难点突破之四滑块—滑板类问题
- 格式:doc
- 大小:260.39 KB
- 文档页数:3
难点突破之四滑块—滑板类问题1.滑块—滑板类问题的特点涉及两个物体,并且物体间存在相对滑动. 2.滑块和滑板常见的两种位移关系滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长.3.滑块—滑板类问题的解题方法此类问题涉及两个物体、多个运动过程,并且物体间还存在相对运动,所以应准确求出各物体在各运动过程的加速度(注意两过程的连接处加速度可能突变),找出物体之间的位移(路程)关系或速度关系是解题的突破口.求解中更应注意联系两个过程的纽带,每一个过程的末速度是下一个过程的初速度.4、滑块与滑板存在相对滑动的临界条件(1)运动学条件:若两物体速度和加速度不等,则会相对滑动.(2)动力学条件:假设两物体间无相对滑动,先用整体法算出一起运动的加速度,再用隔离法算出其中一个物体"所需要"的摩擦力f;比较f 与最大静摩擦力f m 的关系,若f 〉f m ,则发生相对滑动.【典例】 如图所示,木板静止于水平地面上,在其最右端放一可视为质点的木块.已知木块的质量m =1 kg ,木板的质量M =4 kg ,长L =2.5 m ,上表面光滑,下表面与地面之间的动摩擦因数μ=0.2.现用水平恒力F =20 N 拉木板,g 取10 m/s 2.(1)求木板加速度的大小.(2)要使木块能滑离木板,求水平恒力F 作用的最短时间;(3)如果其他条件不变,假设木板的上表面也粗糙,其上表面与木块之间的动摩擦因数为μ1=0.3,欲使木板能从木块的下方抽出,对木板施加的拉力应满足什么条件?(4)若木板的长度、木块质量、木板的上表面与木块之间的动摩擦因数、木板与地面间的动摩擦因数都不变,只将水平恒力增加为30 N ,则木块滑离木板需要多长时间?解: (1)木板受到的摩擦力f =μ(M +m )g =10 N 木板的加速度a=F -f M=2.5 m/s 2. (2)设拉力F 作用t 时间后撤去F 撤去后,木板的加速度为a ′=-f M=-2.5 m/s 2=a木板先做匀加速运动,后做匀减速运动,且时间相等,故at 2=L 解得:t =1 s ,即F 作用的最短时间为1 s.(3)设木块的最大加速度为a 木块,木板的最大加速度为a 木板,则μ1mg =ma 木块 解得:a 木块=μ1g =3 m/s 2对木板:F 1-μ1mg -μ(M +m )g =Ma 木板 木板能从木块的下方抽出的条件:a木板>a木块解得:F 1>25 N.(4)木块的加速度a ′木块=μ1g =3 m/s2木板的加速度a ′木板=F 2-μ1mg -μM +m g M=4.25 m/s 2木块滑离木板时,两者的位移关系为s 木板-s 木块=L ,即12a ′木板t 2-12a ′木块t 2=L代入数据解得:t =2 s.如图所示,质量M =8 kg 的小车放在光滑水平面上,在小车左端加一水平推力F =8 N .当小车向右运动的速度达到3 m/s 时,在小车右端轻轻地放一个大小不计、质量m =2 kg 的小物块.小物块与小车间的动摩擦因数μ=0.2,小车足够长.g 取10 m/s 2,则:(1)放上小物块后,小物块及小车的加速度各为多大; (2)经多长时间两者达到相同的速度;(3)从小物块放上小车开始,经过t =3 s 小物块通过的位移大小为多少? 解析:(1)小物块的加速度a m =μg =2 m/s2小车的加速度a M =F -μmg M=0.5 m/s 2(2)由a m t =v 0+a M t ,得t =2 s ,v 同=2×2 m/s=4 m/s (3)在开始2 s 内,小物块通过的位移x 1=12a m t 2=4 m在接下来的1 s 内小物块与小车相对静止,一起做匀加速运动,加速度a =FM +m=0.8 m/s 2小物块的位移x 2=v 同t ′+12at ′2=4.4 m 通过的总位移x =x 1+x 2=8.4 m.答案:(1)2 m/s 20.5 m/s 2(2)2 s (3)8.4 m如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验.若砝码和纸板的质量分别为m 1和m 2,各接触面间的动摩擦因数均为μ.重力加速度为g . (1)当纸板相对砝码运动时,求纸板所受摩擦力的大小;(2)要使纸板相对砝码运动,求所需拉力的大小;(3)本实验中,m 1=0.5 kg ,m 2=0.1 kg ,μ=0.2,砝码与纸板左端的距离d =0.1 m ,取g =10 m/s 2.若砝码移动的距离超过l =0.002 m ,人眼就能感知.为确保实验成功,纸板所需的拉力至少多大?解:(1)砝码对纸板的摩擦力f 1=μm 1g 桌面对纸板的滑动摩擦力f 2=μ(m 1+m 2)g f =f 1+f 2 解得f =μ(2m 1+m 2)g(2)设砝码的加速度为a 1,纸板的加速度为a 2,则 f 1=m 1a 1 F -f 1-f 2=m 2a 2 发生相对运动则a 2>a 1 解得F >2μ(m 1+m 2)g(3)纸板抽出前,砝码运动的距离x 1=12a 1t 21 纸板运动的距离d +x 1=12a 2t 21纸板抽出后,砝码在桌面上运动的距离x 2=12a 3t 22 l =x 1+x 2由题意知a 1=a 3,a 1t 1=a 3t 2 解得F =2μ[m 1+(1+d l)m 2]g 代入数据得F =22.4 N. 答案:(1)μ(2m 1+m 2)g (2)F >2μ(m 1+m 2)g (3)22.4 N滑块—滑板类问题习题1.如图所示,长2m ,质量为1kg 的木板静止在光滑水平面上,一木块质量也为1kg (可视为质点),与木板之间的动摩擦因数为0.2。
物理板块问题经典题型总结
以下是常见的物理板块问题的经典题型,包括典型问题、解题方法以及常见错误等。
一、滑块-滑板问题
1. 典型问题:一个滑块以初速度v₀放在光滑斜面底端,滑块和滑板之间的滑动摩擦力为f,滑板足够长,滑块在滑板上滑行的时间为t₁,滑块在滑板上滑行的距离为s₁。
2. 解题方法:使用牛顿第二定律和运动学公式解题。
3. 常见错误:忽略滑板对滑块的反向作用力,导致计算错误。
二、斜面-滑块问题
1. 典型问题:一个滑块放在斜面底端,斜面的倾角为θ,滑块受到的重力为G,斜面对滑块的支持力为N,滑动摩擦力为f,滑块沿斜面滑行的加速度为a。
2. 解题方法:使用牛顿第二定律和运动学公式解题。
3. 常见错误:忽略斜面对滑块的摩擦力作用,导致计算错误。
三、传送带问题
1. 典型问题:一个物体放在传送带上,传送带的速度为v₀,物体受到的滑
动摩擦力为f,物体在传送带上滑行的距离为s₁。
2. 解题方法:使用牛顿第二定律和运动学公式解题。
3. 常见错误:忽略传送带对物体的反向作用力,导致计算错误。
四、绳-滑块问题
1. 典型问题:一个滑块通过一根轻绳连接在固定点上,轻绳的长度为L,滑块受到的重力为G,滑动摩擦力为f,滑块在水平面上做圆周运动的半径为r。
2. 解题方法:使用牛顿第二定律和向心力公式解题。
3. 常见错误:忽略绳对滑块的拉力作用,导致计算错误。
以上是一些常见的物理板块问题的经典题型,通过掌握这些题型的解题方法和常见错误,可以更好地理解和掌握物理板块问题的解题技巧。
2020年高考物理专题精准突破专题动力学中的板块问题【专题诠释】1.模型特征滑块——滑板模型(如图a),涉及摩擦力分析、相对运动、摩擦生热,多次相互作用,属于多物体、多过程问题,知识综合性较强,对能力要求较高,故频现于高考试卷中.另外,常见的子弹射击滑板(如图b)、圆环在直杆中滑动(如图c)都属于滑块类问题,处理方法与滑块——滑板模型类似.2.两种类型【高考领航】【2019·江苏高考】如图所示,质量相等的物块A和B叠放在水平地面上,左边缘对齐。
A与B、B与地面间的动摩擦因数均为μ。
先敲击A,A立即获得水平向右的初速度,在B上滑动距离L后停下。
接着敲击B,B立即获得水平向右的初速度,A、B都向右运动,左边缘再次对齐时恰好相对静止,此后两者一起运动至停下。
最大静摩擦力等于滑动摩擦力,重力加速度为g。
求:(1)A被敲击后获得的初速度大小v A;(2)在左边缘再次对齐的前、后,B运动加速度的大小a B、a B′;(3)B被敲击后获得的初速度大小v B。
【答案】(1)2μgL(2)3μgμg(3)22μgL【解析】A、B的运动过程如图所示:(1)A被敲击后,B静止,A向右运动,由牛顿第二定律知,A的加速度大小a A=μgA在B上滑动时有2a A L=v2A解得:v A=2μgL。
(2)设A、B的质量均为m对齐前,A相对B滑动,B所受合外力大小F=μmg+2μmg=3μmg由牛顿第二定律得F=ma B,得a B=3μg对齐后,A、B相对静止,整体所受合外力大小F′=2μmg由牛顿第二定律得F′=2ma B′,得a B′=μg。
(3)设B被敲击后,经过时间t,A、B达到共同速度v,位移分别为x A、x B,A的加速度大小等于a A 则v=a A t,v=v B-a B tx A=12a A t2,x B=v B t-12a B t2且x B-x A=L解得:v B=22μgL。
【2017·高考全国卷Ⅲ】如图,两个滑块A和B的质量分别为m A=1 kg和m B=5 kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m=4 kg,与地面间的动摩擦因数为μ2=0.1.某时刻A、B两滑块开始相向滑动,初速度大小均为v0=3 m/s.A、B相遇时,A与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g=10 m/s2.求(1)B 与木板相对静止时,木板的速度; (2)A 、B 开始运动时,两者之间的距离. 【答案】 见解析【解析】 (1)滑块A 和B 在木板上滑动时,木板也在地面上滑动.设A 、B 和木板所受的摩擦力大小分别为f 1、f 2和f 3,A 和B 相对于地面的加速度大小分别为a A 和a B ,木板相对于地面的加速度大小为a 1.在物块B 与木板达到共同速度前有f 1=μ1m A g ① f 2=μ1m B g ② f 3=μ2(m +m A +m B )g ③ 由牛顿第二定律得f 1=m A a A ④ f 2=m B a B ⑤ f 2-f 1-f 3=ma 1 ⑥设在t 1时刻,B 与木板达到共同速度,其大小为v 1.由运动学公式有v 1=v 0-a B t 1 ⑦ v 1=a 1t 1 ⑧ 联立①②③④⑤⑥⑦⑧式,代入已知数据得v 1=1 m/s. ⑨(2)在t 1时间间隔内,B 相对于地面移动的距离为s B =v 0t 1-12a B t 21⑩设在B 与木板达到共同速度v 1后,木板的加速度大小为a 2.对于B 与木板组成的体系,由牛顿第二定律有f 1+f 3=(m B +m )a 2 ⑪由①②④⑤式知,a A =a B ;再由⑦⑧式知,B 与木板达到共同速度时,A 的速度大小也为v 1,但运动方向与木板相反.由题意知,A 和B 相遇时,A 与木板的速度相同,设其大小为v 2.设A 的速度大小从v 1变到v 2所用的时间为t 2,则由运动学公式,对木板有v 2=v 1-a 2t 2 ⑫对A 有v 2=-v 1+a A t 2 ⑬在t 2时间间隔内,B (以及木板)相对地面移动的距离为s 1=v 1t 2-12a 2t 22 ⑭在(t 1+t 2)时间间隔内,A 相对地面移动的距离为s A =v 0(t 1+t 2)-12a A (t 1+t 2)2 ⑮A 和B 相遇时,A 与木板的速度也恰好相同.因此A 和B 开始运动时,两者之间的距离为s 0=s A +s 1+s B ⑯ 联立以上各式,并代入数据得s 0=1.9 m. (也可用如图的速度-时间图线求解)【技巧方法】1.通过受力分析判断滑块和木板各自的运动状态(具体做什么运动);2.判断滑块与木板间是否存在相对运动。
1
难点突破之四滑块—滑板类问题
1.滑块—滑板类问题的特点
涉及两个物体,并且物体间存在相对滑动. 2.滑块和滑板常见的两种位移关系
滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长.
3.滑块—滑板类问题的解题方法
此类问题涉及两个物体、多个运动过程,并且物体间还存在相对运动,所以应准确求出各物体在各运动过程的加速度(注意两过程的连接处加速度可能突变),找出物体之间的位移(路程)关系或速度关系是解题的突破口.求解中更应注意联系两个过程的纽带,每一个过程的末速度是下一个过程的初速度.
4、滑块与滑板存在相对滑动的临界条件
(1)运动学条件:若两物体速度和加速度不等,则会相对滑动.
(2)动力学条件:假设两物体间无相对滑动,先用整体法算出一起运动的加速度,再用隔离法算出其中一个物体"所需要"的摩擦力f;比较f 与最大静摩擦力f m 的关系,若f 〉f m ,则发生相对滑动.
【典例】 如图所示,木板静止于水平地面上,在其最右端放一可视为质点的木块.已知木块的质量m =1 kg ,木板的质量M =4 kg ,长L =2.5 m ,上表面光滑,下表面与地面之间的动摩擦因数μ=0.2.现用水平恒力F =20 N 拉木板,g 取10 m/s 2
.
(1)求木板加速度的大小.
(2)要使木块能滑离木板,求水平恒力F 作用的最短时间; (3)如果其他条件不变,假设木板的上表面也粗糙,其上
表面与木块之间的动摩擦因数为μ1=0.3,欲使木板能从木块的下方抽出,对木板施加的拉力应满足什么条件?
(4)若木板的长度、木块质量、木板的上表面与木块之间的动摩擦因数、木板与地面间的动摩擦因数都不变,只将水平恒力增加为30 N ,则木块滑离木板需要多长时间?
解: (1)木板受到的摩擦力f =μ(M +m )g =10 N 木板的加速度a =
F -f M
=2.5 m/s 2
. (2)设拉力F 作用t 时间后撤去F 撤去后,木板的加速度为a ′=-f M
=-2.5 m/s 2
=a 木板先做匀加速运动,后做匀减速运动,且时间相等,故at 2
=L 解得:t =1 s ,即F 作用的最短时间为1 s.
(3)设木块的最大加速度为a 木块,木板的最大加速度为a 木板,则μ1mg =ma 木块
解得:a 木块=μ1g =3 m/s 2
对木板:F 1-μ1mg -μ(M +m )g =Ma 木板 木板能从木块的下方抽出的条件:a
木板
>a
木块
解得:F 1>25 N.
(4)木块的加速度a ′木块=μ1g =3 m/s
2
木板的加速度a ′木板=
F 2-μ1mg -μM +m g M
=4.25 m/s 2
木块滑离木板时,两者的位移关系为s 木板-s 木块=L ,即12a ′木板t 2-12a ′木块t 2
=L
代入数据解得:t =2 s.
如图所示,质量M =8 kg 的小车放在光滑水平面上,在
小车左端加一水平推力F =8 N .当小车向右运动的速度达到3 m/s 时,在小车右端轻轻地放一个大小不计、质量
m =2 kg 的小物块.小物块与小车间的动摩擦因数μ=0.2,小车足够长.g 取10 m/s 2,则:
(1)放上小物块后,小物块及小车的加速度各为多大; (2)经多长时间两者达到相同的速度;
(3)从小物块放上小车开始,经过t =3 s 小物块通过的位移大小为多少? 解析:(1)小物块的加速度a m =μg =2 m/s
2
小车的加速度a M =
F -μmg M
=0.5 m/s 2
(2)由a m t =v 0+a M t ,得t =2 s ,v 同=2×2 m/s=4 m/s (3)在开始2 s 内,小物块通过的位移x 1=12
a m t 2
=4 m
在接下来的1 s 内小物块与小车相对静止,一起做匀加速运动,加速度a =
F
M +m
=0.8 m/s 2
小物块的位移x 2=v 同t ′+12at ′2
=4.4 m 通过的总位移x =x 1+x 2=8.4 m.
答案:(1)2 m/s 2
0.5 m/s 2
(2)2 s (3)8.4 m
如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验.若砝码和纸板的质量分别为m 1
和m 2,各接触面间的动摩擦因数均为μ.重力加速度为g . (1)当纸板相对砝码运动时,求纸板所受摩擦力的大小;
(2)要使纸板相对砝码运动,求所需拉力的大小;
2
(3)本实验中,m 1=0.5 kg ,m 2=0.1 kg ,μ=0.2,砝码与纸板左端的距离d =0.1 m ,取g =10 m/s 2
.若砝码移动的距离超过l =0.002 m ,人眼就能感知.为确保实验成功,纸板所需的拉力至少多大?
解:(1)砝码对纸板的摩擦力f 1=μm 1g 桌面对纸板的滑动摩擦力f 2=μ(m 1+m 2)g f =f 1+f 2 解得f =μ(2m 1+m 2)g
(2)设砝码的加速度为a 1,纸板的加速度为a 2,则 f 1=m 1a 1 F -f 1-f 2=m 2a 2 发生相对运动则a 2>a 1 解得F >2μ(m 1+m 2)g
(3)纸板抽出前,砝码运动的距离x 1=12a 1t 21 纸板运动的距离d +x 1=12a 2t 2
1
纸板抽出后,砝码在桌面上运动的距离x 2=12
a 3t 2
2 l =x 1+x 2
由题意知a 1=a 3,a 1t 1=a 3t 2 解得F =2μ[m 1+(1+d l
)m 2]g 代入数据得F =22.4 N. 答案:(1)μ(2m 1+m 2)g (2)F >2μ(m 1+m 2)g (3)22.4 N
滑块—滑板类问题习题
1.如图所示,长2m ,质量为1kg 的木板静止在光滑水平面上,一木块质量也为1kg (可视为质点),与木板之间的动摩擦因数为0.2。
要使木块在木板上从左端滑向右端而不至滑落,则木块初速度的最大值为( )
A .1m/s
B .2 m/s
C .3 m/s
D .4 m/s
2.如图所示,小木块质量m =1kg ,长木桉质量M =10kg ,木板与地面以
及木块间的动摩擦因数均为μ=0.5.当木板从静止开始受水平向右的恒力F =90 N 作用时,木块以初速v 0=4 m /s 向左滑上木板的右端.则为使木块不滑离木板,木板的长度l 至少要多长?
3.如图所示,质量M=1.0kg 的长木板静止在光滑水平面上,在长木板的右端放一质量m=1.0kg 的小滑块(可视为质点),小滑块与长木板之间的动摩擦因数=0.20.现用水平横力F=6.0N 向右拉长木板,使小滑块与长木板
发生相对滑动,经过t=1.0s 撤去力F.小滑块在运动过程中始终没有从长木板上掉下.求: (1)撤去力F 时小滑块和长木板的速度个是多大; (2)运动中小滑块距长木板右端的最大距离是多大?
4. 如图7,质量
的小车停放在光滑水平面上,在小车右端施加一水平恒力F=8N 。
当小车向右运动速度
达到3m/s 时,在小车的右端轻放一质量m=2kg 的小物块,物块与小车间的动摩擦因数,假定小车足够
长, 问:
1)经过多长时间物块停止与小车间的相对运动? 2)小物块从放在车上开始经过
所通过的位移是多少?(g 取
)
滑块—滑板类问题习题参考答案
M
F
m
3
1、D
2、解:
2
2112
132
1
21/3)(t t a s s m M
g
m M mg F a ⨯==
=+--=
μμ 22202225.2421
/5t t t a t v s s m g a -=-===μ
s t t
a t a v 2120==+-解得由
m s s l 421=+=板长:
3、解(1).对滑和木板分别利用牛顿第二定律和运动学公式
s
m t a v s m M
mg F a s m t a v s m g a /4/4/2/21222
21112
1===-=====μμ
(2).最大位移就是在滑块和木板相对静止时1s 后.没有拉力.只有相互间的摩擦力 滑块加速度大小均为a =2m/s 2
(方向相反)
v 1+αt 2=v 2-αt 2 代入数据 2+2t 2=4-2t 2
解得 t 2=0.5s 此时2个的速度都是v=3m/s 木块和木板的位移分别为
m t v v t v s 25.22221111=⋅++⋅=
m t v v t v s 75.32
222122=⋅++⋅=
m s s s 5.112=-=∆
4、解析:(1)物块放上小车后做初速度为零加速度为
的匀加速直线运动,小车做加速度为
匀加速运动。
由牛顿运动定律:
物块放上小车后加速度: 小车加速度:
由
得:
(2)物块在前2s 内做加速度为的匀加速运动,后1s 同小车一起做加速度为的匀加速运
动。
以系统为研究对象: 根据牛顿运动定律,由
得:
物块位移。