2009中考数学第一轮复习 轴对称专题训练
- 格式:doc
- 大小:198.50 KB
- 文档页数:5
第四章图形的性质第19节等腰三角形■知识点一:等腰三角形(1)性质①等边对等角:两腰相等,底角相等,即AB=AC ∠B=∠C;②三线合一:顶角的平分线、底边上的中线和底边上的高互相重合;③对称性:等腰三角形是轴对称图形,直线AD是对称轴.(2)判定①定义:有两边相等的三角形是等腰三角形;②等角对等边:即若∠B=∠C,则△ABC是等腰三角形.注意:三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其中两个,其余均成立.失分点警示:当等腰三角形的腰和底不明确时,需分类讨论. 如若等腰三角形ABC的一个内角为30°,则另外两个角的度数为 .■知识点二:等边三角形(1)性质①边角关系:三边相等,三角都相等且都等于60°.即AB=BC=AC,∠BAC=∠B=∠C=60°;②对称性:等边三角形是轴对称图形,三条高线(或角平分线或中线)所在的直线是对称轴.(2)判定①定义:三边都相等的三角形是等边三角形;②三个角都相等(均为60°)的三角形是等边三角形;③任一内角为60°的等腰三角形是等边三角形.即若AB=AC,且∠B=60°,则△ABC是等边三角形.注意:(1)等边三角形是特殊的等腰三角形,所以等边三角形也满足“三线合一”的性质.(2)等边三角形有一个特殊的角60°,所以当等边三角形出现高时,会结合直角三角形30°角的性质,即BD=12AB. ■知识点三:角平分线21P COBA(1)性质:角平分线上的点到角的两边的距离相等.即若∠1 =∠2,PA ⊥OA ,PB ⊥OB ,则PA =PB.(2)判定:角的内部到角的两边的距离相等的点在角的角平分线上. ■知识点四:垂直平分线PC OBA(1)性质:线段的垂直平分线上的点到这条线段的两端点距离相等.即若OP 垂直且平分AB ,则PA =PB.(2)判定:到一条线段两端点距离相等的点在这条线段的垂直平分线上.■考点1.等腰三角形 ◇典例:1. (2018年黑龙江省绥化市)已知等腰三角形的一个外角为130°,则它的顶角的度数为 .【考点】等腰三角形的性质【分析】等腰三角形的一个外角等于130°,则等腰三角形的一个内角为50°,但已知没有明确此角是顶角还是底角,所以应分两种情况进行分类讨论.解:当50°为顶角时,其他两角都为65°、65°,当50°为底角时,其他两角为50°、80°,所以等腰三角形的顶角为50°或80°.故答案为:50°或80°.【点评】本题考查了等腰三角形的性质,及三角形内角和定理;在解决与等腰三角形有关的问题,由于等腰所具有的特殊性质,很多题目在已知不明确的情况下,要进行分类讨论,才能正确解题,因此,解决和等腰三角形有关的边角问题时,要仔细认真,避免出错.2.(2017年北京市)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D.求证:AD=BC.【考点】等腰三角形的判定与性质.【分析】根据等腰三角形的性质得到∠ABC=C=72°,根据角平分线的定义得到∠ABD=∠DBC=36°,∠BDC=72°,根据等腰三角形的判定即可得到结论.证明:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC交AC于点D,∴∠ABD=∠DBC=36°,∴∠A=∠ABD,∴AD=BD,∵∠C=72°,∴∠BDC=72°,∴∠C=∠BDC,∴BC=BD,∴AD=BC.【点评】本题主要考查等腰三角形的性质和判定,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.◆变式训练1.(2018年内蒙古包头)如图,在△ABC中,AB=AC,△ADE的顶点D,E分别在BC,AC上,且∠DAE=90°,AD=AE.若∠C+∠BAC=145°,则∠EDC的度数为()A.17.5° B.12.5°C.12° D.10°2.( 2017年湖北武汉市)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7■考点2.等边三角形◇典例(2018年辽宁省葫芦岛市)如图,∠MON=30°,点B1在边OM上,且OB1=2,过点B1作B1A1⊥OM交ON于点A1,以A1B1为边在A1B1右侧作等边三角形A1B1C1;过点C1作OM的垂线分别交OM、ON于点B2、A2,以A2B2为边在A2B2的右侧作等边三角形A2B2C2;过点C2作OM的垂线分别交OM、ON于点B3、A3,以A3B3为边在A3B3的右侧作等边三角形A3B3C3,…;按此规律进行下去,则△A n A n+1C n的面积为.(用含正整数n的代数式表示)【考点】规律型:图形的变化类;等边三角形的性质【分析】由题意△A1A2C1是等边三角形,边长为,△A2A3C2是等边三角形,边长为×,△A3A4C3是等边三角形,边长为××=()2×,△A4A5C4是等边三角形,边长为×××=()3×,…,一次看到△A n B n+1C n的边长为()n﹣1×即可解决问题;解:由题意△A1A2C1是等边三角形,边长为,△A2A3C2是等边三角形,边长为×,△A3A4C3是等边三角形,边长为××=()2×,△A4A5C4是等边三角形,边长为×××=()3×,…,△A n A n+1C n的边长为()n﹣1×,∴△A n A n+1C n的面积为×[()n﹣1×]2=()2n﹣2×.【点评】本题考查等边三角形的性质、三角形的面积等知识,解题的关键是学会探究规律的方法,属于中考常考题型.◆变式训练(2018年内蒙古通辽市)如图,在△ABC中,按以下步骤作图:①分别以点A和点C为圆心,以大于AC的长为半径作弧,两弧相交于M、N两点;②作直线MN交BC于点D,连接AD.若AB=BD,AB=6,∠C=30°,则△ACD的面积为.■考点3.角平分线◇典例:(2018年山东省德州)如图,为的平分线.,..则点到射线的距离为__________.【考点】角平分线的性质【分析】过C作CF⊥AO,根据勾股定理可得CM的长,再根据角的平分线上的点到角的两边的距离相等可得CF=CM,进而可得答案.解:过C作CF⊥AO.∵OC为∠AOB的平分线,CM⊥OB,∴CM=CF.∵OC=5,OM=4,∴CM=3,∴CF=3.故答案为:3.【点睛】本题主要考查了角平分线的性质,关键是掌握角的平分线上的点到角的两边的距离相等.◆变式训练(2018年山东省东营)如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D.若BD=3,AC=10,则△ACD的面积是.■考点4.垂直平分线◇典例:(2018年贵州省安顺)已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A. B.C. D.【考点】作图—复杂作图,线段垂直平分线【分析】利用线段垂直平分线的性质以及圆的性质分别分得出即可.解:A、如图所示:此时BA=BP,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;B、如图所示:此时PA=PC,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;C、如图所示:此时CA=CP,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;D、如图所示:此时BP=AP,故能得出PA+PC=BC,故此选项正确;故选:D.【点评】此题主要考查了复杂作图,根据线段垂直平分线的性质得出是解题关键.◆变式训练(2018年山东省青岛)已知:如图,∠ABC,射线BC上一点D.求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.一、选择题1.(2018 年广西梧州市)如图,已知 BG 是∠ABC 的平分线,DE⊥AB 于点 E,DF⊥BC 于点 F,DE=6,则 DF 的长度是()A.2 B.3 C.4 D.62.(2018年浙江省湖州市)如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°3.(2018年四川省攀枝花市)如图,等腰直角三角形的顶点A.C分别在直线a、b上,若a∥b,∠1=30°,则∠2的度数为()A.30°B.15°C.10°D.20°4.(2018年甘肃省兰州市(a卷))如图,AB∥CD,AD=CD,∠1=65°,则∠2的度数是()A.50°B.60°C.65°D.70°5.(2018年福建省(A卷))如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°二、填空题6.(2018年湖南省湘潭市)如图,在等边三角形ABC中,点D是边BC的中点,则∠BAD= .7.(2018年贵州省遵义市)如图,△ABC中.点D在BC边上,BD=AD=AC,E为CD的中点.若∠CAE=16°,则∠B为度.8.(2018年江苏省南京市)如图,在△ABC中,用直尺和圆规作AB、AC的垂直平分线,分别交AB、AC于点D、E,连接DE.若BC=10cm,则DE= cm.9.(2018年浙江省绍兴市)数学课上,张老师举了下面的例题:例1 等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2 等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.三、解答题10.(2018年浙江省嘉兴市)已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.一、选择题1.(2018 年广西梧州市)如图,在△ABC 中,AB=AC,∠C=70°,△AB′C′与△ABC 关于直线 EF对称,∠CAF=10°,连接 BB′,则∠ABB′的度数是()A.30° B.35° C.40° D.45°2.(2018年青海省)如图,把直角三角形ABO放置在平面直角坐标系中,已知∠OAB=300,B点的坐标为(0,2),将∆ABO沿着斜边AB翻折后得到∆ABC,则点C的坐标是()A. B. C. D.3.(2018年黑龙江省大庆市)如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30° B.35° C.45° D.60°4.(2018年湖北省襄阳市)如图,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E.若AE=3cm,△ABD 的周长为13cm,则△ABC的周长为()A.16cm B.19cm C.22cm D.25cm5.(2018年江苏省扬州市)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC6.(2018年广西玉林市)如图,∠AOB=60°,OA=OB,动点C从点O出发,沿射线OB方向移动,以AC为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是()A.平行B.相交 C.垂直 D.平行、相交或垂直7.(2018年四川省巴中市)如图,在Rt△ABC中,∠C=90°,按下列步骤作图:①以点B为圆心,适当长为半径画弧,与AB,BC分别交于点D,E;②分别以D,E为圆心,大于DE的长为半径画弧,两弧交于点P;③作射线BP交AC于点F;④过点F作FG⊥AB 于点G.下列结论正确的是()A.CF=FG B.AF=AG C.AF=CF D.AG=FG二、填空题8.(2018年黑龙江省哈尔滨市)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为.9.(2018年广西桂林市)如图,在ΔABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是__________10.(2018年四川省南充市)如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70°,∠FAE=19°,则∠C= 度.11.(2018年湖南省娄底市)如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB于点E,BF⊥AC于点F,DE=3cm,则BF= cm.三、解答题12.(2018年浙江省绍兴市)数学课上,张老师举了下面的例题:例1 等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2 等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.13.(2018年湖北省孝感市)如图,△ABC中,AB=AC,小聪同学利用直尺和圆规完成了如下操作:①作∠BAC的平分线AM交BC于点D;②作边AB的垂直平分线EF,EF与AM相交于点P;③连接PB,PC.请你观察图形解答下列问题:(1)线段PA,PB,PC之间的数量关系是;(2)若∠ABC=70°,求∠BPC的度数.14.(2018年江苏省镇江市)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC= °.15.(2018年黑龙江省哈尔滨市)已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE面积的2倍.。
20XX年中考数学第一轮复习专题训练(十三)(轴对称)一、填空题:(每题3 分,共36 分)1、正方形是轴对称图形,它有____条对称轴。
2、角是轴对称图形,它的对称轴是_____________。
3、汉字中,有很多字是轴对称图形,如“王”、“工”等,请你再写出三个不同的轴对称汉字________。
4、已知p点在线段AB的垂直平分线上,且PB=4cm,则PA=____cm。
5、等腰△ABC中,AB=AC,D为BC中点,则∠ADB=____。
6、补全图形,使它成对轴对称图形。
7、一枚印章上刻有,那么印在纸上的数字是____。
8、如图,△ABC中,AD垂直平分BC边,AB=5,CD=3,那么△ABC周长为____。
9、我国传统木结构房屋,窗子常用各种图案装饰,如图是一种常见的图案,这个图案有____条对称轴。
10、如图,AD平分∠BAC,DE⊥AB,DF⊥AC,DE=4cm,则DF=____cm。
11、不重合的两点的对称轴是____________。
12、在照镜子时,小明发现其上衣右上部有一个口袋,则小明上衣上的口袋应在___。
二、选择题:(每题4 分,共24 分)1、下列几何图形中,①线段;②角;③圆;④等腰三角形;⑤直角三角形;其中是轴对称图形的有()A、1个B、2个C、3个D、4个2、下列图案中,有且只有三条对称轴的是()A B C D3、观察下图中各组图形,其中不是轴对称的是()A B C D4、将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺开,你可见到()A B C D5、下列说法错误的是()537第6题ADB C第8题第9题┐┐AE FDB C第10题A、若A,A' 是以BC为轴对称的点,则AA' 垂直平分BCB、线段的一条对称轴是它本身所在的直线C、一条线段的一个端点的对称点是另一个端点D、等边三角形是轴对称图形A、21:02B、21:05C、20:15D、20:05三、解答题:(每题9 分,共54 分)1、画出下列图形的对称轴。
中考数学专项复习《轴对称变换》练习题及答案一、单选题1.如图,在正方形纸片ABCD中,对角线AC,BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合.展开后,折痕DE分别交AB,AC于点E,G.连接GF.下列结论:①∠AGD=112.5°;②tan∠AED=2;③S∠AGD=S∠OGD;④四边形AEFG是菱形;⑤BE=2OG.其中正确结论的序号是()A.①②③④⑤B.①②③④C.①③④⑤D.①④⑤2.如图,在矩形纸片ABCD中,已知AD=8,折叠纸片,使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A.3B.4C.5D.63.如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF.若AF=5,BE=3,则EF的长为()A.2√3B.√17C.2√5D.3√54.如图,∠ABC中,∠ACB=90°,沿CD折叠∠CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°5.如图,点P为∠AOB内一点,分别作出点P关于OA、OB的对称点P1、P2,连接P1P2交OA于M,交OB于N,若P1P2=6,则∠PMN的周长为()A.4B.5C.6D.76.已知点M(x,y)在第二象限内,且|x|=2,|y|=3,则点M关于原点对称点的坐标是()A.(-2,-3)B.(-2,3)C.(3,-2)D.(2,-3)7.如图,在正方形方格中,阴影部分是涂黑7 个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有()A.4 种B.3 种C.2 种D.1 种8.已知点A(3,﹣2)和点B关于y轴对称,则点B的坐标是()A.(3,2)B.(﹣3,﹣2)C.(﹣2,﹣3)D.(﹣3,2)9.三角形有3个角,用剪刀剪去一个角,剩下的图形一定不会只有()个角.A.3B.2C.4D.510.下列图形是几家电信公司的标志,其中是轴对称图形的是()A.B.C.D.11.如图,正方形地砖的图案是轴对称图形,该图形的对称轴有()A.1条B.2条C.4条D.8条12.已知点M(3,a)和N(b,4)关于x轴对称,则(a+b)2015的值为()A.1B.−1C.72015D.−72015二、填空题13.如图,在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足S∠PAB= 13S矩形ABCD,则点P 到A、B两点的距离之和PA+PB的最小值为.14.如图,在Rt∠ABC中,AB=9,BC=6,∠B=90°,折叠后,点A与BC的中点D恰好重合,折痕为MN,则线段BN的长为.15.一个角的对称轴是它的.16.如图是长为20cm,宽为8cm的矩形纸片,M点为长BC边上的中点,沿过M的直线翻折.若顶点B落在对边AD上,那么折痕长度为cm.17.如图,将矩形ABCD沿对角线AC折叠,使点B翻折到点E处,如果DE∠AC=1∠3,那么AD∠AB=18.如图,在∠ABC 中,∠C=90°,∠A=34°,D ,E 分别为 AB ,AC 上一点,将∠BCD ,∠ADE 沿CD ,DE 翻折,点 A ,B 恰好重合于点 P 处,则∠ACP= .三、综合题19.如图,在矩形ABCD 中,点E 为边CD 上的一点(且ED≤CE ,且E 点不与C 、D 重合),四边形ABCE 关于直线AE 的对称图形为四边形ANME ,延长ME 交AB 于点P ,连接BE ,若AD=1.(1)证明:AP=PE ; (2)若DE=34,求PE 的值;(3)延长BE 交直线AN 于点G ,当∠AEB=90°时,记DE=x ,四边形APEG 的面积为S ,求S 与x 的函数关系式.20.如图,在长度为1个单位长度的小正方形组成的正方形中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与∠ABC关于直线l成轴对称的∠AB′C′;(2)求∠ABC的面积为;(3)在直线l上找一点P,使PB+PC的长最短,则这个最短长度为.21.如图,在矩形ABCD中,E是AD的中点,将∠ABE沿BE折叠,点A的对应点为点G.(1)填空:如图1,当点G恰好在BC边上时,四边形ABGE的形状是形;(2)如图2,当点G在矩形ABCD内部时,延长BG交DC边于点F.求证:BF=AB+DF;若AD=√3AB,试探索线段DF与FC的数量关系.22.如图,已知△ABC的三个顶点的坐标分别为A(−2,4),B(−4,0),C(1,3).(1)①画出△ABC关于x轴对称的图形△A1B1C1,并写出点A的对称点A1的坐标;②若直线l上的点横坐标都是1,画出△ABC关于l对称的图形△A2B2C2,并直接写出△A2B2C2三个顶点的坐标;(2)若点D(a,b)是坐标平面内的一点,则点D关于直线l对称的点的坐标为(用含a、b的式子表示).23.如图,已知直线y=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数y=k x(k≠0)的图象上.(1)求a的值;(2)直接写出点P′的坐标;(3)求反比例函数的解析式.24.如图.把边长为2 cm的正方形剪成四个完全重合的直角三角形,请用这四个直角三角形拼成符合下列要求的一个图形.(1)是轴对称图形,但不是中心对称图形的四边形;(2)是中心对称图形,但不是轴对称图形的四边形;(3)既是轴对称图形,又是中心对称图形的四边形;(4)既不是轴对称图形,又不是中心对称图形的四边形.参考答案1.【答案】D2.【答案】D3.【答案】C4.【答案】C5.【答案】C6.【答案】D7.【答案】B8.【答案】B9.【答案】B10.【答案】C11.【答案】C12.【答案】B13.【答案】4 √214.【答案】415.【答案】角平分线所在的直线16.【答案】5 √5或4 √517.【答案】√2∠118.【答案】22°19.【答案】(1)证明:∵四边形ABCE关于直线AE的对称图形为四边形ANME ∴四边形ABCE四边形ANME∠四边形ANME∴∠AEC=∠AEM∵∠PEC=∠DEM∴∠AEC-∠PEC =∠AEM-∠DEM∴∠AEP=∠AED∵四边形ABCD是矩形∴AB∥CD∴∠AED=∠PAE∴∠AEP=∠PAE∴AP=PE(2)解:如图1,过E作EF∠AB于F,则∠AFE=∠EFP=90°∵四边形ABCD 是矩形 ∴∠D=∠FAD=90° ∴四边形AFED 是矩形 ∴EF=AD=1,AF=DE=34设AP=PE=x ,PF=x -34在Rt∠PFE 中,由勾股定理得PE 2=PF 2+EF 2∴x 2=(x −34)2+12解得x =2524∴PE=2524(3)解:∵四边形ABCE 关于直线AE 的对称图形为四边形ANME ∴四边形ABCE 四边形ANME∠四边形ANME ∴∠BAE=∠NAE ,MN=BC=AD=1 ∵延长BE 交直线AN 于点G ,∠AEB=90° ∴∠AEG=∠AEB=90° 在∠AEB 和∠AEG 中{∠BAE =∠NAE AE =AE ∠AEG =∠AEB∴∠AEB∠∠AEG (ASA ) ∴AB=AG ∵AB=AN ∴AG=AN∴点G 与点N 重合,如图2∵∠CEB+∠AED=180°-∠AEB=90° ∠AED+∠DAE=90° ∴∠CEB=∠DAE ∵∠C=∠D=90° ∴∠CEB∠∠DAE ∴CE AD =BC DE ∴CE 1=1x∴CE =1x∴AB=CD=CE+DE =1x +x =x 2+1x∵AP=PE ∴∠PAE=∠PEA∵∠PAE+∠ABE =∠PEA+∠BEP=90° ∴∠ABE =∠BEP ∴BP=AP=PE∴PE=AP=12AB=x 2+12x∵PE ∥AN∴四边形APEG 是梯形∴四边形APEG 的面积S=12×(PE+AN )×MN=12×(x 2+12x +x 2+1x)×1 =3x 2+34x∴S=3x 2+34x20.【答案】(1)解:如图所示:∠AB′C′即为所求;(2)4(3)21.【答案】(1)正方(2)解:①如图2,连接EF在矩形ABCD中,AB=DC,AD=BC,∠A=∠C=∠D=90°∵E是AD的中点∴AE=DE∵∠ABE沿BE折叠后得到∠GBE∴BG=AB,EG=AE=ED,∠A=∠BGE=90°∴∠EGF=∠D=90°在Rt∠EGF和Rt∠EDF中∵EG=ED,EF=EF∴Rt∠EGF∠Rt∠EDF∴ DF=FG∴ BF=BG+GF=AB+DF;②不妨假设AB=DC=a,DF=b∴AD=BC=√3a由①得:BF=AB+DF∴BF=a+b,CF=a−b在Rt∠BCF中,由勾股定理得:BF2=BC2+CF2∴(a+b)2=(√3a)2+(a−b)2∴4ab =3a 2∵a ≠0∴a =43b ,即:CD=43DF ∵CF=43DF-DF ∴3CF=DF.22.【答案】(1)如图所示, △A 1B 1C 1 即为所求, A 1 的坐标为 (−2,−4) ; (2)如图所示, △A 2B 2C 2 即为所求, 其中 A 2 的坐标为 (4,4) , B 2 的坐标为 (6,0) , C 2 的坐标为(1,3) ;(2)(2−a ,b)23.【答案】(1)解:把(﹣2,a )代入y=﹣2x 中,得a=﹣2×(﹣2)=4∴a=4;(2)解:∵P 点的坐标是(﹣2,4)∴点P 关于y 轴的对称点P′的坐标是(2,4)(3)解:把P′(2,4)代入函数式y= k x,得 4= k 2∴k=8∴反比例函数的解析式是y= 8x24.【答案】(1)解:根据轴对称的概念:把其中的一个图形沿着某条直线折叠,能够与另一个图形重合.则可以把这四个三角形拼成一个等腰梯形,如图所示(2)解:根据中心对称的概念:把一个图形绕着某个点旋转180°能够和另一个图形重合.则可以把这四个三角形拼成一个平行四边形,如图所示;(3)解:根据轴对称和中心对称的概念,则可以把这四个三角形拼成一个菱形或矩形,如图所示(4)解:可以把这四个三角形拼成一个不规则的四边形,如图所示。
典型例题一例01.下列图形中,不是轴对称图形的是( )(A )有两个角相等的三角形(B )有一个内角是的直角三角形︒45(C )有一个内角是,另一个内角为的三角形︒30︒120(D )有一个角是的直角三角形︒30分析:在(A )中,有两个角相等的三角形一定是等腰三角形,而等腰三角形一定是轴对称图形,它的对称轴为底边上的高(或底边上的中线或顶角的平分线). 而(B )和(C )中的两个三角形同样也是等腰三角形,所以也是轴对称图形. 那么(D )中三角形的三个内角各不相等,不是等腰三角形,所以(D )不是轴对称图形.解答:选(D )说明:在三角形中,只有等腰三角形才是轴对称图形,而不是等腰三角形的三角形就一定不是轴对称图形.典型例题二例02.已知:直线MN ,同侧两点A 、B (如图)求作:点P ,使P 在MN 上,并且最小.BP AP +作法 1.作点A 关于直线MN 的对称点.A '2.连结交MN 于PA A '点P 就是所求作的点.说明 这类问题经常遇到,可以和生活中的问题结合衍生出许多应用问题,但本质都是这道题.典型例题三例03.在图(a )中,分别作出点P 关于OA 、OB 的对称点,,连结交OA 1P 2P 21P P 于M ,交OB 于N ,若,则的周长为多少?cm P P 521=PMN ∆作法:略.解答:如图(b )所示,∵,P 关于OA 对称,1P ∴PMM P =1同理可得.PN N P =2∴的周长PMN ∆MN PN PM ++=N P MN M P 21++=cmP P 521==∴的周长为. PMN ∆cm 5 说明 准确作图是关键.典型例题四例04.已知:(如图)四边形ABCD 和过点D 的直线MN ,求作:四边形,使四边形与四边形ABCD 关于MN 对称.D C B A ''''D C B A ''''作法 1.作,垂足为E ;延长BE 到,使,得到点B 的对称MN BE ⊥B 'BE E B ='点.2.同法作点A 和点C 的对称点.C A ''3.因为D 在对称轴MN 上,所以点D 的对称点重合.D '4.连结、、.B A ''C B ''D C ''四边形即为所求.D C B A '''' 说明 关键是掌握概念和基本作图.典型例题五例05.有一条小河(如图所示),两岸有A 、B 两地,要设计道路并在河上垂直于河岸架一座桥,用来连接A 、B 间路线怎样走,桥应架在何处,才能使A 到B 的距离最短.分析:桥梁无论架在何处均垂直于河岸,因此桥梁的长度是定值,决定路程长度的关键是选取建桥点的位置,相对应地在河岸A 地同测取一点,使B 与河岸距离等于与河B 'B '岸到桥头的距离之和,于是,这个总是转化为“直线同侧有两点A 、,欲在直线上求一B '点,使这一点与A 、距离之和最短.B '已知:如图,河岸AB 两地求作:线段CD ,使CD 与、均互相垂直,并且最小.1l 2l BD CD AC ++作法:(1)作,与、分别交点、E ,并且1l B B ⊥'1l 2l E 'BEE B =''(2)在上取一点使(或者找到点关于的对称点)E E 'B ''E B E B ''='''B '1l B ''(3)连结,与交于C 点,作,与交于D 点,CD 即为所求作的线段.B A ''l 2l CD ⊥2l 典型例题六例06.如图所示,P 是平分线AD 上一点,P 与A 不重合,.BAC ∠AB AC >求证:ABAC PB PC -<-分析:用对称法. 可利用轴对称图形的知识找出点B 关于直线AD 的对称点,因AD B '为的平分线,故在AC 上,连结,从而构造与两个轴对称图BAC ∠B 'P B 'P B A '∆ABP ∆形,再利用三角形两边之差小于第三边来证明.证明:作点B 关于直线AD 的对称点,连结.B 'P B '∵AD 是的平分线,BAC ∠∴点在AC 上(是以角平分线AD 所在直线为对称轴的轴对称图形),B 'BAC ∠又∵AP 在对称轴AD 上,∴,P B BP B A AB '='=,在中,C B P '∆∵,C B B P PC '<'-,AB AC B A AC C B -='-=' ,P B BP '=∴.AB AC BP PC -<-说明:和就是利用角平分线AD 构造出的轴对称图形,这种方法对于证BAC ∆P B A '∆明有关线段的不等关系非常方便、有效.典型例题七例07.如图,E 、F 是的边AB 、AC 上的点,在BC 上求一点M ,使的ABC ∆EMF ∆周长最小.分析 因为E 、F 是定点,所以EF 是定值. 要使△EMF 的周长最小,只要MF ME +最小.解答 (1)作点F 关于直线BC 的对称点.F '(2)连结交BC 于M ,点M 就是所求.F E '说明 这类问题在日常生活中经常可以遇到.典型例题八例08.如图,过C 作的平分线AD 的垂线,垂足为D ,作交AC 于BAC ∠AB DE //E .求证:.CE AE =分析 由已知条件容易得到,从而. 要证明,只须证明32∠=∠DE AE =CE AE =,联想到AD 是角平分线又是垂线,若延长CD 交AB 的延长线于P ,则C 、P 关CE DE =于直线AD 对称,于是问题可以解决.解答 延长CD 交AB 的延长线于P .在和中,ADP ∆ADC ∆⎪⎩⎪⎨⎧∠=∠=∠=∠ADP ADC ADAD 21∴(角边角)ADC ADP ∆≅∆故.ACD P ∠=∠又∵,AP DE //∴,P ∠=∠4则.,4CE DE ACD =∠=∠∵,AB DE //∴,31∠=∠又∵,21∠=∠∴,32∠=∠∵(等边对等角),AE DE =∴.CE AE =说明 全等三角形是证明角或线段相等的一种方法,但不是惟一方法,不要一证线段相等就找全等三角形. 等腰三角形的判定定理及其推论,中垂线的性质,都是证线段相等的重要途径.典型例题九例09.如图,AD 是中的平分线,且.ABC ∆BAC ∠AC AB >求证:.DC BC>分析 由于AD 是的平分线,所以可以以AD 为轴构造轴对称图形,即把BAC ∠ADC ∆沿AD 翻折,这样,就可以在中解决问题.︒180DC DE =BED ∆证明 在AB 上截取AE ,使,连结DE .AC AE =∵AD 是的平分线,BAC ∠∴,21∠=∠在和中,AED ∆ACD ∆⎪⎩⎪⎨⎧=∠=∠=)()(21)(公共边已证作图AD AD AC AE ∴(边角边),ACD AED ∆≅∆∴,DC DE =∴(全等三角形对应边对应角相等),43∠=∠∵,(内角和定理的推论),3∠>∠BED B ∠>∠4∴(大角对大边),ED BD B BED >∠>∠,∴.DC BD >说明 本题中的的就是利用角平分线构造出来的轴对称图形. 本题还有AED ∆ACD ∆其他构造轴对称图形的方法,比如把沿AD 翻折,也可证明结论.ADB ∆︒180选择题1.选择题(1)在下列命题中:①两个全等三角形是轴对称图形②两个关于直线对称的图形是全等形l ③等边三角形是轴对称图形④线段有三条对称轴正确命题的个数是()(A )1 (B )2 (C )3 (D )4(2)下列图形是一定轴对称图形的是()(A )任意三角形 (B )有一个角等于的三角形︒60(C )等腰三角形 (D )直角三角形(3)P 为内一点,且,则P 点是()ABC ∆PC PB PA ==(A )三条中线的交点 (B )三条高的交点(C )三个角的平分线的交点 (D )三边垂直平分线的交点(4)已知:D 为的边BC 的中点,且,下面各结论不正确的是()ABC ∆BC AD ⊥(A ) (B )ACD ABC ∆≅∆CB ∠=∠(C )AD 是的平分线 (D )是等边三角形BAC ∠ABC ∆(5)正五角星的对称轴有()(A )1条 (B )2条 (C )5条 (D )10条(6)等边三角形的对称轴共有()(A )1条 (B )3条 (C )6条 (D )无数条(7)下列四个图形①等腰三角形 ②等边三角形 ③等腰直角三角形 ④直角三角形中,一定是轴对称图形的有()(A )1个 (B )2个 (C )3个 (D )4个(8)下列图形中,不一定是轴对称图形的是()(A )线段 (B )角 (C )三角形 (D )等腰直角三角形参考答案:1.选择题(1)B (2)C (3)D (4)D (5)C (6)B (7)C (8)C 填空题1.填空题(1)等边三角形的对称轴有______条.(2)如果沿着一条直线折叠,两个点能互相重合,那么这两个点叫做_______.(3)把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么这两个图形_______.(4)如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做_______.参考答案1.填空题(1)3 (2)对称点 (3)轴对称 (4)轴对称图形解答题1.如图,已知线段AB 及直线MN ,求作线段AB 关于MN 的对称图形.2.如图,已知及直线EF ,求作关于EF 的对称图形.ABC ∆ABC ∆3.如图,已知折线ABC 及直线PQ ,求作折线ABC 关于直线PQ 的对称图形.4.如图,已知,分别以OM ,ON 为对称轴作三角形与它对称.ABC ∆5.在中,,,垂足为H ,点B 关于AH 的对称点是. ABC ∆C B ∠=∠2BC AH ⊥B '求证:.AB C B ='6.如图,已知:在直线MN 的同侧有两点A 和B .求作:MN 上一点,使.BCN ACM ∠=∠7.如图,EFGH 是一个矩形的台球台面,有黑白两球分别位于A ,B 两点位置上,试问:怎样撞击黑球A ,求能使A 先碰撞台边EF 反弹后两击中白球B ?参考答案1.略 2.略 3.略 4.略5.证明:连结,则易证,B A 'B A AB '=B B A B '∠=∠∵,∴,即.B CAC B B A '∠+∠='∠B ∠=C ∠=2B CA C '∠=∠AB C B AB =''=6.作法:作点A 关于MN 的对称点,连结,与MN 的交点为C ,则点C 就是所A 'A B '要求作的点. 证明:略.7.作点A 关于EF 的对称点,连结与EF 的交点为C ,则沿AC 方向撞击黑球A 'B A '就可以满足要求.。
专题线段的垂直平分线的应用类型1线段的垂直平分线的性质在求线段长中的应用1.如图,在△ABC中,AB,AC的垂直平分线分别交BC于点D,E,垂足分别为F,G,已知△ADE的周长为12 cm,则BC=12_cm.2.如图,AB比AC长3 cm,BC的垂直平分线交AB于D,交BC于E,△ACD的周长是14 cm,求AB和AC的长.解:∵△ACD的周长是14 cm,∴AD+DC+AC=14 cm.又∵DE是BC的垂直平分线,∴BD=DC.∴AD+DC=AD+BD=AB.∴AB+AC=14 cm.∵AB比AC长3 cm,∴AB-AC=3 cm.∴AB=8.5 cm,AC=5.5 cm.3.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE,BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.证明:(1)∵AD∥BC,∴∠ADE=∠FCE.∵E是CD的中点,∴DE=CE.又∵∠AED=∠FEC,∴△ADE≌△FCE(ASA).∴FC=AD.(2)∵△ADE≌△FCE,∴AE=EF,AD=CF.又∵BE⊥AE,∴BE是线段AF的垂直平分线.∴AB=BF=BC+CF.∵AD=CF,∴AB=BC+AD.类型2线段垂直平分线的性质在实际问题中的应用4.如图,某城市规划局为了方便居民的生活,计划在三个住宅小区A,B,C之间修建一个购物中心,试问:该购物中心应建于何处,才能使得它到三个小区的距离相等?解:连接AB,BC,分别作AB,BC的垂直平分线DE,GF,两直线交于点M,则点M就是所要确定的购物中心的位置,如图.类型3线段的垂直平分线的性质在判定两线段位置关系中的应用5.如图,OE,OF分别是△ABC中AB,AC边的中垂线(即垂直平分线),∠OBC,∠OCB的平分线相交于点I,试判定OI与BC的位置关系,并给出证明.解:OI ⊥BC.证明:连接AO ,延长OI 交BC 于点M. ∵OE ,OF 分别为AB ,AC 的中垂线, ∴OA =OB ,OA =OC.∴OB =OC.又∵BI ,CI 分别为∠OBC ,∠OCB 的平分线, ∴点I 必在∠BOC 的平分线上. ∴∠BOI =∠COI. 在△BOM 和△COM 中,⎩⎨⎧OB =OC ,∠BOM =∠COM ,OM =OM ,∴△BOM ≌△COM(SAS ). ∴∠BMO =∠CMO.又∵∠BMO +∠CMO =180°. ∴∠BMO =∠CMO =90°. ∴OI ⊥BC.专题轴对称变换的应用类型1轴对称图形的展开与折叠1.(绥化中考)把一张正方形纸片如图①,图②对折两次后,再如图③挖去一个三角形小孔,则展开后的图形是(C)类型2翻折式的轴对称变换2.(娄底中考)将△ABC沿直线DE折叠,使点C与点A重合,已知AB=7,BC=6,则△BCD的周长为13.3.(潜江中考)如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处.若∠A=26°,求∠CDE的度数.解:∵在Rt△ABC中,∠ACB=90°,∠A=26°,∴∠B=64°.∵将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,且∠ACB=90°,∴∠BCD=∠ECD=45°,∠CED=∠B=64°.∴∠CDE=180°-∠ECD-∠CED=71°.4.(枣庄中考改编)如图,△ABC的面积为6,AC=3,现将△ABC沿AB所在直线翻折,使点C 落在直线AD上的C′处,P为直线AD上的一点,求线段BP的最短长度.解:过点B 作BM ⊥AD 于点M ,由题意可知△ABC ≌△ABC′, ∴S △ABC =S △ABC′=6.∵S △ABC ′=12AC′·BM =6,AC ′=AC =3,∴BM =4.根据垂线段最短可知BM ≤BP ,∴BP ≥4. ∴BP 的最短长度为4.类型3 轴对称变换与坐标5.已知点M(2a -b ,5+a),N(2b -1,-a +b).(1)若点M ,N 关于x 轴对称,求a 、b 的值; (2)若点M ,N 关于y 轴对称,求(4a +b)2 017的值. 解:(1)∵M ,N 关于x 轴对称,∴⎩⎪⎨⎪⎧2a -b =2b -1,5+a -a +b =0. 解得⎩⎪⎨⎪⎧a =-8,b =-5.(2)∵M ,N 关于y 轴对称,∴⎩⎪⎨⎪⎧2a -b +2b -1=0,5+a =-a +b. 解得⎩⎪⎨⎪⎧a =-1,b =3.∴(4a +b)2 017=-1.6.如图所示,在平面直角坐标系xOy 中,A(-1,5),B(-1,0),C(-4,3),直线m 为横坐标都为2的点组成的一条直线.(1)作出△ABC关于直线m对称的△A1B1C1;(2)直接写出A1,B1,C1的坐标;(3)求出△A1B1C1的面积.解:(1)如图所示.(2)A1(5,5),B1(5,0),C1(8,3).(3)△A1B1C1的面积为7.5.专题 与等腰三角形的性质与判定相关的证明类型1 证明线段或角的数量关系1.如图,△ABC 中,AB =AC ,D 是BC 的中点,E ,F 分别是AB ,AC 上的点,且AE =AF ,求证:DE =DF.证明:连接AD.∵AB =AC ,D 是BC 的中点, ∴∠EAD =∠FAD. 在△AED 和△AFD 中,⎩⎨⎧AE =AF ,∠EAD =∠FAD ,AD =AD ,∴△AED ≌△AFD(SAS ). ∴DE =DF.2.已知,如图,△ABC 中,AB =AC ,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 和BE 交于H ,且BE =AE.求证:AH =2BD.证明:∵AD ⊥BC ,BE ⊥AC , ∴∠BEC =∠ADB =90°. ∴∠EBC =∠EAH. ∵BE =AE , ∴△AHE ≌△BCE. ∴AH =BC.∵AB =AC ,AD ⊥BC , ∴BC =2BD. ∴AH =2BD.3.如图,在△ABC 中,AB =AC ,∠BAC =90°,D 为AC 的中点,AE ⊥BD 于F ,交BC 于E ,求证:∠ADB =∠CDE.证明:过点C 作CG ⊥AC 交AE 的延长线于G ,则CG ∥AB ,∴∠BAF =∠G. 又∵AF ⊥BD ,AC ⊥CG ,∴∠BAF +∠ABF =90°,∠CAG +∠G =90°. ∴∠ABF =∠CAG. 在△ABD 和△CAG 中,⎩⎨⎧∠ABF =∠CAG ,AB =AC ,∠BAD =∠ACG =90°,∴△ABD ≌△CAG(ASA ). ∴AD =CG ,∠ADB =∠G. 又∵D 为AC 中点,∴AD =CD. ∴CD =CG.∵AB =AC ,∴∠ABC =∠ACB. 又∵AB ∥CG ,∴∠ABC =∠GCE. ∴∠ACB =∠GCE. ∴△CDE ≌△CGE(SAS ). ∴∠CDE =∠G. ∴∠ADB =∠CDE.4.如图,在△ABC中,∠ABC=2∠C,AD平分∠BAC,求证:AB+BD=AC.证明:延长CB至E,使BE=BA,则∠BAE=∠E.又∵∠ABC=2∠C=2∠E,∴∠E=∠C.∴AE=AC.∵AD平分∠BAC,∴∠BAD=∠DAC.∵∠BAE=∠E,∠E=∠C,∴∠BAE=∠C.又∵∠EAD=∠BAE+∠BAD,∠EDA=∠C+∠DAC,∴∠EAD=∠EDA.∴AE=DE.∴AC=DE=BE+BD=AB+BD.类型2证明线段的位置关系5.如图,点C是线段AB上任意一点(点C与点A,B不重合),分别以AC,BC为边在直线AB的同侧作等边三角形ACD和等边三角形BCE,AE与CD相交于点M,BD与CE相交于点N,连接MN.求证:(1)△ACM≌△DCN;(2)MN∥AB.证明:(1)∵△ACD和△BCE都是等边三角形,∴AC=DC,BC=EC,∠ACD=∠BCE=60°.∵∠ACD+∠DCE+∠ECB=180°,∴∠DCE =60°.∴∠ACE =∠DCB =120°. 在△ACE 和△DCB 中,⎩⎨⎧AC =DC ,∠ACE =∠DCB ,CE =CB ,∴△ACE ≌△DCB(SAS ). ∴∠EAC =∠BDC. 在△ACM 和△DCN 中,⎩⎨⎧∠MAC =∠NDC ,AC =DC ,∠ACM =∠DCN =60°,∴△ACM ≌△DCN(ASA ). (2)由(1)知△ACM ≌△DCN , ∴CM =CN.又∵∠MCN =60°,∴△CNM 为等边三角形,∠NMC =60°. ∴∠NMC =∠ACM =60°. ∴MN ∥AB.6.如图,在△ABC 中,AB =AC ,点D ,E ,F 分别在边BC ,AB ,AC 上,且BD =CF ,BE =CD ,G 是EF 的中点,求证:DG ⊥EF.证明:连接ED ,FD.∵AB =AC , ∴∠B =∠C.在△BDE 和△CFD 中,⎩⎨⎧BD =CF ,∠B =∠C ,BE =CD ,∴△BDE ≌△CFD(SAS ). ∴DE =DF.又∵G 是EF 的中点, ∴DG ⊥EF.类型3 判断三角形的形状7.已知:如图,OA 平分∠BAC ,∠1=∠2.求证:△ABC 是等腰三角形.证明:过点O 作OD ⊥AB 于D ,OE ⊥AC 于E ,则△BOD 和△COE 都是直角三角形. ∵OA 平分∠BAC ,OD ⊥AB ,OE ⊥AC , ∴OD =OE. ∵∠1=∠2, ∴OB =OC.∴Rt △BOD ≌Rt △COE(HL ). ∴∠ABO =∠ACO. ∴∠ABC =∠ACB. ∴AB =AC.∴△ABC 是等腰三角形.8.已知△ABC 中,∠BAC =90°,AB =AC ,D 为BC 的中点.(1)如图1,E ,F 分别是AB ,AC 上的点,且BE =AF ,试判断△DEF 的形状,并说明理由; (2)如图2,若E ,F 分别为AB ,CA 的延长线上的点,仍有BE =AF.请判断△DEF 是否仍具有(1)中的形状,并说明理由.解:(1)△DEF为等腰直角三角形.理由:连接AD,易证△BDE≌△ADF,∴DE=DF,∠BDE=∠ADF.又∵∠BAC=90°,AB=AC,D为BC的中点,∴AD⊥BC.∴∠ADB=90°.∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠ADB=90°. ∴△DEF为等腰直角三角形.(2)是,理由略.专题运用分类讨论求解等腰三角形相关的多解问题类型1针对腰长和底边长进行分类方法归纳:在解答已知等腰三角形边长的问题时,当题目中的条件没有指明已知的这条边是腰长还是底边长时,就要分类讨论,按腰和底边两种情况分类.若涉及边的长度,应运用三角形的三边关系进行辨别取舍.1.(武汉中考)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是(A)A.5 B.6 C.7 D.82.如图,在Rt△ABC中,∠ACB=90°,AB=2BC,在直线BC或AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P共有(B)A.7个B.6个C.5个D.4个3.若实数x,y满足|x-5|+y-10=0,则以x,y的值为边长的等腰三角形的周长为25.类型2针对顶角和底角进行分类方法归纳:对于等腰三角形,只要已知它的一个内角的度数,就能算出其他两个内角的度数,如果题中没有确定这个内角是顶角还是底角,就要分两种情况来讨论.在分类时要注意:三角形的内角和等于180°;等腰三角形中至少有两个角相等.4.等腰三角形有一个角为52°,它的一条腰上的高与底边的夹角为多少度?解:①若已知的这个角为顶角,则底角的度数为(180°-52°)÷2=64°,故一腰上的高与底边的夹角为26°;②若已知的这个角为底角,则一腰上的高与底边的夹角为38°. 故所求的一腰上的高与底边的夹角为26°或38°.5.如果等腰三角形中的一个角是另一个角度数的一半,求该等腰三角形各内角的度数.解:设∠A ,∠B ,∠C 是该等腰三角形的三个内角,且∠A =12∠B.设∠A =x °,则∠B =2x °.①若∠B 是顶角,则∠A ,∠C 是底角,于是有∠C =∠A =x °. ∵∠A +∠B +∠C =180°,∴x +2x +x =180. 解得x =45,故∠A =∠C =45°,∠B =90°; ②若∠B 是底角,∵∠A ≠∠B , ∴∠A 是顶角,∠C =∠B =2x °.∵∠A +∠B +∠C =180°,∴x +2x +2x =180. 解得x =36,故∠A =36°,∠B =∠C =72°.综上所述,等腰三角形的各内角分别为45°、45°、90°或36°、72°、72°.类型3 针对锐角、直角和钝角三角形进行分类方法归纳:根据等腰三角形顶角的大小可以将其分为锐角、直角或钝角三角形.不同的三角形其高、中线、垂直平分线的交点位置均不同,比如锐角三角形腰上的高的交点在这个三角形的内部;直角三角形腰上的高的交点为两直角边的交点;钝角三角形腰上的高的交点在这个三角形的外部,因此在解答时需要分类讨论.6.已知△ABC 中,AB =AC ,AB 的垂直平分线与AC 所在的直线相交成50°的角,求底角的度数.解:由题意可判断该三角形不可能是直角三角形,可能是锐角三角形或钝角三角形,故分两种情况讨论:①如图1,垂直平分线DE 与腰AC 相交,且∠AED =50°,则∠A =40°,所以∠B =∠C =70°;②如图2,垂直平分线DE 与腰AC 的反向延长线相交,且∠AED =50°,则∠EAD =40°,∠BAC =140°,所以∠B =∠C =20°.综上可知,等腰三角形的底角为70°或20°.7.一个等腰三角形一边上的高等于另一边的一半,则等腰三角形底角的度数是多少?解:设∠A 为顶角,则∠ABC 、∠ACB 为底角. (1)若∠A 为锐角,如图1,作BD ⊥AC 于点D , 根据题意有BD =12AB ,∠BDA =90°,∴∠A =30°,∠ABC =∠ACB =75°;(2)若∠A 为直角,根据题意“等腰三角形一边上的高等于另一边的一半”,这种情况无解; (3)若∠A 为钝角,有三种情况:①如图2,作AD ⊥BC 于点D , 根据题意有AD =12AB ,∠ADB =90°,∴∠ABC =∠ACB =30°;②如图3,作BD ⊥CA 的延长线于点D , 根据题意有BD =12BC ,∠ADB =90°,∴∠ABC =∠ACB =30°;③如图4,作BD ⊥CA 的延长线于点D , 根据题意有BD =12AB ,∠ADB =90°,∴∠BAD =30°,∠ABC =∠ACB =15°.综上所述,等腰三角形底角的度数是75°、30°或15°.8.AC 为等腰△ABD 的腰BD 上的高,且∠CAB =60°.求这个三角形各内角的度数.解:①如图1,高AC 在△ABD 的内部, 因为∠CAB =60°,∠ACB =90°, 所以∠B =30°.因为BA =BD ,所以∠BAD =∠D =75°; ②如图2,高AC 在△ABD 的外部, 因为∠CAB =60°,∠ACB =90°, 所以∠ABC =30°. 所以∠ABD =150°.因为BA =BD ,所以∠BAD =∠D =15°; ③如图3,高AC 在△ABD 的外部, 因为∠CAB =60°,∠ACB =90°, 所以∠B =30°.因为DA=DB,所以∠BAD=∠B=30°.所以∠ADB=120°.综上所述,这个三角形各内角的度数分别为30°,75°,75°或150°,15°,15°或120°,30°,30°.复习轴对称01基础题知识点1轴对称与轴对称图形1.(赤峰中考)下列图标是由我们熟悉的一些基本数学图形组成的,其中是轴对称图形的是①②③④(填序号).2.图中有阴影的三角形与哪些三角形成轴对称?整个图形是轴对称图形吗?它共有几条对称轴?解:1和3,是,两条.知识点2线段的垂直平分线3.(遂宁中考)如图,在△ABC中,AC=4 cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7 cm,则BC的长为(C)A.1 cmB.2 cmC.3 cmD.4 cm知识点3画轴对称图形4.请作出图中四边形ABCD关于直线a的轴对称图形,要求:不写作法,但必须保留作图痕迹.解:如图所示:四边形A′B′C′D′即为所求.知识点4等腰三角形5.(荆门中考改编)如图,△ABC中,AB=AC,AD是∠BAC的平分线,已知BD=4,则BC的长为(C)A.5B.6C.8D.106.如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠BCD的平分线,则图中的等腰三角形有(A)A.5个B.4个C.3个D.2个知识点5等边三角形7.如图所示,△ABC是等边三角形,且BD=CE,∠1=15°,则∠2的度数为(D) A.15°B.30°C.45°D.60°8.(义乌中考)由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图1,衣架杆OA=OB=18 cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是18cm.知识点6含30°角的直角三角形的性质9.如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD=3.10.如图,△ABC是等边三角形,AD∥BC,CD⊥AD,若AD=2 cm,则△ABC的周长为12cm.知识点7最短路径问题11.如图,在△ABC中,∠BAC=90°,AB=3,AC=4,BC=5,EF垂直平分BC,点P为直线EF上的任一点,则AP+BP的最小值是(B)A.3B.4C.5D.602中档题12.如图,在△ABC中,AB=AC,∠ABC=75°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为(A)A.15°B.17.5°C.20°D.22.5°13.(雅安中考)如图所示,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,若DE=2,则EC=8.14.如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)△A1B1C1的面积为4.5.解:如图所示:△A1B1C1即为所求.15.如图所示,MP和NQ分别垂直平分AB和AC.(1)若△APQ的周长为12,求BC的长;(2)∠BAC=105°,求∠PAQ的度数.解:(1)∵MP和NQ分别垂直平分AB和AC,∴AP=BP,AQ=CQ.∴△APQ的周长为AP+PQ+AQ=BP+PQ+CQ=BC.∵△APQ的周长为12,∴BC =12.(2)∵AP =BP ,AQ =CQ ,∴∠B =∠BAP ,∠C =∠CAQ.∵∠BAC =105°,∴∠BAP +∠CAQ =∠B +∠C =180°-∠BAC =180°-105°=75°.∴∠PAQ =∠BAC -(∠BAP +∠CAQ)=105°-75°=30°.03 综合题16.如图,在等边△ABC 中,点E 为边AB 上任意一点,点D 在边CB 的延长线上,且ED =EC.(1)当点E 为AB 的中点时(如图1),则有AE =DB(填“>”“<”或“=”);(2)猜想AE 与DB 的数量关系,并证明你的猜想.解:当点E 为AB 上任意一点时,AE 与DB 的大小关系不会改变.理由如下:过E 作EF ∥BC 交AC 于F ,∵△ABC 是等边三角形,∴∠ABC =∠ACB =∠A =60°,AB =AC =BC.∴∠AEF =∠ABC =60°,∠AFE =∠ACB =60°,即∠AEF =∠AFE =∠A =60°.∴△AEF 是等边三角形.∴AE =EF =AF.∵∠ABC =∠ACB =∠AFE =60°,∴∠DBE =∠EFC =120°,∠D +∠BED =∠FCE +∠ECD =60°.∵DE =EC ,∴∠D =∠ECD.∴∠BED =∠ECF.在△DEB 和△ECF 中,⎩⎨⎧∠DEB =∠ECF ,∠DBE =∠EFC ,DE =EC ,∴△DEB ≌△ECF(AAS ).∴BD =EF =AE ,即AE =BD.。
中考数学复习《轴对称》专题训练-带含有参考答案一、选择题1.下列交通标志中,是轴对称图形的是()A.B.C.D.2.点P关于x轴对称点M的坐标为(4,﹣5),那么点P关于y轴对称点N的坐标为()A.(﹣4,5)B.(4,5)C.(﹣4,﹣5)D.(﹣5,4)3.如图,方格纸中每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,线段AB 的顶点均在格点上.在图中画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M,N均为格点,这样的线段能画()条.A.2 B.3 C.5 D.64.如图,在△ABC中,DE是AC的垂直平分线AB=5cm,BC=8cm,则△ABD的周长为()A.10cm B.13cm C.15cm D.16cm5.等腰三角形的周长为11,其中一边长为3,则该等腰三角形的底边长为()A.3B.5C.4或5D.3或56.如图,在Rt△ABC中∠ACB=90°,∠B=15°,AB的垂直平分线交AB于点E,交BC于点D,且BD=12cm,则AC的长是()A.12cm B.6cm C.4cm D.6√3cm7.如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G,F,若FG=3,ED=6,则EB+DC的值为()A.7 B.8 C.9 D.108.如图,已知ΔABC是正三角形,D是BC边上任意一点,过点D作DF⊥AC于点F,ED⊥BC交AB于点E,则∠EDF等于()A.50°B.65°C.60°D.75°二、填空题9.某车标是一个轴对称图形,有条对称轴.10.在平面直角坐标系中,点M(a,3)与点N(5,b)关于y轴对称,则a﹣b=.11.如图,在△ABC中,边AB的垂直平分线分别交BC于点D,交AB于点E.若AE=3,△ADC的周长为8,则△ABC的周长为.12.如图,在△ABC中,AB=AC,AD=BD,∠A=36°,则图中等腰三角形的个数是.13.如图,在△ABC中AB=AC,∠C=30°,AB⊥AD,AD=6,BC的长是.三、解答题14.图①、图②均是由边长为1的小正方形组成的网格,每个小正方形的顶点称为格点,点A、B、C均在格点上.请用无刻度的直尺按下列要求在网格中作图.(1)在图①中,连接AC,以线段AC为腰作一个等腰直角三角形ACD;(2)在图②中确定一个格点D,并画出以A、B、C、D为顶点的四边形.使其为轴对称图形.15.如图,在中,的垂直平分线分别交线段,于点M,P,的垂直平分线分别交线段,于点N,Q.(1)如图,当时,求的度数;(2)当时,求的度数.16.如图,在平面直角坐标系xOy中,A(-1,5),B(-1,0),C(-4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)写出点△A1B1C1的坐标.17.如图,在△ABC中,AB=AC,点D、E、F分别在△ABC的三条边上,且BF=CD,BD=CE.(1)求证:△DFE是等腰三角形;(2)若∠A=56°,求∠EDF的度数.18.如图,在△ABC中AB=AC,点D在△ABC内BD=BC,∠DBC=60°点E在△ABC外∠BCE=150°,∠ABE=60° .(1)求∠ADB的度数;(2)判断△ABE的形状并加以证明;(3)连接DE,若DE⊥BD,DE=8求AD的长.参考答案1.B2.A3.C4.B5.D6.B7.C8.C9.310.﹣811.1412.313.1814.(1)解:如图①所示(2)解:如图②所示15.(1)解:∵、分别是的垂直平分线∴∵∴∵∴∴(2)解:∵分别是的垂直平分线∴∴∴当P点在Q点右侧时,如图:∵∴∵∴.当P点在Q点左侧时∵∴∵∴.综上或.16.(1)解:S△ABC= 12×5×3=152(或7.5)(平方单位)(2)解:如图.(3)解:A1(1,5),B1(1,0),C1(4,3). 17.(1)证明:∵AB=AC∴∠B=∠C在△FBD与△DCE中{BF=CD∠B=∠CBD=CE∴△FBD≌△DCE.∴DF=ED,即△DEF是等腰三角形(2)解:∵AB=AC,∠A=56°∴∠B=∠C= 12(180°−56°)=62°.∴∠EDF=∠B=62°.18.(1)解:∵BD=BC,∠DBC=60°∴△DBC是等边三角形,∴DB=DC,∠BDC=∠DBC=∠DCB=60°在△ADB和△ADC中{AB=ACAD=ADDB=DC∴△ADB≌△ADC,∴∠ADB=∠ADC,∴∠ADB= 12(360°﹣60°)=150°.(2)解:结论:△ABE是等边三角形.理由:∵∠ABE=∠DBC=60°,∴∠ABD=∠CBE在△ABD和△EBC中{AB=EB∠ADB=∠BCE=150°∠ABD=∠CBE∴△ABD≌△EBC ∴AB=BE,∵∠ABE=60°,∴△ABE是等边三角形.(3)解:连接DE.∵∠BCE=150°,∠DCB=60°,∴∠DCE=90°,∵∠EDB=90°,∠BDC=60°∴∠EDC=30°,∴EC= 12DE=4,∵△ABD≌△EBC,∴AD=EC=4.。
图形的轴对称一、选择题1.下列图案属于轴对称图形的是()A. B.C. D.2.下列说法:①角是轴对称图形,对称轴是角的平分线;②等腰三角形至少有1条对称轴,至多有3条对称轴;③关于某直线对称的两个三角形一定是全等三角形;④两图形关于某直线对称,对称点一定在直线的两旁,其中正确的有()A. 4个B. 3个C. 2个D. 1个3.下列大学的校徽图案是轴对称图形的是()A. 清华大学B. 北京大学C. 中国人民大学D. 浙江大学4.给出下列图形名称:(1)线段;(2)直角;(3)等腰三角形;(4)平行四边形;(5)长方形,在这五种图形中是轴对称图形的有()A. 1个B. 2个C. 3个D. 4个5.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为()A.B.C.D. 7cm6.如图,△ABC与△A′B′C′关于直线MN对称,P为MN上任一点(P不与AA′共线),下列结论中错误的是()A. △是等腰三角形B. MN垂直平分,C. △与△面积相等D. 直线AB、的交点不一定在MN上7.下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.8.把一个正方形纸片折叠三次后沿虚线剪断①②两部分,则展开①后得到的是()A. B. C. D.9.如图,在小方格中画与△ABC成轴对称的三角形(不与△ABC重合),这样的三角形能画出()A. 1个B. 2个C. 3个D. 4个10.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A. B. C. D.11.如图,在等腰△ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的垂直平分线交于点O、点C沿EF折叠后与点O重合,则∠CEF的度数是()A.B.C.D.12.如图,在矩形ABCD中,E是BC边的中点,将△ABE沿AE所在直线折叠得到△AGE,延长AG交CD于点F,已知CF=2,FD=1,则BC的长是()A. 5cmB. 10cmC. 20cmD. 15cm二、填空题13.如图,在A BCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为______.14.如图,把一张长方形纸片ABCD沿EF折叠,C点落在C′处,D点落在D′处,ED′交BC于点G.已知∠EFG=50°,则∠BGD′的度数为______ .15.如图,是4×4正方形网格,其中已有4个小方格涂成了黑色.现在要从其余白色小方格中选出一个也涂成黑色,使整个黑色部分图形构成轴对称图形,这样的白色小方格有________种选择.16.如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴、y轴上,点E在边BC上,将该矩形沿AE折叠,点B恰好落在边OC上的F处.若OA=8,CF=4,则点E的坐标是______.17.如图,直线y=x+6与x轴、y轴分别交于点A和点B,x轴上有一点C(-4,0),点P为直线一动点,当PC+PO值最小时点P的坐标为______.三、解答题(本大题共3小题,共24.0分)18.如图,在△ABC中,∠BAC=45°,AD⊥BC于点D,BD=6,DC=4,求AD的长.小明同学利用翻折,巧妙地解答了此题,按小明的思路探究并解答下列问题:(1)分别以AB,AC所在直线为对称轴,画出△ABD和△ACD的对称图形,点D 的对称点分别为点E,F,延长EB和FC相交于点G,求证:四边形AEGF是正方形;(2)设AD=x,建立关于x的方程模型,求出AD的长.19.如图,它是一个8×10的网格,每个小正方形的边长均为1,每个小正方形的顶点叫格点,△ABC的顶点均在格点上.(1)画出△ABC关于直线OM对称的△AB1C1.1(2)画出△ABC关于点O的中心对称图形△AB2C2.2(3)△AB1C1与△A2B2C2组成的图形是轴对称图形吗?如果是,请画出对称1轴.△A1B1C1与△A2B2C2组成的图形______(填“是”或“不是”)轴对称图形.20.如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕EF分别与AB、DC交于点E和点F.(1)证明:△ADF≌△AB′E;(2)若AD=12,DC=18,求△AEF的面积.答案和解析1.【答案】A【解析】解:A、能找出一条对称轴,故A是轴对称图形;B、不能找出对称轴,故B不是轴对称图形;C、不能找出对称轴,故C不是轴对称图形;D、不能找出对称轴,故D不是轴对称图形.故选:A.根据轴对称图形的定义,寻找四个选项中图形的对称轴,发现只有,A有一条对称轴,由此即可得出结论.本题考查了轴对称图形,解题的关键是分别寻找四个选项中图形的对称轴.本题属于基础题,难度不大,解决该题型题目时,通过寻找给定图象有无对称轴来确定该图形是否是轴对称图形是关键.2.【答案】C【解析】解:①角是轴对称图形,对称轴是角的平分线所在的直线,而非角平分线,故①错误;②等腰三角形至少有1条对称轴,至多有3条对称轴,正三角形有三条对称轴,故②正确;③关于某直线对称的两个三角形一定可以完全重合,所以肯定全等,故③正确;④两图形关于某直线对称,对称点可能重合在直线上,故④错误;综上有②、③两个说法正确.故选C.要找出正确的说法,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.本题考查了轴对称以及对称轴的定义和应用,难度不大,属于基础题.3.【答案】B【解析】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可.此题主要考查了轴对称图形,关键是找出图形中的对称轴.4.【答案】D【解析】解:(1)线段;(2)直角;(3)等腰三角形;(5)长方形是轴对称图形,共4个,故选:D.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称可得答案.此题主要考查了轴对称图形,关键是找出图形的对称轴.5.【答案】A【解析】解:∵点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,∴PM=MQ,PN=NR,∵PM=2.5cm,PN=3cm,MN=4cm,∴RN=3cm,MQ=2.5cm,即NQ=MN-MQ=4-2.5=1.5(cm),则线段QR的长为:RN+NQ=3+1.5=4.5(cm).故选:A.利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用MN=4cm,得出NQ 的长,即可得出QR的长.此题主要考查了轴对称图形的性质,得出PM=MQ,PN=NR是解题关键.6.【答案】D【解析】解:∵△ABC与△A′B′C′关于直线MN对称,P为MN上任意一点,∴△AA′P是等腰三角形,MN垂直平分AA′,CC′,这两个三角形的面积相等,A、B、C选项正确;直线AB,A′B′关于直线MN对称,因此交点一定在MN上.D错误;故选:D.据对称轴的定义,△ABC与△A′B′C′关于直线MN对称,P为MN上任意一点,可以判断出图中各点或线段之间的关系.本题考查轴对称的性质与运用,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.7.【答案】C【解析】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、是中心对称图,不是轴对称图形,故本选项错误;C、既是中心对称图又是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:C.根据中心对称图形和轴对称图形对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8.【答案】C【解析】解:如图,展开后图形为正方形.故选:C.由图可知减掉的三角形为等腰直角三角形,展开后为正方形.本题主要考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.9.【答案】C【解析】【分析】本题考查了画轴对称图形.找出对称轴,根据对称轴的性质画图是解题的关键.根据网格可知,画三角形ABC的对称图形共有3个符号题意得对称轴,所以可以画3个符合题意的三角形即可解答.【解答】解:根据题意画出图形如下:,共有三条对称轴,分别是a,b,c,根据画轴对称图形的方法可以画3个符合题意的三角形.故选C.10.【答案】D【解析】【分析】本题考查的是翻折变换的性质和矩形的性质,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.连接BF,根据三角形的面积公式求出BH,得到BF,根据直角三角形的判定得到∠BFC=90°,根据勾股定理求出答案.【解答】解:连接BF,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴AE==5,由折叠知,BF⊥AE(对应点的连线必垂直于对称轴)∴BH==,则BF=,∵FE=BE=EC,∴∠BFC=90°,∴CF==.故选D.11.【答案】C【解析】解:如图,连接OB,∵∠BAC=50°,AO为∠BAC的平分线,∴∠BAO=∠BAC=×50°=25°.又∵AB=AC,∴∠ABC=∠ACB=65°.∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=25°,∴∠OBC=∠ABC-∠ABO=65°-25°=40°.∵AO为∠BAC的平分线,AB=AC,∴直线AO垂直平分BC,∴OB=OC,∴∠OCB=∠OBC=40°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE.∴∠COE=∠OCB=40°;在△OCE中,∠OEC=180°-∠COE-∠OCB=180°-40°-40°=100°,∴∠CEF=∠CEO=50°.故选:C.连接OB,OC,先求出∠BAO=25°,进而求出∠OBC=40°,求出∠COE=∠OCB=40°,最后根据等腰三角形的性质,问题即可解决.该题主要考查了等腰三角形的性质以及翻折变换及其应用,解题的关键是根据翻折变换的性质,找出图中隐含的等量关系,灵活运用有关定理来分析、判断.12.【答案】B【解析】解:连接EF,∵E是BC的中点,∴BE=EC,∵△ABE沿AE折叠后得到△AFE,∴BE=EG,∴EG=EC,∵在矩形ABCD中,∴∠C=90°,∴∠EGF=∠B=90°,∵在Rt△EFG和Rt△EFC中,,∴Rt△EFG≌Rt△EFC(HL),∴FG=CF=2,∵在矩形ABCD中,AB=CD=CF+DF=2+1=3,∴AG=AB=3,∴AF=AG+FG=3+2=5,∴BC=AD===2.故选B.首先连接EF,由折叠的性质可得BE=EG,又由E是BC边的中点,可得EG=EC,然后证得Rt△EFG≌Rt△EFC(HL),继而求得线段AF的长,再利用勾股定理求解,即可求得答案.此题考查了折叠的性质、矩形的性质、全等三角形的判定与性质以及勾股定理的应用.注意证得FG=FC是关键.17.【答案】80°【解析】【分析】本题主要考查的是平行线的性质和轴对称的性质.首先由平行线的性质得出∠DEF=∠EFG=50°,然后由折叠性质得出∠DEG=100°,最后根据对顶角相等得出∠BGD′的度数即可.【解答】解:∵四边形ED′C′F由四边形EDCF折叠而成,∴∠DEG=2∠DEF=2∠D′EF.∵AD∥BC,∴∠DEF=∠EFG=50°,∠AEG=∠EGF,∴∠GEF=∠DEF=50°,∴∠DEG=∠GEF+∠DEF=100°.∴∠AEG=180°-∠DEG=80°∴∠EGF=80° ,∴∠BGD′=∠EGF=80°.故答案为80°.18.【答案】3【解析】【分析】本题主要考查轴对称图形的概念.此题利用格点图,考查学生轴对称性的认识.此题关键是找对称轴,按对称轴的不同位置,可以有多种画法.根据轴对称图形的概念分别找出各个能成轴对称图形的小方格即可.【解答】解:如图所示,有3个位置使之成为轴对称图形.故答案为3.19.【答案】(-10,3)【解析】解:设CE=a,则BE=8-a,由题意可得,EF=BE=8-a,∵∠ECF=90°,CF=4,∴a2+42=(8-a)2,解得,a=3,设OF=b,∵△ECF∽△FOA,∴,即,得b=6,即CO=CF+OF=10,∴点E的坐标为(-10,3),故答案为(-10,3).根据题意可以得到CE、OF的长度,根据点E在第二象限,从而可以得到点E 的坐标.本题考查勾股定理的应用,矩形的性质、翻折变化、坐标与图形变化-对称,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.【答案】(-,)【解析】【分析】本题考查的是一次函数的应用和轴对称的性质,作点C关于直线y=x+6的对称点C′,连接AC′,OC′交直线y=x+6于点P,则点P即为所求.求出AB两点的坐标,据此可得出∠BAO及∠ACC′的度数,根据轴对称的性质得出△ACC′是等腰直角三角形,故可得出C′点的坐标,利用待定系数法求出直线OC′的坐标,进而可得出P点坐标.【解答】解:如图,作点C关于直线y=x+6的对称点C′,连接AC′,OC′交直线y=x+6于点P,则点P即为所求,∵直线y=x+6与x轴、y轴分别交于点A和点B,∴A(-6,0),B(0,6),∴∠BAO=45°.∵CC′⊥AB,∴∠ACC′=45°.∵点C,C′关于直线AB对称,∴AB是线段CC′的垂直平分线,∴△ACC′是等腰直角三角形,∴AC=AC′=2,∴C′(-6,2).设直线OC′的解析式为y=kx(k≠0),则2=-6k,解得k=-,∴直线OC′的解析式为y=-x,∴,解得,∴P(-,).故答案为(-,).21.【答案】(1)证明:由题意可得:△ABD≌△ABE,△ACD≌△ACF.∴∠DAB=∠EAB,∠DAC=∠FAC,又∠BAC=45°,∴∠EAF=90°.又∵AD⊥BC∴∠E=∠ADB=90°,∠F=∠ADC=90°.∴四边形AEGF是矩形,又∵AE=AD,AF=AD∴AE=AF.∴矩形AEGF是正方形;(2)解:设AD=x,则AE=EG=GF=x.∵BD=6,DC=4,∴BE=6,CF=4,∴BG=x-6,CG=x-4,在Rt△BGC中,BG2+CG2=BC2,∴(x-6)2+(x-4)2=102.化简得,x2-10x-24=0解得x=12,x2=-2(舍去)1所以AD=x=12.【解析】(1)先根据△ABD≌△ABE,△ACD≌△ACF,得出∠EAF=90°;再根据对称的性质得到AE=AF,从而说明四边形AEGF是正方形;(2)利用勾股定理,建立关于x的方程模型(x-6)2+(x-4)2=102,求出AD=x=12.本题考查图形的翻折变换和利用勾股定理,建立关于x的方程模型的解题思想.要能灵活运用.22.【答案】是【解析】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)如图,△A1B1C1与△A2B2C2组成的图形是轴对称图形,其对称轴为直线l.(1)根据△ABC与△A1B1C1关于直线OM对称进行作图即可;(2)根据△ABC与△A2B2C2关于点O成中心对称进行作图即可;(3)一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.本题主要考查了利用轴对称变换以及中心对称进行作图,轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时互相重合.把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点中心对称.23.【答案】解:(1)∵四边形ABCD是矩形,∴∠D=∠C=∠B′=90°,AD=CB=AB′,∵∠DAF+∠EAF=90°,∠B′AE+∠EAF=90°,∴∠DAF=∠B′AE,在△ADF和△AB′E中,,∴△ADF≌△AB′E(ASA).(2)由折叠性质得FA=FC,设FA=FC=x,则DF=DC-FC=18-x,在Rt△ADF中,AD2+DF2=AF2,∴122+(18-x)2=x2.解得x=13.∵△ADF≌△AB′E(已证),∴AE=AF=13,∴S△AEF===78.【解析】(1)根据折叠的性质以及矩形的性质,运用ASA即可判定△ADF≌△AB′E;(2)先设FA=FC=x,则DF=DC-FC=18-x,根据Rt△ADF中,AD2+DF2=AF2,即可得出方程122+(18-x)2=x2,解得x=13.再根据AE=AF=13,即可得出S△AEF==78.本题属于折叠问题,主要考查了全等三角形的判定与性质,勾股定理以及三角形面积的计算公式的运用,解决问题的关键是:设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.。
中考数学人教版专题复习:轴对称综合复习一、学习目标:1. 总结本章所学的轴对称、轴对称变换、等腰三角形的性质和判定等知识;2. 培养学生用轴对称的观点认识线段的中垂线、角的平分线、等腰三角形等几何图形;3. 归纳总结本章学习过程中用到的数学思想方法,培养分析问题的能力。
二、重点难点:重点:将所学知识有机地组织起来,形成科学合理的知识结构,并能综合运用。
难点:通过归纳总结解题思想和方法,形成分析问题解决问题的能力。
三、考点分析:中考对本章的要求是通过具体实例识别轴对称、轴对称图形;理解轴对称图形和利用轴对称进行图案设计,探索图形之间的变换关系;掌握等腰三角形的性质和等腰三角形、等边三角形的识别,并能运用其性质解答实际问题。
从中考试题来看,本章知识以基础题为主,题型多以填空题、选择题的形式出现,也有简单的作图题和解答题。
等腰三角形图形的折叠与拼图和轴对称性质的应用是中考的热点题型。
知识梳理典例精析知识点一:轴对称的应用例1. 已知AOB α∠=,P 是AOB ∠内一点,分别作点P 关于,OA OB 的对称点',''P P 。
(1)求证:'''2P OP α∠=;(2)若P 点在AOB ∠外,其他条件不变,那么(1)中的结论还成立吗?若成立请证明,若不成立请说明理由。
思路分析:本题考查的是轴对称的性质。
成轴对称的两个图形、或者轴对称图形在对称轴两侧的部分是“一模一样”的,严谨地说就是对应线段相等、对应角度相等、对应面积相等、对应点的连线被对称轴垂直平分等等。
解答过程:(1)如图(1)所示,当点P 在∠AOB 内部时,连接OP Q ',P P 关于OA 对称,则OA 垂直平分'P P ∴'OP OP =,OA 平分'P OP ∠∴'2P OP AOP ∠=∠,同理可证''2POP BOP ∠=∠∴''''''2()22P OP P OP POP AOP BOP AOB α∠=∠+∠=∠+∠=∠=(2)如图(2)所示,当点P 在AOB ∠外部时,结论还成立。
2022-2023学年九年级数学中考复习《轴对称最短路径问题》选择题专题训练(附答案)1.如图,在△ABC中,AB=AC=13,AB的垂直平分线交AB于点N,交AC于点M,P是直线MN上一动点,点H为BC中点,若BC=10,则PB+PH的最小值为()A.B.10C.12D.132.如图,在等腰Rt△ABC中,斜边AB的长为4,D为AB的中点,E为AC边上的动点,DE⊥DF交BC于点F,P为EF的中点,连接P A,PB,则P A+PB的最小值是()A.3B.C.D.3.在四边形ABCD中,∠ABC=60°,∠BCD=45°,BC=2+2,BD平分∠ABC,若P,Q分别是BD,BC上的动点,则CP+PQ的最小值是()A.2+2B.+3C.2+2D.+44.如图,菱形ABCD的边长是4,∠B=120°,P是对角线AC上一个动点,E是CD的中点,则△PDE的周长的最小值为()A.6B.C.8D.5.在矩形ABCD中,AB=5,AD=6,动点P满足,则点P到A,B 两点距离之和最小值为()A.B.C.D.6.如图,在四边形ABCD中,∠C=40°,∠B=∠D=90°,E,F分别是BC,DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.100°B.90°C.70°D.80°7.如图,正方形ABCD的边长是2,∠DAC的平分线交CD于点E,若点P,Q分别是AD 和AE上的动点,则DQ+PQ的最小值为()A.B.C.D.28.如图,河道m的同侧有M、N两个村庄,计划铺设一条管道将河水引至M,N两地,下面的四个方案中,管道长度最短的是()A.B.C.D.9.如图,矩形ABCD中,AB=,BC=3,P为矩形内一点,连接P A,PB,PC,则P A+PB+PC 的最小值是()A.2+3B.2C.2D.10.如图,已知∠ACB=30°,M为∠ACB内部任意一点,且CM=5,E,F分别是CA,CB上的动点,则△MEF的周长的最小值为()A.2.5B.3C.4D.511.如图所示,在四边形ABCD中.AD∥BC,AC=1,BD=,直线MN为线段AD的垂直平分线,P为MN上的一个动点.则PC+PD的最小值为()A.1B.C.D.312.如图,在菱形ABCD中,AB=4,E在BC上,BE=2,∠BAD=120°,P点在BD上,则PE+PC的最小值为()A.6B.5C.4D.213.如图,在正方形ABCD中,AB=3,点B在CD边上,且DE=2CE,点P是对角线AC 上的一个动点,则PE+PD的最小值是()A.B.C.9D.14.如图,在矩形ABCD中,点E,F,G,H分别是边AB,BC,CD,DA上的动点(不与端点重合),若四点运动过程中满足AE=CG,BF=DH,且AB=10,BC=5,则四边形EFGH周长的最小值等于()A.10B.10C.5D.515.如图,正方形ABCD的边长为3,点E,F分别是BC,CD边上的动点,并且满足BE =CF,则AE+AF的最小值为()A.6B.C.D.16.如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=3,ON=5,点P、Q 分别在边OB、OA上,则MP+PQ+QN的最小值是()A.B.C.﹣2D.﹣217.如图,菱形ABCD,点A、B、C、D均在坐标轴上.∠ABC=120°,点A(﹣3,0),点E是CD的中点,点P是OC上的一动点,则PD+PE的最小值是()A.3B.5C.2D.18.如图,在五边形ABCDE中,∠BAE=α(∠BAE为钝角),∠B=∠E=90°,在BC,DE上分别找一点M,N,当△AMN周长最小时,∠MAN的度数为()A.B.α﹣90°C.2α﹣180°D.α﹣45°19.已知三点,当MA﹣MB的值最大时,m的值为()A.﹣1B.1C.﹣2D.220.在矩形ABCD中,AB=10,AD=6,点N是线段BC的中点,点E,G分别为射线DA,线段AB上的动点,CE交以DE为直径的圆于点M,则GM+GN的最小值为()A.B.C.5D.6参考答案1.解:连接AP,AH,∵MN是AB的垂直平分线,∴PB=P A,∴PB+PH的最小值为AH的长,∵AB=AC,点H为BC的中点,∴BH=BC=5,在Rt△ABH中,由勾股定理得,AH===12,∴PB+PH的最小值为12,故选:C.2.解:连接PC,PD,∵在Rt△CEF中,P为EF的中点,∴CP=EF,在Rt△EDF中,DP=,∴CP=DP,∴点P在CD的垂直平分线上运动,作A关于CD垂直平分线的对称点A',∴P A+PB的最小值为A'B,在Rt△AA'B中,A'B==2,故选:C.3.解:如图,作点Q关于BD的对称点H,则PQ=PH.∴CP+PQ=CP+PH,∴当C、H、P三点在同一直线上,且CH⊥AB时,CP+PQ=CH为最短.∵∠ABC=60°,∴∠BCH=30°,∴BH===,∴CH==3+.故选B.4.解:∵四边形ABCD是菱形,∴点B与点D关于直线AC对称,如图,连接BE与AC相交于点P,由轴对称确定最短路线问题,BE的长度即为PE+PD 的最小值,连接BD,∵∠ABC=120°,∴∠BCD=180°﹣120°=60°,∵BC=CD,∴△BCD是等边三角形,∵E是CD的中点,∴∠CBE=30°∠BEC=90°,∵BC=4,∴CE=2,∴,即PE+PD的最小值为2,∵E为CD的中点,CD=4,ED=2,∴△PDE的周长的最小值为PE+PD.故选:B.5.解:如图,∵四边形ABCD是矩形,∴∠ABC=90°,由题意得,h AB=,∴h AB=AD=2,∴点P在距离AB两个单位且与AB平行的两条直线上,作点B关于l的对称点B′,连接AB′,在Rt△ABB′中,AB=5,BB′=4,∴AB′==,故选:B.6.解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于E,交CD于F,则A′A″即为△AEF的周长最小值.∵∠C=40°,∴∠DAB=140°,∴∠AA′E+∠A″=40°,∵∠EA′A=∠EAA′,∠F AD=∠A″,∴∠EAA′+∠A″AF=40°,∴∠EAF=140°﹣40°=100°,故选:A.7.解:作D关于AE的对称点D′,再过D′作D′P′⊥AD于P′,∵DD′⊥AE,∴∠AFD=∠AFD′,∵AF=AF,∠DAE=∠CAE,∴△DAF≌△D′AF,∴D′是D关于AE的对称点,AD′=AD=2,∴D′P′即为DQ+PQ的最小值,∵四边形ABCD是正方形,∴∠DAD′=45°,∴AP′=P′D′,∴在Rt△AP′D′中,P′D′2+AP′2=AD′2,∵AP′=P′D',2P′D′2=AD′2=4,∴P′D′=,即DQ+PQ的最小值为.故选:A.8.解:作点M关于直线m的对称点M′,连接M′N交直线m于点P,则MP+NP=M′N,此时管道长度最短.故选:C.9.解:将△BPC绕点C逆时针旋转60°,得到△EFC,连接PF、AE、AC,则AE的长即为所求.由旋转的性质可知:△PFC是等边三角形,∴PC=PF,∵PB=EF,∴P A+PB+PC=P A+PF+EF,∴当A、P、F、E共线时,P A+PB+PC的值最小,∵四边形ABCD是矩形,∴∠ABC=90°,∴AC===2,∴AC=2AB,∴∠ACB=30°,AC=2AB=2,∵∠BCE=60°,∴∠ACE=90°,∴AE===,故选:D.10.解:分别作点M关于CA、CB的对称点P、Q,连接PQ,分别交CA、CB于点E、F,连接CP、CQ、MP、MQ.∵点M关于CA的对称点为P,关于CB的对称点为Q,∴ME=PE,CM=CP,∠PCA=∠MCA;∵点M关于OB的对称点为Q,∴ME=QE,CM=CQ,∠QCB=∠MCB,∴CP=CQ=CP=5,∠PCQ=∠PCE+MCE+QCF+∠MCF=2∠ACB=60°,∴△PCQ是等边三角形,∴PQ=CP=CQ=5cm.∴△PMN的周长的最小值=ME+MF+EF=PE+EF+QF≥PQ=5.故选:D.11.解:∵直线MN为线段AD的垂直平分线,P为MN上的一个动点,∴点A与点D关于直线MN对称,∴AC与这些MN的交点即为点P,PC+PD的最小值=AC的长度=1,故选:A.12.解:∵四边形ABCD为菱形,∴A、C关于BD对称,∴连AE交BD于P,则PE+PC=PE+AP=AE,根据两点之间线段最短,AE的长即为PE+PC的最小值.∵∠BAD=120°,∴∠ABE=∠BAC=60°,∴△ABC为等边三角形,又∵BE=CE,∴AE⊥BC,∴AE==2.故选:D.13.解:连接BP,BE,∵四边形ABCD是正方形,∴DP=BP,∴DP+PE=BP+PE,∴BP+PE的最小值为BE的长,∵AB=3,DE=2CE,∴CE=1,BC=3,在Rt△BCE中,由勾股定理得,BD===,∴PE+PD的最小值是,故选:A.14.解:作点E关于BC的对称点E′,连接E′G交BC于点F,此时四边形EFGH周长取最小值,过点G作GG′⊥AB于点G′,如图所示.∵AE=CG,BE=BE′,∴E′G′=AB=10,∵GG′=AD=5,∴E′G==5.∴C四边形EFGH=2E′G=10.故选:A.15.解:连接DE,根据正方形的性质及BE=CF,∴△DCE≌△ADF(SAS),∴DE=AF,∴AE+AF=AE+DE,作点A关于BC的对称点A′,连接BA′、EA′,则AE=A′E,即AE+AF=AE+DE=A'E+DE,当D、E、A′在同一直线时,AE+AF最小,AA′=2AB=6,此时,在Rt△ADA′中,DA′===3,故AE+AF的最小值为3.故选:C.16.解:作M关于OB的对称点M′,作N关于OA的对称点N′,如图所示:连接M′N′,即为MP+PQ+QN的最小值.根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,∴△ONN′为等边三角形,△OMM′为等边三角形,∴∠N′OM′=90°,OM′=OM=3,ON′=ON=5,在Rt△M′ON′中,M′N′==.故选:A.17.解:根据题意得,E点关于x轴的对称点是BC的中点E',连接DE'交AC与点P,此时PD+PE有最小值为DE',∵四边形ABCD是菱形,∠ABC=120°,点A(﹣3,0),∴OA=OC=3,∠DBC=60°,∴△BCD是等边三角形,∴DE'=OC=3,即PD+PE的最小值是3,故选:A.18.解:作点A关于BC对称点A',作点A关于DE对称点A'',则A''E=AE,A'B=AB,连接A'A'',分别交线段BC和线段DE于点M和点N,连接AM,AN,这时候△AMN的周长取最小值.∵∠B=∠E=90°,∴A'M=AM,∴AN=A''N,∴∠AA'M=∠A'AM,∠AA''N=∠A''AN,∴∠AMN=2∠A'AM,∠ANM=2∠A''AN,∴∠MAN+∠MAB+∠NAE=α,∠MAN+∠AMN+∠ANM=180°,∴∠MAN+2∠BAM+2∠EAN=180°,∴∠BAM+∠EAN=180°﹣α,∴∠MAN=α﹣(180°﹣α)=2α﹣180°,故选:C.19.解:如图,在平面直角坐标系中作直线:y=x,作B(0,1)关于直线y=x的对称点B'(1,0),则直线AB'与直线y=x交于点M,此时MA﹣MB的值最大,∵M(m,m),∴点M在直线y=x上,∵B(0,1),∴B(0,1)关于直线y=x的对称点B'(1,0),∵A(2,),∴设直线AB'的解析式为y=kx+b(k≠0),∴,∴,∴直线AB'的解析式为:y=,联立得:,∴,∴M(﹣1,﹣1),∴m的值为﹣1,故选:A.20.解:如图所示,作N关于AB的对称点N',取DC中点F,连接DM,FM,GN'.可得GN=GN',∵M在以DE为直径的圆上,∴DM⊥EC,∴△DMC为直角三角形,∵F为Rt△DMC斜边的中点,∴MF===5,此时当MF,MG,GN'三边共线时,有MF+MG+GN'长度的最小值等于FN',∵F,N分别是DC,CB的中点,∴FC==5,BN'=BN==3,∴CN'=BC+BN'=9,∴FN'==,∴MF+MG+GN'长度的最小值为,∵MF=5,GN=GN′∴GM+GN的最小值为﹣5,故选:A.。
2009中考数学第一轮复习 轴对称专题训练
一、填空题:(每题 3 分,共 36 分)
1、正方形是轴对称图形,它有____条对称轴。
2、角是轴对称图形,它的对称轴是_____________。
3、汉字中,有很多字是轴对称图形,如“王”、“工”等,
101112
A B C D 3、观察下图中各组图形,其中不是轴对称的是( )
A B C D 4、将一张矩形的纸对折,然后用笔尖在上面扎出“B ”,再把它铺开,你可见到( )
A
B
C
D
5、下列说法错误的是( )
A 、若A ,A' 是以BC 为轴对称的点,则 AA' 垂直平分BC
B 、线段的一条对称轴是它本身所在的直线
C 、一条线段的一个端点的对称点是另一个端点
) D 、20:05
③
3、在由小正方形组成的L 形的图中,用三种不同方法添画一个小正方形,使它成
为轴对称图形。
∶
方法一方法二方法三
4、已知:在△ABC中,AB<AC,BC边上的垂直平分DE交BC于点D,交AC 于点E,AC=8cm,△ABE的周长是14cm,求AB的长。
5、在Rt△ABC中,∠C=90°,DE是AB的垂直平分线,且∠BAD∶∠BAC=1∶3,求∠B的度数。
6、如图所示,牧童在A处放牛,他的家在B处,晚上回家时要到河边l让牛饮一次水,则饮水的地点选在何处,牧童所走的路程最短?
四、(10分)如图,将一张正六边形纸沿虚线对折3次,
得到一个多层的60°角形纸,用剪刀在折叠好的纸上随意剪
一条线。
①猜一猜,将纸打开后你会得到怎样的图形?
②这个图形有几条对称轴。
五、(12分)已知,矩形AOBC,以O为坐标原点,OB、OA分别在x 轴,轴
上,点A坐标为(0,3),∠OAB=60°,以OA为轴对折后,使点C落在点D处,求
点D坐标。
六、(14分)已知,矩形ABCD
①作出点C关于BD所在直线的对称点C'
②连结C'B,C'D,若△C'BD与△ABD 垂叠部分的面积等于△ 2
求∠CBD的度数。
y
x
A B D C
答案:
(十三)
一、1、42、角平分线所在的直线3、日田由4、45、90°6、略7、5378、
16
9、210、411、这两点为端点的线段的中垂线12、左上部
二、1、D2、D3、C4、C5、A6、B
三、1-3略4、AB=6cm5、∠B=22.5°6、略
四、①轴对称图形三条
五、解:C(33,3)、D(-33,3)
六、①如图②∠CBD=30°∵S△BED=2
3
S△ABD∴S△AEB∶S△BED=1∶2∴EB=ED∵
AE
EB
=
1
2
∴∠ABE=30°∠AEB=60°∴∠EBC=∠AEB=60°易知BD平分∠CBE
∴∠CBD=1
2
∠EBC=30°。