∵∁U B ={x |x ≤-1或x >3}, ∴(∁U B )∪P ={x |x ≤0或x ≥52},∴(A ∩B )∩(∁U P )={x |-1<x <2}∩{x |0<x <52}={x |0<x <2}.B 级 素养提升一、选择题1.(2019·山东莒县一中高一期末测试)如图,I是全集,M,P,S是I的子集,则阴影部分所表示的集合是(C)A.(M∩P)∩S B.(M∩P)∪SC.(M∩P)∩(∁I S) D.(M∩P)∪(∁I S)[解析]由图可知,阴影部分对应的元素a具有性质a∈M,a∈P,a∈∁S,故阴影部分所I表示的集合是(M∩P)∩(∁I S).2.若全集U={1,2,3,4,5,6},M={2,3},N={1,4},则集合{5,6}等于(D)A.M∪N B.M∩NC.(∁U M)∪(∁U N) D.(∁U M)∩(∁U N)[解析]根据已知可知,M∪N={1,2,3,4},M∩N=∅,(∁M)∪(∁U N)={1,4,5,6}∪{2,3,5,6}U={1,2,3,4,5,6},(∁U M)∩(∁U N)={1,4,5,6}∩{2,3,5,6}={5,6},因此选D.3.设全集U={1,2,3,4,5},A={1,3,5},则∁U A的所有非空子集的个数为(B)A.4 B.3C.2 D.1[解析]∵∁A={2,4},∴非空子集有22-1=3个,故选B.U4.设P={x|x>4},Q={x|-2<x<2},则(D)A.P⊆Q B.Q⊆PC.P⊇∁R Q D.Q⊆∁R P[解析]∵Q={x|-2<x<2},而∁R P={x|x≤4},∴Q⊆∁R P.二、填空题5.已知全集U={1,2,3,4,5,6},集合A={1,3},集合B={3,4,6},集合U,A,B的关系如图所示,则图中阴影部分所表示的集合用列举法表示为__{4,6}__.[解析] 由题意可知,阴影部分所表示的集合为B ∩(∁U A ). ∵U ={1,2,3,4,5,6},A ={1,3}, ∴∁U A ={2,4,5,6}. ∵B ={3,4,6}, ∴B ∩(∁U A )={4,6}.6.已知全集为R ,集合M ={x ∈R |-2<x <2},P ={x |x ≥a },并且M ⊆∁R P ,则a 的取值范围是__a ≥2__.[解析] M ={x |-2<x <2},∁R P ={x |x <a }.∵M ⊆∁R P ,∴由数轴知a ≥2. 三、解答题7.设全集I ={2,3,x 2+2x -3},A ={5},∁I A ={2,y },求实数x 、y 的值. [解析] 因为A ={5},∁I A ={2,y }. 所以I ={2,5,y }, 又I ={2,3,x 2+2x -3},所以⎩⎪⎨⎪⎧x 2+2x -3=5y =3,所以⎩⎪⎨⎪⎧ x =-4y =3或⎩⎪⎨⎪⎧x =2y =3.故x =2,y =3或x =-4,y =3.8.已知全集U =R ,集合A ={x |x <-1},B ={x |2a <x <a +3},且B ⊆∁R A ,求a 的取值范围.[解析] 由题意得∁R A ={x |x ≥-1}.(1)若B =∅,则a +3≤2a ,即a ≥3,满足B ⊆∁R A . (2)若B ≠∅,则由B ⊆∁R A ,得2a ≥-1且2a <a +3, 即-12≤a <3.综上可得a ≥-12.9.已知集合A ={x |x 2+ax +12b =0}和B ={x |x 2-ax +b =0},满足(∁U A )∩B ={2},A ∩(∁U B )={4},U =R ,求实数a ,b 的值.[解析] ∵(∁U A )∩B ={2},∴2∈B , ∴4-2a +b =0.①又∵A ∩(∁U B )={4},∴4∈A , ∴16+4a +12b =0.②联立①②,得⎩⎪⎨⎪⎧4-2a +b =016+4a +12b =0,解得⎩⎨⎧a =87b =-127.经检验,符合题意:∴a =87,b =-127.。