高三数学下学期周练试题2高补班
- 格式:doc
- 大小:878.50 KB
- 文档页数:8
2021年高三(高补班)上学期周练(一)数学试题含解析一、选择题(共12小题,共60分)1.己知直线l的斜率为k,它与抛物线y2=4x相交于A,B两点,F为抛物线的焦点,若=2,则|k|=A.2 B. C. D.2.在数列中,a1=2,an+1=an+ln,则an=A.2+ln n B.2+ln nC.2+nln n D.1+n+ln n3.定义在区间上的函数使不等式恒成立,其中为的导数,则()A. B.C. D.4.已知为正实数,直线与曲线相切,则的最小值为()A.1 B. C. D.5.设函数其中存在正数,使得成立,则实数的值是()A. B. C. D.16.已知是定义在上的增函数,函数的图象关于点对称,若对任意的,不等式恒成立,当时,的取值范围是()A. B. C. D.7.双曲线的渐近线方程与圆相切,则此双曲线的离心率为( )A .B .C .D .8.根据,判定方程的一个根所在的区间为( )A .B .C .D .9.设表示不超过的最大整数,如,已知函数,若方程有且仅有个实根,则实数的取值范围是( )A .B .C .D .10.已知数列为等差数列,满足,其中在一条直线上,为直线外一点,记数列的前项和为,则的值为( )A .B .xxC .xxD .xx11.已知双曲线与轴交于、两点,点,则面积的最大值为( )A .2B .4C .6D .812.已知函数,,当时,方程的根的个数是( )A .8B .6C .4D .2第II 卷(非选择题)二、填空题(4小题,共20分)13.已知随机变量服从正态分布,,则的值为 .14.已知函数,其中,若存在实数,使得关于的方程有三个不同的零点,则的取值范围是 .15.已知直线交抛物线于两点,以为直径的圆被轴截得的弦长为,则=__________ .16.已知数列的前项和为()1211,1,3,432n n n n S a a S S S n +-===-≥,若对于任意,当时,不等式恒成立,则实数的取值范围为__________ .三、解答题(8小题,共70分)17.已知数列的前项和为,且.(1)证明:数列是等差数列,并求出数列的通项公式;(2)求数列的前项和为.18.已知点,,直线与直线相交于点,直线与直线的斜率分别记为与,且.(Ⅰ)求点的轨迹的方程;(Ⅱ)过定点作直线与曲线交于两点,的面积是否存在最大值?若存在,求出面积的最大值;若不存在,请说明理由.19.已知椭圆C:+=1(a>b>0)的离心率为,以原点O为圆心,椭圆C的长半轴为半径的圆与直线2x-y+6=0相切.(1)求椭圆C的标准方程;(2)已知点A,B为动直线y=k(x-2)(k≠0)与椭圆C的两个交点,问:在x轴上是否存在点E,使2+·为定值?若存在,试求出点E的坐标和定值,若不存在,说明理由.20.已知椭圆C1:+=1 (a>b>0)的离心率为,P(-2,1)是C1上一点.(1)求椭圆C1的方程;(2)设A、B、Q是点P分别关于x轴、y轴及坐标原点的对称点,平行于AB的直线l与C1相交于不同于P、Q的两点C、D.点C关于原点的对称点为E.证明:直线PD、PE与y轴围成的三角形是等腰三角形.21.如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF 的中点.(1)求证:AM∥平面BDE;(2)求二面角A-DF-B的大小;(3)试在线段AC上确定一点P,使得PF与BC所成的角是60°.22.按照某学者的理论,假设一个人生产某产品单件成本为元,如果他卖出该产品的单价为元,则他的满意度为;如果他买进该产品的单价为元,则他的满意度为.如果一个人对两种交易(卖出或买进)的满意度分别为和,则他对这两种交易的综合满意度为.现假设甲生产A、B两种产品的单件成本分别为12元和5元,乙生产A、B两种产品的单件成本分别为3元和20元,设产品A、B的单价分别为元和元,甲买进A与卖出B的综合满意度为,乙卖出A与买进B的综合满意度为(1)求和关于、的表达式;当时,求证:=;(2)设,当、分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少?23.某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,在将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的频率.(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成的列联表,并判断是否有的把握认为“生产能手与工人所在的年龄组有关”?24.已知函数的图象过点P(0,2),且在点处的切线方程.(1)求函数的解析式;(2)求函数与的图像有三个交点,求的取值范围.参考答案1.A【解析】试题分析:设直线l的方程为y=kx+m(k≠0),与抛物线y2=4x相交于A(x1,y1),B(x2,y2),联立y=kx+m(k≠0),y2=4x得k2x2+(2km-4)x+m2=0,所以Δ=(2km-4)2-4k2m2=16-16km,由Δ>0得km<1,x1+x2=,x1x2=,由y2=4x得其焦点F(1,0),由=2得(1-x1,-y1)=2(x2-1,y2),所以,由①得, x1+2x2=3,③.由②得, x1+2x2=-,所以m=-k,再由=2得||=2||,所以x1+1=2(x2+1),即x1-2x2=1,④.联立③④得x1=2,x2=,所以x1+x2==,把m=-k代入得=,解得=2,满足mk=-8<1,所以=2,故选A.考点:直线与抛物线相交.2.A【解析】试题分析:由已知得a n+1-a n=ln=ln(n+1)-ln n,所以a n=a1+(a2-a1)+(a3-a2)+…+(a n-a n-1)=2+(ln 2-ln 1)+(ln 3-ln 2)+…+(ln n-ln(n-1))=2+ln n,故选A.考点:由递推公式求通项公式.3.B【解析】试题分析:由可得,即,令,则,即,所以且,即且,所以函数是增函数且函数是减函数,即是增函数且函数是减函数,所以且,即且,故应选B.考点:导数及运算.【易错点晴】本题以不等式的形式为背景考查的是导数的知识的综合运用.解答本题的难点是如何建立两个函数值的表达式.本题在解答时借助题设的不等式,运用巧妙变形进行构造函数,进而通过构造的函数进行合理有效的变形得到两个单调函数和函数,即和函数.最后借助单调性使得问题简捷巧妙获解.4.D【解析】试题分析:设切点为,则由题设,故代入得,又,所以,即,将代入得,故当时,取最小值为,故应选D.考点:导数的几何意义及二次函数的最小值.【易错点晴】本题以直线与曲线相切为背景考查的是求函数的最小值的求法问题.求解时充分利用题设中所提供的有效信息,对直线与曲线相切这一条件进行了巧妙合理的运用,使得本题巧妙获解.解答本题的关键是找出参数之间的数量关系,这里是借助直线与曲线相切的这一条件.设切点是解答这类问题的关键,一旦切点出现,直线与曲线都经过这个切点,许多问题都能解决,所以设切点是找到之间关系的很重要的一个步骤.5.A【解析】试题分析:由函数解析式的形式可知表示平面上的两动点之间距离的平方,而两动点分别在曲线和上,设切点,因为,所以,当时,,此时直线与切点间的距离最近,即,解之得,应选B.考点:导数和函数的有关知识及综合运用.【易错点晴】函数与方程的关系是高中数学的重要内容之一,也是高中数学中的重要知识点.本题以函数内容为背景设置的是函数的解析式参数的取值范围问题.解答时充分借助函数解析式的结构特征,将其与平面上的两点间距离公式类比,从而将问题进行合理转化为直线与曲线的距离最小,最小值为的问题.然后借助导数的几何意义求出切点的坐标从而使问题简捷巧妙地获解.6.C【解析】试题分析:由于函数的图象关于点对称,所以函数关于原点对称,即为奇函数,在定义域上单调递增,由,得,即,,,表示的就是圆心为,半径为的圆内的点,当时,表示的就是到原点的距离的平方,由图像可求得取值范围为.最短为,最大.不是最大值.考点:1.函数的单调性与奇偶性;2.线性规划.【思路点晴】本题考查函数图象与性质,导数与图象等知识.第一个问题就是处理这两个函数图象的关系,图象向右移个单位得到图象,向左移个单位得到图象.由此可以确定函数是一个奇函数,由于为增函数,而且为抽象函数,根据单调性,可化简.最后还要用线性规划的知识来求最值.7.B【解析】试题分析:双曲线其中一条渐近线为,依题意圆心到渐近线的距离等于半径,即,化简得,. 考点:双曲线离心率.8.D【解析】试题分析:令,依题意有,所以零点位于.考点:二分法.9.C【解析】试题分析:令,令,画出图象如下图所示,由图象可知,的取值范围是.考点:1.新定义;2.函数图象与性质.【思路点晴】解决函数零点有关的问题,思路就是先令这个函数等于零,然后对式子进行分离参数,如本题中令,分离参数后,就变成了左边一个函数,右边是一条直线,只要我们画出左边函数的图象,结合图象就能求出有三个交点时候的取值范围. 是一个新定义的函数,我们可利用用新定义中包含的概念,分段画出图象.10.A【解析】试题分析:因为在一条直线上,所以,则120153201320152015()2015()2015222a a a a S ++===,选A.考点:向量关系,等差数列性质【思路点睛】等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.11.A【解析】试题分析:由题意知,如图:∴当且仅当时“=”成立,∴.故选A.考点:双曲线的标准方程;双曲线的几何性质.12.B【解析】试题分析:由题意得,函数在上是奇函数且是反比例函数,在上是奇函数,则,所以在上是减函数,在上是增函数,在上是减函数,且,,,,所以作出函数与在上的图像,如图所示,结合图像可知,共有6个交点.故选B.考点:根的存在性及根的个数的判断;函数的图像.13.【解析】试题分析:因对称轴是,所以16.0)4(1)4()0(=<-=≥=<x P x P x P ,故应填. 考点:正态分布的性质及运用.14.【解析】试题分析:函数为偶函数,且左减右增.函数的对称轴为,且向右单调递增.故当时函数先减后增,当时函数单调递增,要有三个不同的零点则必须满足,解得.考点:分段函数零点问题.【思路点晴】应用函数零点的存在情况求参数的值或取值范围常用的方法:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.15.【解析】试题分析:由直线方程与抛物线方程联立消x 得,而直线过抛物线焦点,所以,而由垂径定理得考点:抛物线定义,直线与圆位置关系16.【解析】试题分析:,()()1112432433n n n n n n S S S n S S S n +---=-≥=-≥,,两式相减得()()1111433,3(3)3,n n n n n n n a a a n a a a a n +-+-=-≥-=-≥又,因此为以2首项,3 为公比的等比数列,即,叠加法得,从而,因此对恒成立,即解得考点:和项求通项,等比数列定义,不等式恒成立【方法点睛】给出S n 与a n 的递推关系求a n ,常用思路是:一是利用S n -S n -1=a n (n ≥2)转化为a n 的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n . 应用关系式a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2时,一定要注意分n =1,n ≥2两种情况,在求出结果后,看看这两种情况能否整合在一起.17.(1)详见解析(2)【解析】试题分析:(1)由和项求通项,关键注意分类讨论:当时,;当时,2212[(1)2(1)]21n n n a S S n n n n n -=-=+--+-=+;由于当时,也符合上式,故.最后根据等差数列定义证明(2)裂项相消法求数列和:注意调节系数,首尾相消得1111111111()()23557212323233(23)n n T n n n n =-+-++-=--=++++ 试题解析:(1)当时,;当时,2212[(1)2(1)]21n n n a S S n n n n n -=-=+--+-=+;当时,也符合上式,故.因为,故数列是以3为首项,2为公差的等差数列.(2)因为111111()(21)(23)22123n n a a n n n n +==-++++, 故1111111111()()23557212323233(23)n n T n n n n =-+-++-=--=++++. 考点:和项求通项,等差数列定义,裂项相消法求和【方法点睛】给出S n 与a n 的递推关系求a n ,常用思路是:一是利用S n -S n -1=a n (n ≥2)转化为a n 的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n . 应用关系式a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2时,一定要注意分n =1,n ≥2两种情况,在求出结果后,看看这两种情况能否整合在一起.18.(Ⅰ);(Ⅱ)面积的最大值为.【解析】试题分析:(Ⅰ)本题求轨迹方程,采用直接法,只要设动点坐标为,求出斜率,由化简可得,注意斜率存在时,最后方程中要剔除此点;(Ⅱ)假设存在,首先直线斜率存在,可设其方程为,与椭圆方程联立整理为关于的一元二次方程,同时设交点为,由可得,而,这样可把表示为的函数,可由基本不等式知识求得最大值.试题解析:(Ⅰ)设,则,所以所以 (未写出范围扣一分)(Ⅱ)由已知当直线的斜率存在,设直线的方程是,联立,消去得,因为,所以,设,当且仅当时取等号,面积的最大值为.考点:1、求曲线的方程;2、椭圆的方程;3、利用基本不等式求最值.【名师点睛】求轨迹方程的常用方法1.直接法:直接利用条件建立x,y之间的关系F (x,y)=0. 2.待定系数法:已知所求曲线的类型,求曲线方程. 3.定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程. 4.代入(相关点)法:动点P(x,y)依赖于另一动点Q(x0,y0)的变化而运动,常利用代入法求动点P(x,y)的轨迹方程.19.(1);(2)存在,定点为E.【解析】试题分析:(1)要求椭圆标准方程,一般要列出关于的两个等式,题中离心率是一个,即,另外由直线与圆相切知原点到直线的距离就等于,因此易得;(2)直线与椭圆相交,设交点为,把直线方程代入椭圆方程后可得,同时假设定点存在,并设,计算,把它表示为的等式,此式是关于的恒等式,由此可求得.试题解析:(1)由e=,得=,即c=a,①又因为以原点O为圆心,椭圆C的长半轴长为半径的圆为x2+y2=a2,且与直线2x-y+6=0相切,所以a==,代入①得c=2,所以b2=a2-c2=2.所以椭圆的方程为+=1.(2)由得(1+3k2)x2-12k2x+12k2-6=0,设A(x1,y1),B(x2,y2),所以x1+x2=,x1·x2=,根据题意,假设x轴上存在定点E(m,0),使得2+·=·(+)=·为定值,则有·=(x1-m,y1)·(x2-m,y2)=(x1-m)·(x2-m)+y1y2=(x1-m)(x2-m)+k2(x1-2)(x2-2)=(k2+1)x1x2-(2k2+m)(x1+x2)+(4k2+m2)=(k2+1)·-(2k2+m)·+(4k2+m2)=.要使上式为定值,即与k无关,则应使3m2-12m+10=3(m2-6),即m=,此时·=m2-6=-为定值,定点为E.考点:椭圆标准方程,直线与椭圆相交,解析几何中的定点问题.【名师点睛】解决存在性问题应注意以下几点存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时要分类讨论;(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件;(3)当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径.20.(1);(2)证明见解析.【解析】试题分析:(1)本小题要求椭圆标准方程,由离心率可得,再把点坐标代入又得的一个方程,两者联立可解得;(2)设直线PD、PE的斜率分别为,则要证直线PD、PE与y轴围成的三角形是等腰三角形,只需证,为此先得,从而有,于是可设直线方程为,同时设,由直线方程与椭圆方程可得,计算,可得结论.试题解析:(1)因为C1离心率为,所以a2=4b2,从而C1的方程为:+=1 .代入P(-2,1)解得:b2=2,因此a2=8.所以椭圆C1的方程为:+=1 .(2)由题设知A、B的坐标分别为(-2,-1),(2,1).因此直线l的斜率为.设直线l的方程为:y=x+t.由得:x2+2tx+2t2-4=0.当Δ>0时,不妨设C(x1,y1),D(x2,y2),于是 x1+x2=-2t,x1x2=2t2-4.设直线PD、PE的斜率分别为k1,k2,则要证直线PD、PE与y轴围成的三角形是等腰三角形,只需证k1+k2=0,又k1+k2=+=,则只需证(y2-1)(2-x1)-(2+x2)(y1+1)=0,而(y2-1)(2-x1)-(2+x2)(y1+1)=2(y2-y1)-(x1y2+x2y1)+x1-x2-4=x2-x1-x1x2-t(x1+x2)+x1-x2-4=-x1x2-t(x1+x2)-4=-2t2+4+2t2-4=0所以直线PD、PE与y轴围成的三角形是等腰三角形.考点:椭圆的标准方程,直线与椭圆的综合问题.【名师点睛】解析几何中的直线与曲线相交的综合性问题,可设出直线方程,同时设交点坐标为,由直线方程与椭圆方程可得,然后计算相关量,象本题计算,并把用表示出来,把刚才所得代入可得结论.21.(1)见解析;(2)60°;(3)点P是AC的中点.【解析】试题分析:(1)要证线面平行,只要证线线平行,设交点为,为中点,由为中点,可得(中点连线是经常用到的辅助线),从而得证线面平行;(2)由已知可以证明CD、CB、CE两两垂直,因此以它们所在直线分别为x轴、y轴、z轴建立空间直角坐标系,写出各点坐标,=(-,0,0)为平面ADF的一个法向量.再求得平面的一个法向量,求得法向量的夹角即得二面角(它们相等或互补);(3)在(2)基础上,可设可设P(t, t, 0)(0≤t≤),则由与的夹角的为或可求得,从而得点位置.试题解析:(1)记AC与BD的交点为O,连接OE,∵O、M分别是AC、EF的中点,ACEF是矩形,∴四边形AOEM是平行四边形,∴AM∥OE∵OE⊂平面BDE,AM⊄平面BDE,∴AM∥平面BDE(2)在平面AFD中过A作AS⊥DF于S,连接BS,∵AB⊥AF,AB⊥AD,AD∩AF=A,∴AB⊥平面ADF,∴AS是BS在平面ADF上的射影,由三垂线定理得BS⊥DF∴∠BSA是二面角A﹣DF﹣B的平面角在Rt△ASB中,AS==,AB=,∴tan∠ASB=,∠ASB=60°,∴二面角A﹣DF﹣B的大小为60°;(3)如图设P(t,t,0)(0≤t≤),则=(﹣t,﹣t,1),=(,0,0)又∵,夹角为60°,∴,解之得t=或t=(舍去),故点P为AC的中点时满足题意.考点:线面平行的判断,二面角,异面直线所成的角.22.(1)详见解析(2)时最大的综合满意度为【解析】试题分析:(1)表示出甲和乙的满意度,整理出最简形式,在条件时,表示出要证明的相等的两个式子,得到两个式子相等.(2)在上一问表示出的结果中,整理出关于变量的符合基本不等式的形式,利用基本不等式求出两个人满意度最大时的结果,并且写出等号成立的条件试题解析:(1)当时,23535(20)(5)125BB BB B BBm m mhm m mm=⋅=++++甲,235320(5)(20)35BB BB B BBm m mhm m mm=⋅=++++乙, =(2由,故当即时,甲乙两人同时取到最大的综合满意度为.考点:函数模型的选择与应用23.(1)(2)没有的把握认为“生产能手与工人所在的年龄组有关【解析】试题分析:(1)根据分层抽样原理,结合频率分布直方图,求出每组应抽取的人数;(2)由频率分布直方图,计算各组对应的生产能手数,填写2×2列联表,计算K2的值,从而得出统计结论试题解析:(Ⅰ)由已知得,样本中有周岁以上组工人名,周岁以下组工人名所以,样本中日平均生产件数不足件的工人中,周岁以上组工人有(人),记为,,;周岁以下组工人有(人),记为,从中随机抽取名工人,所有可能的结果共有种,他们是:,,,,,,,,,其中,至少有名“周岁以下组”工人的可能结果共有种,它们是:,,,,,,.故所求的概率:…………6分(Ⅱ)由频率分布直方图可知,在抽取的名工人中,“周岁以上组”中的生产能手(人),“周岁以下组”中的生产能手(人),据此可得列联表如下:所以得:22 2()100(15251545)251.79()()()()6040307014n ad bcKa b c d a c b d-⨯⨯-⨯===≈++++⨯⨯⨯因为,所以没有的把握认为“生产能手与工人所在的年龄组有关”考点:频率分布直方图;独立性检验的应用24.(1)(2)【解析】试题分析:(1)由图象过点P(0,2)求出d的值,再代入求出导数,再由切线方程求出f(-1)、f′(-1),分别代入求出b和c的值;(2)将条件转化为有三个根,再转化为的图象与y=a图象有三个交点,再求出h(x)的导数、临界点、单调区间和极值,再求出a的范围即可试题解析:(1)由的图象经过点P(0,2),知d=2.所以,则由在处的切线方程是知,即.所以即解得.故所求的解析式是.(2)因为函数与的图像有三个交点有三个根,即有三个根令,则的图像与图像有三个交点.接下来求的极大值与极小值(表略).的极大值为的极小值为2,因此考点:利用导数研究曲线上某点切线方程;根的存在性及根的个数判断 J34471 86A7 蚧30453 76F5 盵30538 774A 睊"Fc21607 5467 呧24733 609D 悝31962 7CDA 糚-Q37766 9386 鎆36257 8DA1 趡。
河南省正阳县第二高级中学2018届高三数学下学期周练(十二)文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(河南省正阳县第二高级中学2018届高三数学下学期周练(十二)文)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为河南省正阳县第二高级中学2018届高三数学下学期周练(十二)文的全部内容。
河南省正阳县第二高级中学2017—2018学年下期高三文科数学周练十二一。
选择题:1.设复数z=21ii-+,则z=()A.132i-B.132i+C.1﹣3i D.1+3i2.设集合U=R,A={x|y=ln(1﹣x)},B={x|x2﹣3x≥0},则A∩∁U B=()A.{x|0<x<1}B.{x|1<x<3} C.{x|0<x<3} D.{x|x<1}3.某射击手射击一次命中的概率是0.7,连续两次均射中的概率是0.4,已知某次射中,则随后一次射中的概率是( )A.7:10 B.6:7 C.4:7 D.2:54.把函数y=f(x)的图象向右平移一个单位,所得图象恰与函数y=e x的反函数图象重合,则f(x)=()A.lnx﹣1 B.lnx+1 C.ln(x﹣1)D.ln(x+1)5.下列说法不正确的是( )A.若“p且q”为假,则p、q至少有一个是假命题B.命题“∃x0∈R,x02﹣x0﹣1<0"的否定是“∀x∈R,x2﹣x﹣1≥0”C.“φ=90°”是“y=sin(2x+φ)为偶函数"的充要条件D.a<0时,幂函数y=x a在(0,+∞)上单调递减6.执行如图所示的程序框图,输出的T=()A .29B .44C .52D .627、直线()1(3),y k x k R -=-∈被圆22(2)(2)4x y -+-=截得的最短 的弦长等于A 3.3.225 8、若正实数,m n 满足345m n mn +=,则3m n +的最小正是 A .4B .5C .245 D .2859、已知四棱锥P —ABCD 的三视图如右图所示, 则此四棱锥外接球的半径为A 352 D .210、已知函数()221,047,4xx f x x x ⎧⎪-<≤=⎨⎪->⎩,若方程()1f x kx =+有三个不同的实数根,则实数k 的取值范围是A .11(,)72-B .11(,)(,)72-∞-+∞C .11[,)72-D .11(,]72-11、数列{}n a 满足11a =,且11()n n a a a n n N *+=++∈,则122016111a a a +++=A .20152016 B .40282015 C .40322017 D .2014201512、设函数()ln (3)2f x x x k x k =--+-,当1x >时,()0f x >,则整数k 的最大值是 A .3 B .4 C .5 D .6 二.填空题:13、已知f (x)是定义在R 上的奇函数,当x>0时,()121log f x x =+,则f(—4)=14。
高三模拟考试理科数学本试卷共5页,满分l50分。
注意事项:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束,监考员将试题卷、答题卡一并收回。
第I卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1A B C D2.A B C D3A BC D4A B C D5.从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,则这个数大于30的概率为B. C. D.6a,b,c的大小关系是A.b>c>a B.a>c>b C.b>a>c D.a>b>c7.“m<0A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件8.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为A B C D9.已知A,B上的两个动点,AB M是线段ABA B C.2 D.310.习总书记在十九大报告中指出:坚定文化自信,推动社会主义文化繁荣兴盛.如图,“大衍数列”:0,2,4,8,12……来源于《乾坤谱》中对《易传》“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理,数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和.右图是求大衍数列前n项和的程序框图,执行该程序框图,输入S=A.26 B.44 C.68 D.10011.如图所示,在平面四边形ABCDA BCD 12BCD第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分。
绵阳南山2024届补习年级十一月月考理科数学试题(答案在最后)注意事项:1.答卷前,考生务必将自己的班级、姓名、考号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将答题卡交回.一、选择题:本卷共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,0,1,2A =-,{}2xB y y ==,M A B = ,则集合M 的子集个数是()A.2B.3C.4D.8【答案】C 【解析】【分析】求出集合M ,由此可计算出集合M 的子集个数.【详解】{}{}20xB y y y y ===> ,{}1,0,1,2A =-,{}1,2M A B ∴=⋂=,因此,集合M 的子集个数是224=.故选:C.【点睛】本题考查集合子集个数的计算,一般要求出集合的元素个数,考查计算能力,属于基础题.2.抛物线24y x =的焦点坐标是()A.(0,1)B.(1,0)C.10,16⎛⎫⎪⎝⎭D.1,016⎛⎫⎪⎝⎭【答案】C 【解析】【分析】将抛物线化为标准方程可得焦点坐标.【详解】抛物线24y x =标准方程为214x y =,其焦点坐标为10,16⎛⎫⎪⎝⎭故选:C.3.已知函数()f x 的定义域为R ,则“(1)()f x f x +>恒成立”是“函数()f x 在R 上单调递增”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】函数()f x 为R 上增函数R x ⇒∀∈,(1)()f x f x +>,反之不成立,即可判断出结论.【详解】函数()f x 为R 上增函数R x ⇒∀∈,(1)()f x f x +>,反之不成立,例如定义()f x 在(0,1]上,()f x x =-,且在R 上满足(1)()1f x f x +=+,则有“(1)()f x f x +>”,∴“(1)()f x f x +>”是“函数()f x 为增函数”的必要不充分条件.故选:B .4.若向量,a b满足||||||a b a b +=+,则向量,a b一定满足的关系为()A.0a= B.存在实数λ,使得a bλ=C.存在实数,m n ,使得ma nb= D.||||||a b a b -=-【答案】C 【解析】【分析】对于A,B,D 通过举反例即可判断,对于C 需分a 与b 是否为0讨论即可.【详解】||||||a b a b +=+,两边同平方得222222||||a a b b a a b b +⋅+=+⋅+ ||||a b a b ∴⋅= ,||||cos ||||a b a b θ∴= ,对A ,0b = 时,a为任一向量,故A 错误,对B ,若0b = ,0a ≠时,此时不存在实数λ,使得a b λ=,故B 错误,对于C ,因为||||cos ||||a b a b θ=,当a 与b 至少一个为零向量时,此时一定存在实数m ,n ,使得ma nb = ,具体分析如下:当0a = ,0b ≠r r时,此时m 为任意实数,0n =,当0a ≠ ,0b =时,此时n 为任意实数,0m =,当0a = ,0b =时,,m n 为任意实数,当0a ≠ ,0b ≠r r 时,因为||||cos ||||a b a b θ=,则有cos 1θ=,根据[]0,θπ∈,则0θ=,此时,a b 共线,且同向,则存在实数λ使得a b λ=(0λ>),令n m λ=,其中,m n 同号,即n a b m= ,即ma nb = ,则存在实数m ,n ,使得ma nb = ,故C 正确,对于D ,当0a = ,0b ≠r r时,||||||a b a b -≠- ,故D 错误,故选:C.5.在平面直角坐标系xOy 中,若圆()()2221:14C x y r -+-=(r >0)上存在点P ,且点P 关于直线10x y +-=的对称点Q 在圆()222:49C x y ++=上,则r 的取值范围是()A.(2,+∞) B.[2,+∞) C.(2,8)D.[2,8]【答案】D 【解析】【分析】求出圆1C 关于10x y +-=对称的圆的方程,转化为此圆与()2249x y ++=有交点,再由圆心距与半径的关系列不等式组求解.【详解】()()2221:14C x y r -+-=圆心坐标()11,4C ,设()1,4关于直线10x y +-=的对称点为(),a b ,由141022411a b b a ++⎧+-=⎪⎪⎨-⎪=⎪-⎩,可得30a b =-⎧⎨=⎩,所以圆()()2221:14C x y r -+-=关于直线10x y +-=对称圆的方程为()2220:3C x y r ++=,则条件等价为:()2220:3C x y r ++=与()222:49C x y ++=有交点即可,两圆圆心为()03,0C -,()20,4C -,半径分别为r ,3,则圆心距025C C ==,则有353r r -≤≤+,由35r -≤得28r -≤≤,由35r +≥得2r ≥,综上:28r ≤≤,所以r 的取值范围是[]28,,故选:D.6.已知函数()s π3πin f x x ⎛⎫=+⎪⎝⎭,其在一个周期内的图象分别与x 轴、y 轴交于点A 、点B ,并与过点A 的直线相交于另外两点C 、D .设O 为坐标原点,则()BC BD OA +⋅=()A.118B.89C.49D.29【答案】B 【解析】【分析】根据图象结合三角函数求点,A B ,进而求,BC BD OA +uu u r uu u r uu r,即可得结果.【详解】因为()s π3πin f x x ⎛⎫=+⎪⎝⎭,可得π(0)sin 32f ==,即0,2B ⎛⎫ ⎪ ⎪⎝⎭,由图可知:点A 为减区间的对称中心,令ππ2ππ,3x k k +=+∈Z ,解得22,3x k k =+∈Z ,取0k =,则23x =,即2,03A ⎛⎫⎪⎝⎭,可得232,,,0323BA OA ⎛⎫⎛⎫=-= ⎪ ⎪ ⎪⎝⎭⎝⎭uu r uu r ,因为点A 为线段CD的中点,则42,3BC BD BA ⎛+== ⎝uu u r uu u r uu r ,所以()428339BC BD OA +⋅=⨯=uu u r uu u r uu r .7.已知过椭圆2222:1(0)x y C a b a b+=>>左焦点F且与长轴垂直的弦长为,过点()2,1P 且斜率为-1的直线与C 相交于A ,B 两点,若P 恰好是AB 的中点,则椭圆C 上一点M 到F 的距离的最大值为()A.6B.6+C.6+D.6【答案】D 【解析】【分析】利用椭圆的方程和性质及直线与椭圆位置关系即可解决.【详解】由过椭圆2222:1(0)x y C a b a b +=>>左焦点F且与长轴垂直的弦长为可得椭圆过点(c -,代入方程得222181+=c a b.设()()1122,,,,A x y B x y 则2222112222221,1,x y x y a b a b +=+=,两式作差得22221212220x x y y a b --+=,即()()()()12121212220x x x x y y y y a b -+-++=,因为P 恰好是AB 的中点,所以12124,2x x y y +=+=,又因为直线AB 斜率为-1,所以12121y y x x -=--,将它们代入上式得222a b =,则联立方程222222221812c a b a b a b c ⎧+=⎪⎪⎪=⎨⎪=+⎪⎪⎩解得66a b c ⎧=⎪=⎨⎪=⎩.所以椭圆C 上一点M 到F的距离的最大值为6+=+a c 故选:D8.若直线y x b =-+与曲线x =b 的取值范围是()A.⎡⎣B.⎡-⎣C.[1,1)-D.]{(1,1-⋃【解析】【分析】由题意作图,根据直线与圆的位置关系,可得答案.【详解】由曲线x =221x y +=,其中0x ≥,表示以原点为圆心,半径为1的右半圆,y x b =-+是倾斜角为135︒的直线,其与曲线有且只有一个公共点有两种情况:(1)直线与半圆相切,根据d r =,所以1d ==,结合图象,可得:b =;(2)直线与半圆的下半部分相交于一个交点,由图可知[1,1)b ∈-.综上可知:[1,1)b ∈-.故选:C.9.已知02αβπ<<<,函数()5sin 6f x x π⎛⎫- ⎝=⎪⎭,若()()1f f αβ==,则()cos βα-=()A.2325B.2325-C.35D.35-【答案】B 【解析】【分析】由已知条件,结合三角函数的性质可得263ππα<<,2736ππβ<<,从而利用()cos cos 66ππβαβα⎡⎤⎛⎫⎛⎫-=--- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦即可求解.【详解】解:令()5sin 06f x x π⎛⎫-= ⎪⎝⎭=,02x π<<,则6x π=或76x π=,令()5sin 56f x x π⎛⎫-= ⎪⎝⎭=,02x π<<,则23x π=,又02αβπ<<<,()()1ff αβ==,所以263ππα<<,2736ππβ<<,1sin 65πα⎛⎫-= ⎪⎝⎭,1sin 65πβ⎛⎫-= ⎪⎝⎭,因为062ππα<-<,26ππβπ<-<,所以cos 65πα⎛⎫-= ⎪⎝⎭,cos 65πβ⎛⎫-=- ⎪⎝⎭,所以()cos cos cos cos sin sin 666666ππππππβαβαβαβα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=---=--+-- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦26261123555525-⨯⨯=-=+,故选:B.10.已知数列{}n a 满足12a =,26a =,且2122n n n a a a ++-+=,若[]x 表示不超过x 的最大整数(例如[]1.61=,[]1.62-=-),则222122021232022a a a ⎡⎤⎡⎤⎡⎤++⋅⋅⋅+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()A.2019B.2020C.2021D.2022【答案】D 【解析】【分析】求出()1na n n =+,()2111nn a n+=+,即得解.【详解】解:由题设知,()()2112n n n n a a a a +++---=,214a a -=,故{}1n n a a +-是首项为4,公差为2的等差数列,则122n n a a n +-=+,则11221n n n n a a a a a a ----+-+⋅⋅⋅+-()()()()1213212121n a a n n n n ⎡⎤=-=-+⋅⋅⋅++++-=+-⎣⎦,所以()1na n n =+,故()2111nn a n+=+,又*n ∈N ,当1n =时,2122a ⎡⎤=⎢⎥⎣⎦,当2n ≥时,()211n n a ⎡⎤+=⎢⎥⎢⎥⎣⎦,所以22212202123202221112022a a a ⎡⎤⎡⎤⎡⎤++⋅⋅⋅+=++++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.故选:D .11.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,过2F 作一条直线与双曲线右支交于,A B 两点,坐标原点为O ,若OA c =,15BF a =,则该双曲线的离心率为()A.2B.2C.3D.3【答案】B 【解析】【分析】由1212OA c F F ==得1290F AF ∠=︒,由双曲线定义得23BF a =,在1AF B △中应用勾股定理得2AF a =,在12AF F △中再应用勾股定理得,a c 的关系式,求得离心率.【详解】因为1212OA c F F ==,所以1290F AF ∠=︒,又122BF BF a -=,所以23BF a =,又122AF AF a =+,由22211AF AB BF +=得22222(2)(3)(5)AF a AF a a +++=,解得2AF a =,所以由2221212AF AF F F +=,得222(2)(2)a a a c ++=,解得2c e a ==.故选:B .【点睛】关键点点睛:本题考查求双曲线的离心率,解题关键是由1212OA c F F ==得1290F AF ∠=︒,然后结合双曲线的定义在1AF B △中应用勾股定理求得2AF ,在12AF F △中应用勾股定理建立,a c 的关系.12.设0.02e 1a =-,()0.012e 1b =-,sin 0.01tan 0.01c =+,则()A.a b c >>B.a c b >>C.c a b >>D.b c a>>【答案】A 【解析】【详解】因为()20.020.010.01e 2e 1e 10a b -=-+=->,所以a b >.设()()2e 1sin tan xf x x x =---,则()f x '=212e cos cos xx x--,令()()g x f x '=,则32sin ()2e sin cos xxg x x x'=+-.当π0,6x ⎛⎫∈ ⎪⎝⎭时,2e 2x >,sin 0x >,33π2sin2sin 62πcos 9cos 6x x <=<,所以()0g x '>,所以当π0,6x ⎛⎫∈ ⎪⎝⎭时,()(0)0f x f ''>=,所以()f x 在π0,6x ⎛⎫∈ ⎪⎝⎭上单调递增,从而()(0)0f x f >=,因此(0.01)0f >,即b c >.综上可得a b c >>.故选:A【点睛】比较函数值的大小,要结合函数值的特点,选择不同的方法,本题中,,a b 可以作差进行比较大小,而,b c 的大小比较,则需要构造函数,由导函数得到其单调性,从而比较出大小,有难度,属于难题.二、填空题:本大题共4小题,每小题5分,共20分13.已知复数z 满足13i z z -=-,则z =__________.【答案】5【解析】【分析】设i z a b =+,,R a b ∈,根据复数的模及复数相等的充要条件得到方程组,解得a 、b ,即可求出z ,从而得解.【详解】设i z a b =+,,R a b ∈,则z =,因为13i z z -=-i 13i a b --=-,所以13a b -==⎪⎩,所以43a b =⎧⎨=⎩,即43i z =+,所以5z ==.故答案为:514.已知双曲线22221(0,0)x y a b a b-=>>的一个焦点在直线2y x =-上,且焦点到渐近线的距离为双曲线的方程为_______.【答案】2213y x -=【解析】【分析】根据点到直线的距离公式可得b =,由焦点在直线上可得2c =,进而可求解1a ==.【详解】由题意可得双曲线的焦点在x 轴上,又直线2y x =-与x 的交点为()2,0,所以右焦点为()2,0,故2c =,渐近线方程为b y x a=±,所以(),0cb c a b ==又1a ==,故双曲线方程为2213yx -=,故答案为:2213y x -=15.已知定义在R 上的函数()f x 满足()()2f x f x x +-=,[)12,0,x x ∀∈+∞均有()()()121212122f x f x x x x x x x -+>≠-,则不等式()()112f x f x x -->-的解集为___________.【答案】1,2⎛⎫+∞ ⎪⎝⎭【解析】【分析】构造函数()()212g x f x x =-,通过题干条件得到()g x 为奇函数,且在R 上单调递增,从而根据单调性解不等式,求出解集.【详解】因为定义在R 上的函数()f x 满足()()2f x f x x +-=,所以设()()212g x f x x =-,则()()g x g x =--,所以()()212g x f x x =-为奇函数,因为[)12,0,x x ∀∈+∞,都有()()()121212122f x f x x x x x x x -+>≠-,当12x x >时,则有()()()()1212122x x x x f x f x +-->,即()()22121222x x f x f x ->-,所以()()12g x g x >,所以()g x 在()0,∞+上单调递增,当12x x <时,则有()()22121222x x f x f x -<-,所以()()12g x g x <,所以()g x 在()0,∞+上单调递增,综上:()g x 在()0,∞+上单调递增,因为()g x 为奇函数,则()g x 在R 上单调递增,()()112f x f x x -->-变形为:()()()22111122f x x f x x ->---,即()()1g x g x >-,所以1x x >-,解得:12x >.故答案为:1,2⎛⎫+∞ ⎪⎝⎭16.已知抛物线2:8C y x =,其焦点为点F ,点P 是拋物线C 上的动点,过点F 作直线()1460m x y m ++--=的垂线,垂足为Q ,则PQ PF+的最小值为___________.【答案】5##5+【解析】【分析】通过确定直线过定点M (4,2),得到Q 在以FM 为直径的圆上,将P 到Q 的距离转化为到圆心的距离的问题,再利用抛物线的定义就可得到最小值.【详解】将已知直线(1)460+-+-=m x m y 化为()460-++-=m x x y ,当4x =时2y =,可确定直线过定点(4,2),记为M 点.∵过点F 做直线(1)460+-+-=m x m y 的垂线,垂足为Q ,∴FQ ⊥直线(1)460+-+-=m x m y ,即,90︒⊥∠=FQ MQ FQM ,故Q 点的轨迹是以FM 为直径的圆,半径r =,其圆心为FM 的中点,记为点H ,∴(3,1)H ,∵P 在抛物线2:8C y x =上,其准线为2x =-,∴PF 等于P 到准线的距离.过P 作准线的垂线,垂足为R .要使||||PF PQ +取到最小,即||||PR PQ +最小,此时R 、P 、Q 三点共线,且三点连线后直线RQ 过圆心H .如图所示,此时()min ||||5+=-=-PR PQ HR r故答案为:5三、解答题(共70分)解答应写出文字说明、证明过程或演算步骤.第17—21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知34,cos 5a C ==.(1)求sin A 的值;(2)若11b =,求ABC 的面积.【答案】(1;(2)22.【解析】【分析】(1)先由平方关系求出sin C ,再根据正弦定理即可解出;(2)根据余弦定理的推论222cos 2a b c C ab+-=以及4a =可解出a ,即可由三角形面积公式in 12s S ab C =求出面积.【小问1详解】由于3cos 5C =,0πC <<,则4sin 5C =.因为4a =,由正弦定理知4sin A C =,则sin sin 45A C ==.【小问2详解】因为4a =,由余弦定理,得2222221612111355cos 22225a a a a b c C ab a a +--+-====,即26550a a +-=,解得5a =,而4sin 5C =,11b =,所以ABC 的面积114sin 51122225S ab C ==⨯⨯⨯=.18.已知数列{}n a 中的相邻两项21k a -,2k a 是关于x 的方程()232320k k x k x k -++⋅=的两个根,且212(1,2,3,)k k a a k -≤= .(1)求1357,,,a a a a 及2(4)n a n ≥(不必证明);(2)求数列{}n a 的前2n 项和2n S .【答案】(1)13572,,,(4)24812,2n na a a a a n ===≥==;(2)2133222n n n +++-【解析】【分析】(1)方程由因式分解可解得21,23k x x k ==,结合212(1,2,3,)k k a a k -≤= 则可求得1357,,,a a a a ,令()2132n n f n x x =-=-,设()23xg x x =-,由导数法可求得()()()40f n g n g =≥>,则有2n n a =;(2)分组求和,结合公式法求和即可【小问1详解】由题意得,()()213203,2k k x k x x x k -===-⇒,由212(1,2,3,)k k a a k -≤= ,则当1k =时,21123,2x x a ⇒===;当2k =时,21346,4x x a ⇒===;当3k =时,21589,8x x a ⇒===;当4k =时,712612,112x x a ⇒===;当k n =()4n ≥时,21,23n x x n ==,令()2132n n f n x x =-=-,设()23x g x x =-,由()()2ln 2416ln 2330x g x g '=≥=-->',故()g x 单调递增,故()()()430f n g n g =≥=>,则21x x >,∴22n n a =;【小问2详解】由(1)得122122n n nS a a a a -=++++ ()()2363222n n =+++++++ ()()21233212nn n-+=+-2133222n n n ++=+-19.已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别是1F ,2F ,上、下顶点分别是1B ,2B ,离心率12e =,短轴长为.(1)求椭圆C 的标准方程;(2)过2F 的直线l 与椭圆C 交于不同的两点M ,N ,若12MN B F ⊥,试求1F MN △内切圆的面积.【答案】(1)22143x y +=;(2)36169π.【解析】【分析】(1)由题意得122c a b ⎧=⎪⎨⎪=⎩,解出即可;(2)首先算出直线l 的方程,然后和椭圆的方程联立消元,算出1F MN △的面积和周长,然后得到1F MN △内切圆的半径即可.【详解】(1)由题意得122c a b ⎧=⎪⎨⎪=⎩,又222a b c =+,解得24a =,23b =,所以椭圆C 的方程为22143x y +=.(2)由(1B ,()21,0F ,知12B F的斜率为12MN B F ⊥,故MN的斜率为3,则直线l的方程为()13y x =-,即1x =+,联立221,431,x y x ⎧+=⎪⎨⎪=+⎩可得:21390y +-=,设()11,M x y ,()22,N x y,则1213y y +=-,12913y y =-,则1F MN △的面积122413S c y y =⋅-==,由1F MN △的周长48L a ==,及12S LR =,得内切圆2613S R L ==,所以1F MN △的内切圆面积为236ππ169R =.20.已知函数()ln(1)2f x x ax =+-+.(1)若2a =,求()f x 在0x =处的切线方程;(2)当0x ≥时,()2ln(1)0f x x x x +++≥恒成立,求整数a 的最大值.【答案】(1)20x y +-=(2)4【解析】【分析】(1)利用函数解析式求切点坐标,利用导数求切线斜率,点斜式求切线方程;(2)0x =时,不等式恒成立;当0x >时,不等式等价于()()1ln 12x x a x ⎡⎤+++⎣⎦≤,设()()()1ln 12x x g x x⎡⎤+++⎣⎦=,利用导数求()g x 的最小值,可求整数a 的最大值.【小问1详解】若2a =,则()ln(1)22f x x x =+-+,()02f =,则切点坐标为()0,2,()121f x x =-+',则切线斜率()01k f '==-,所以切线方程为()20y x -=--,即20x y +-=.【小问2详解】由()2ln(1)0f x x x x +++≥,得(1)[ln(1)2]ax x x ≤+++,当0x =时,02a ⋅≤,a ∈R ;当0x >时,()()1ln 12x x a x⎡⎤+++⎣⎦≤,设()()()1ln 12x x g x x ⎡⎤+++⎣⎦=,()()22ln 1x x g x x --+'=,设()()2ln 1h x x x =--+,()01x h x x +'=>,则()h x 在()0,∞+单调递增,(3)1ln 40h =-<,(4)2ln 50h =->,所以存在0(3,4)x ∈使得()00h x =,即()002ln 1x x -=+.()00,x x ∈时,()0h x <,即()0g x '<;()0,x x ∈+∞时,()0h x >,即()0g x '>,则有()g x 在()00,x 单调递减,在()0,x +∞单调递增,()min 0()g x g x =,所以()()()()()000000001ln 121221x x x x a g x x x x ⎡⎤⎡⎤++++-+⎣⎦⎣⎦≤===+,因为0(3,4)x ∈,所以01(4,5)x +∈,所以整数a 的最大值为4.【点睛】方法点睛:不等式问题,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.解题过程中要注意分类讨论和数形结合思想的应用.21.在平面直角坐标系xOy 中,动点G 到点()4,0F 的距离比到直线60x +=的距离小2.(1)求G 的轨迹的方程;(2)设动点G 的轨迹为曲线C ,过点F 作斜率为1k ,2k 的两条直线分别交C 于M ,N 两点和P ,Q 两点,其中122k k +=.设线段MN 和PQ 的中点分别为A ,B ,过点F 作FD AB ⊥,垂足为D .试问:是否存在定点T ,使得线段TD 的长度为定值.若存在,求出点T 的坐标及定值;若不存在,说明理由.【答案】(1)216y x=(2)存在定点(4,2)T ,使得线段TD 的长度为定值2;理由见解析【解析】【分析】(1)根据动点G 到点(4,0)F 的距离比它到直线60x +=的距离小2和抛物线的定义可知点G 的轨迹是以(4,0)F 为焦点,以直线40x +=为准线的抛物线,进而得出结果;(2)设直线方程,联立抛物线方程,求得A ,B 的坐标,从而表示出AB 的方程,说明其过定点,由FD AB ⊥可说明点D 点在一个圆上,由此可得结论.【小问1详解】由题意可得动点G 到点()4,0F 的距离比到直线60x +=的距离小2,则动点G 到点()4,0F 的距离与到直线40x +=的距离相等,故G 的轨迹是以(4,0)F 为焦点,以直线40x +=为准线的抛物线,设抛物线方程为22,(0)y px p =>,则焦准距8p =,故G 的轨迹的方程为:216y x =;【小问2详解】由题意,直线MN 的方程为1(4)y k x =-,由题意可知12120,0,k k k k ≠≠≠,由2116(4)y x y k x ⎧=⎨=-⎩,消去y 得:2222111(816)160k x k x k -++=,211256(1)0k ∆=+>,设1122(,),(,)M x y N x y ,则1212111221116168,(4)(4)x x y y k x k x k k +=++=-+-=,故21188(4,A k k +,同理可求得22288(4,B k k +,所以直线AB 的斜率21121222218888(4)(4)ABk k k k k k k k k -==++-+,故直线AB 的方程为:()()12121221211121288844442k k k k k k y x x x k k k k k k k k ⎛⎫=--+=-+=-+ ⎪+++⎝⎭,故直线AB 过定点(4,4),设该点为(4,4)E ,又因为FD AB ⊥,所以点D 在以EF 为直径的圆上,由于(4,4),(4,0)E F ,4EF ==,故以EF 为直径的圆的方程为22(4)(2)4x y -+-=,故存在定点(4,2)T ,使得线段TD 的长度为定值2.【点睛】本题考查了抛物线方程的求解以及直线和抛物线的位置关系中的定点问题,综合性较强,解答时要注意设直线方程并和抛物线方程联立,利用很与系数的关系进行化简,关键是解题思路要通畅,计算要准确,很容易出错.(二)选考题:共10分.请考生在第22、23题中任选一题做答.如果多做,则按所做的第一题记分.22.在平面直角坐标系xOy 中,直线1C 的参数方程为2cos ,sin ,x t y t αα=+⎧⎨=⎩(t 为参数,0απ<<),曲线2C 的参数方程为()1sin 2,2sin cos ,x y βββ=+⎧⎨=+⎩(β为参数),以坐标原点O 为极点,以x 轴正半轴为极轴建立极坐标系.(1)求曲线2C 的极坐标方程;(2)若点(2,0)P ,直线1C 与曲线2C 所在抛物线交于A ,B 两点,且||2||PA PB =,求直线1C 的普通方程.【答案】(1)2sin 4cos ρθθ=,[]cos 0,2ρθ∈(2)240x y +-=或240x y --=.【解析】【分析】(1)由()2sin cos 1sin 2βββ+=+将曲线2C 的参数方程化为普通方程,再根据极坐标和直角坐标的转化公式即可得出答案;(2)将直线的参数方程代入曲线2C 的普通方程,可得根与系数的关系式,结合根与系数的关系式化简可求得tan α的值,即可求出直线1C 的斜率,再由点斜式即可得出答案.【小问1详解】因为[]1sin 20,2x β=+∈,由()2sin cos 1sin 2βββ+=+,所以曲线2C 的普通方程为24y x =,[]0,2x ∈,cos x ρθ=,sin y ρθ=,所以22sin 4cos ρθρθ=,即2sin 4cos ρθθ=.所以曲线2C 的极坐标方程为2sin 4cos ρθθ=,[]cos 0,2ρθ∈.【小问2详解】设A ,B 两点对应的参数分别为12,t t ,将2cos ,sin ,x t y t αα=+⎧⎨=⎩代入24y x =得22sin 4cos 80t t αα--=,由题知2sin 0α≠,22222216cos 32sin 16(cos sin )16sin 1616sin 0αααααα∆=+=++=+>,所以1224cos sin t t αα+=,1228sin t t α-=.因为||2||PA PB =,所以122t t =,又12280sin t t α-=<,所以122t t =-,故22sin t α=±.当22sin t α=时,代入1224cos sin t t αα+=得tan 2α=-,此时1C 的普通方程为2(2)y x =--,即240x y +-=.当22sin t α=-时,代入1224cos sin t t αα+=得tan 2α=,此时1C 的普通方程为2(2)y x =-,即240x y --=,联立22404x y y x--=⎧⎨=⎩可得()2244x x -=,即2540x x -+=,解得:1x =或4x =,所以直线1C 的普通方程为240x y +-=或240x y --=.23.已知()|||2|().f x x a x x x a =-+--(1)当1a =时,求不等式()0f x <的解集;(2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围.【答案】(1)(,1)-∞;(2)[1,)+∞【解析】【分析】(1)根据1a =,将原不等式化为|1||2|(1)0x x x x -+--<,分别讨论1x <,12x ≤<,2x ≥三种情况,即可求出结果;(2)分别讨论1a ≥和1a <两种情况,即可得出结果.【详解】(1)当1a =时,原不等式可化为|1||2|(1)0x x x x -+--<;当1x <时,原不等式可化为(1)(2)(1)0x x x x -+--<,即2(1)0x ->,显然成立,此时解集为(,1)-∞;当12x ≤<时,原不等式可化为(1)(2)(1)0x x x x -+--<,解得1x <,此时解集为空集;当2x ≥时,原不等式可化为(1)(2)(1)0x x x x -+--<,即2(10)x -<,显然不成立;此时解集为空集;综上,原不等式的解集为(,1)-∞;(2)当1a ≥时,因为(,1)x ∈-∞,所以由()0f x <可得()(2)()0a x x x x a -+--<,即()(1)0x a x -->,显然恒成立;所以1a ≥满足题意;当1a <时,2(),1()2()(1),x a a x f x x a x x a-≤<⎧=⎨--<⎩,因为1a x ≤<时,()0f x <显然不能成立,所以1a <不满足题意;综上,a 的取值范围是[1,)+∞.【点睛】本题主要考查含绝对值的不等式,熟记分类讨论的方法求解即可,属于常考题型.。
河南省正阳县第二高级中学2018-2019学年下期高三文科数学周练(十)一.选择题:1.已知i 为虚数单位,则13ii+-=( ) A.25i - B. 25i + C.125i - D. 125i +2.已知双曲线2221(0)3x y a a -=>的离心率为2,则a=( )3.已知数列{}n a 的公比q=2,且462,,48a a 成等差数列,则{}n a 的前8项和为( )A.127B.255C.511D.10234.若△ABC 的三个内角满足sinA:sinB:sinC=5:11:13,则△ABC 是( )A.锐角三角形B.直角三角形C.钝角三角形D.锐角或钝角三角形5.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率是( ) A.13 B. 12 C.23 D. 346.阅读如下框图,运行相应的程序,则程序运行后输出的结果是( )A.7B.8C.9D.10 7.下列命题正确的是( )(1)若命题“p 或q ”为真命题,则命题“p ”和命题“q ”均为真命题;(2)命题“2,13x R x x ∃∈+>”的否定是“2,13x R x x ∀∈+≤”;(3)“x=4”是“2340x x --=”的必要不充分条件;(4)命题“若220m n +=,则m=0且n=0”的否命题是“若220m n +≠,则0m ≠或0n ≠” A.(2)(3) B.(1)(2)(3) C.(2)(4) D.(2)(3)(4)8.有一段“三段论”,其推理是这样的。
“对于可导函数f(x),若/0()0f x =,则0x x =是函数f(x)的极值点”,因为函数f(x)=3x 满足/(0)0f =,所以x=0是3()f x x =的极值点,以上推理( )A.大前提错误B.小前提错误C.推理形式错误D.没有错误9. 两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题。
2024届河北省保定市曲阳县第一高级中学高三(高补班)下学期期末数学试题试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()2331x x f x x ++=+,()2g x x m =-++,若对任意[]11,3x ∈,总存在[]21,3x ∈,使得()()12f x g x =成立,则实数m 的取值范围为( ) A .17,92⎡⎤⎢⎥⎣⎦B .[)17,9,2⎛⎤-∞+∞ ⎥⎝⎦C .179,42⎡⎤⎢⎥⎣⎦ D .4179,,2⎛⎤⎡⎫-∞+∞ ⎪⎥⎢⎝⎦⎣⎭2.在ABC 中,D 为BC 边上的中点,且||1,|2,120AB AC BAC ==∠=︒,则||=AD ( )A .2B .12C .34D .43.关于函数22tan ()cos 21tan xf x x x=++,下列说法正确的是( )A .函数()f x 的定义域为RB .函数()f x 一个递增区间为3,88ππ⎡⎤-⎢⎥⎣⎦ C .函数()f x 的图像关于直线8x π=对称D .将函数2y x =图像向左平移8π个单位可得函数()y f x =的图像 4.函数()231f x x x =-+在[]2,1-上的最大值和最小值分别为( ) A .23,-2 B .23-,-9 C .-2,-9 D .2,-25.设f (x )是定义在R 上的偶函数,且在(0,+∞)单调递减,则( )A .0.30.43(log 0.3)(2)(2)f f f -->>B .0.40.33(log 0.3)(2)(2)f f f -->>C .0.30.43(2)(2)(log 0.3)f f f -->> D .0.40.33(2)(2)(log 0.3)f f f -->>6.已知点(2,0)M ,点P 在曲线24y x =上运动,点F 为抛物线的焦点,则2||||1PM PF -的最小值为( )A .3B .2(51)-C .45D .47.已知点()2,0A 、()0,2B -.若点P 在函数y x =的图象上,则使得PAB △的面积为2的点P 的个数为( )A .1B .2C .3D .48.已知直线2:0l x m y +=与直线:0n x y m ++=则“//l n ”是“1m =”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件9.对于函数()f x ,定义满足()00f x x =的实数0x 为()f x 的不动点,设()log a f x x =,其中0a >且1a ≠,若()f x 有且仅有一个不动点,则a 的取值范围是( ) A .01a <<或a e =B .1a e <<C .01a <<或1e a e =D .01a <<10.我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?根据上述问题的已知条件,若该女子共织布3531尺,则这位女子织布的天数是( ) A .2B .3C .4D .111.设正项等比数列{}n a 的前n 项和为n S ,若23S =,3412a a +=,则公比q =( ) A .4±B .4C .2±D .2 12.定义在上的函数满足,且为奇函数,则的图象可能是( )A .B .C .D .二、填空题:本题共4小题,每小题5分,共20分。
河北省定州市2017届高三数学下学期周练试题(复习班)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(河北省定州市2017届高三数学下学期周练试题(复习班))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为河北省定州市2017届高三数学下学期周练试题(复习班)的全部内容。
河北省定州市2017届高三数学下学期周练试题(复习班)一、选择题1.函数的值域为( )A. B. C. D.2.某几何体的三视图如图所示,则该几何体的体积为A。
2 B。
4 C. 6 D。
123.已知圆截直线所得弦的长度为4,则实数的值为( ) A。
B。
C。
D。
4.设,则的大小关系为( )A。
B. C. D.5.已知集合,,,则( )A. B.C. D.6.已知等差数列中, ,,则的值是( ).A. 30 B。
15 C. 64 D。
317.下列函数中,既是偶函数又在单调递增的函数是()A。
B.C。
D。
8.若命题:是第一象限角;命题:是锐角,则是的()A. 充分不必要条件B. 必要不充分条件 C。
充要条件 D。
既不充分也不必要条件9.已知函数,若存在实数使得不等式成立,求实数的取值范围为()A。
B.C。
D。
10.已知函数,若,则( )A。
B。
C. D.11.已知全集,集合,,则( )A。
B. C。
D。
12.已知,则的最小值为( )A。
B。
C. D.二、填空题13.已知是虚数单位,若,则 __________.14.已知函数,若,则实数的取值范围是__________.15.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?"其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,则堆放的米约有___________斛(结果精确到个位).16.已知函数,若在区间上单调递减,则的取值范围是_________.三、解答题17.若数列的前n项和满足.(1)求证:数列是等比数列;(2)设,求数列的前项和。
第1页/(共2页) 第2页/(共2页)高三下学期第二次周练试卷(本试卷总分值为100分,考试时间为60分钟)每道小题5分,每道大题12分1、已知集合{}21|A x log x =<,集合{},|2x B N x ∈=<则A B =( )A .{}01x x <<B .{|02}x x ≤<C .{|02}x x ≤<D .{}0,12、已知复数51iz i i+=--,则z z ⋅=( )A .22 B .8C .13D .133、在区间()0,3上随机地取一个数,k 则事件“直线y kx =与双曲线22:1C x y -=有两个不同的交点”发生的概率为( )A .13B .12 C .23D .1 4、已知()*()cos f k k k k π=∈N ,执行如图所示的程序框图,若输出k 的值为4,则判断框内可填入的条件是( )A .2?s ≥-B .2?s ≥C .3?s ≥D .4?s ≥5、棱长为a 的正方体1111ABCD A B C D -中,点,,E F G 分别为棱111,,AB CC C D 的中点,则过,,E F G 三点的平面截正方体所得截面面积为( )A .23a B .23a C .233a D .233a 6、在平面直角坐标系xOy 中,若双曲线()22210y x b b-=>经过点(3,4),则该双曲线的准线方程为_____.7、函数()2sin (0)f x x ωω=>,若存在0[2,2]x ππ∈-,使得()02f x =-,则ω的取值范围是_______.8、在边长为4的菱形ABCD 中,60,A︒=点P 在菱形ABCD 所在的平面内.若3,21PA PC ==,则PB PD ⋅=_____.9、已知△ABC 中()3tan tan tan 0AC C AB BAC C ⋅⋅+⋅∠+=.(1)求cos ∠BAC ;(2)若AC =3,AB =1,点D 在BC 边上,且∠BAD =∠CAD ,求AD 的长10、改革开放以来,中国快递行业持续快速发展,快递业务量从上世纪80年代的153万件提升到2018年的507.1亿件,快递行业的发展也给我们的生活带来了很大便利.已知某市某快递点的收费标准为:首重(重量小于等于1kg )收费10元,续重5元/kg (不足1kg 按1kg 算). (如:一个包裹重量为2.5,kg 则需支付首付10元,续重10元,一共20元快递费用)(1)若你有三件礼物,,A B C 重量分别为0.4 1.2 1.9kg kg kg ,,,要将三个礼物分成两个包裹寄出(如:,A B 合为一个包裹,C 一个包裹),那么如何分配礼物,使得你花费的快递费最少?(2)对该快递点近5天的每日揽包裹数(单位:件)进行统计,得到的日揽包裹数分别为56件,89件,130件,202件,288件,那么从这5天中随机抽出2天,求这2天的日揽包裹数均超过100件的概率.11、已知数列{}n a 的前n 项和为n S ,且满足()2*11911,02,,6n n n a n a a n S n N +--=->≥=∈,各项均为正数的等比数列{}n b 满足1234,b a b a ==(1)求数列{}{},n n a b 的通项公式;(2)若1,2n n n c a b =,求数列{}n c 的前n 项和n T12、图AB 是圆O 的直径,PA 垂直于圆O 所在的平面,,C D 为圆周上不同于,A B 且在的异侧的任意两点,M 为PB 的中点.(1)证明:,,,,P A D B C 在以PB 为直径的球面上,且M 为球心;(2)若球M 的半径为4,6,23,2AD BD AC ===,求棱锥M ADBC -的体积.13、在平面直角坐标系0x y 中,曲线C 的方程为1,,x cosa y sina =+⎧⎨=⎩(a 为参数,且(0,)a π∈),若点M 为曲线C上的动点,直线OM 交直线2x =于点P .以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)写出曲线C 的极坐标方程及点P 轨迹的极坐标方程;(2)当3PM =时,求点P 的极坐标.。
河南省正阳县第二高级中学2017-2018学年下期高三理科数学周练十三一.选择题:1.已知复数z 满足()1i z i -=,则复数z 在复平面内的对应点位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 2.已知,a R i ∈是虚数单位, 命题p :在复平面内,复数121z a i=+-对应的点位于第二象限; 命题q :复数2z a i =-的模等于2,若p q ∧是真命题,则实数a 的值等于( )A .1-或1B .C .D . 3.已知随机变量()20,X N σ~,若(2)P Xa <=,则(2)P X >的值为( )A.12a - B. 2a C. 1a - D. 12a+ 4.已知函数()212xf x e x mx =--有极值点,则实数m 的取值范围是( )A. 1m ≥B. 1m >C. 01m ≤≤D. 01m <<5.已知双曲线2222:1(0,0)x y C a b a b-=>>过点,过点(0,2)-的直线l 与双曲线C的一条渐近线平行,且这两条平行线间的距离为23,则双曲线C 的实轴长为( )A .2B .C .4D .6.学校计划利用周五下午第一、二,三节课举办语文,数学,英语,理综4科的专题讲座,每科一节课,每节至少有一科,且数学和理综不安排在同一节,则不同的安排方法有 A. 6种 B. 24种 C. 30种 D. 36种7x 与销售额y (单位:万元)之间有下列对应数据:工作人员不慎将表格中的第一个数据丢失.已知对呈线性相关关系,且回归方程为6.517.5y x =+,则下列说法:①销售额y 与广告费支出x 正相关;②丢失的数据(表中处)为30;③该公司广告费支出每增加1万元,销售额一定增加6.5万元;④若该公司下月广告投入8万元,则销售额为70万元.其中,正确说法有( ) A .1个 B .2个 C .3个 D .4个 8.若函数()ln 1af x x x =++(N a ∈)在()1,3上只有一个极值点,则a 的取值个数是( )A. 1B. 2C. 3D. 49.F 为椭圆C :22221(0)x y a b a b+=>>的左焦点,A 为右顶点,B 为上顶点,BF ⊥AB ,P 在椭圆上且PF 垂直于 x 轴,PA 交y 轴于E ,在△PEF 和△OEF 的面积之比为( )B.C.D. 10.已知2017220170122017(12)(1)(1)...(1)x a a x a x a x -=+-+-++-对任意的实数x 均成立,则12342017234...2017a a a a a -+-++=( ) A. 2017 B. 4034C.D. 011.设52345012345(2)x a a x a x a x a x a x -=+++++,则2413a a a a ++的值为( )A .﹣6160B .﹣122121C .﹣34 D .﹣9012112.给出定义:若函数()f x 在D 上可导,即()f x '存在,且导函数()f x '在D 上也可导,则称()f x 在D 上存在二阶导函数,记()()()'f x f x =''',若()0f x ''<在D 上恒成立,则称()f x 在D 上为凸函数,以下四个函数在0,2π⎛⎫⎪⎝⎭上不是凸函数的是( ) A. ()sin cos f x x x =+ B. ()ln 2f x x x =- C. ()321f x x x =-+- D. ()xf x xe -=-二、填空题:本大题共4小题,每小题5分,共20分.13.现有2个男生,3个女生和1个老师共六人站成一排照相,若两端站男生,3个女生中有且仅有两人相邻,则不同的站法种数是__________.14.已知点A 是抛物线x 2=4y 的对称轴与准线的交点,点B 为抛物线的焦点,P 在抛物线上且满足|PA|=m|PB|,当m 取最大值时,点P 恰好在以A ,B 为焦点的双曲线上,则双曲线的离心率为( )15. 已知函数f (x )=2213,222(812)(2)x x x e x x x -⎧--≤⎪⎨⎪-+->⎩,若在区间(1,)+∞上存在n (n≥2)个不同的数123,,,...,n x x x x 使得1212()()()...n nf x f x f x x x x ===成立,则n 的取值集合是( ) 16. 双曲线Γ1:22221x y a b -= (a >0,b >0)的左、右焦点为F 1,F 2,椭圆Γ2:2286x y +=1的离心率为e ,直线MN 过F 2与双曲线交于M ,N 两点,若cos ∠F 1MN=cos ∠F 1F 2M ,11F M F N=e ,则双曲线Γ1的两条渐近线的倾斜角分别为( )三、解答题: 17.(选做题)(1).4-4极坐标和参数方程 在极坐标系中,曲线C 的方程为ρ2=2312sin θ+,点R(,4π). (Ⅰ)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,把曲线C 的极坐标方程化为直角坐标方程,R 点的极坐标化为直角坐标;(Ⅱ)设P 为曲线C 上一动点,以PR 为对角线的矩形PQRS 的一边垂直于极轴,求矩形PQRS 周长的最小值,及此时P 点的直角坐标.(2)4-5.不等式选讲 设函数f (x )=|x ﹣a|,a ∈R . (Ⅰ)当a=2时,解不等式:f (x )≥6﹣|2x ﹣5|;(Ⅱ)若关于x 的不等式f (x )≤4的解集为[-1,7],且两正数s 和t 满足2s+t=a ,求证:186s t+≥18.如图,AB 是半圆O 的直径,C 是半圆O 上除A 、B 外的一个动点,DC 垂直于半圆O 所在的平面,DC ∥EB ,DC=EB ,AB=4,tan ∠EAB=0.25. (1)证明:平面ADE ⊥平面ACD ;(2)当三棱锥C ﹣ADE 体积最大时,求二面角D ﹣AE ﹣B 的余弦值.19.(本小题满分12分)某校要进行特色学校评估验收,有甲、乙、丙、丁、戊五位评估员将随机去A ,B ,C 三个不同的班级进行随班听课,要求每个班级至少有一位评估员. (1)求甲、乙同时去A 班听课的概率;(2)设随机变量ξ为这五名评估员去C 班听课的人数,求ξ的分布列和数学期望.20.在平面直角坐标系xOy 中,椭圆C :22221x y a b+= =1(a >b >0)的离心率为12,右焦点F(1,0).(Ⅰ)求椭圆C 的方程;(Ⅱ)点P 在椭圆C 上,且在第一象限内,直线PQ 与圆O :x 2+y 2=b 2相切于点M ,且OP ⊥OQ ,求点Q 的纵坐标t 的值.21.已知f (x )=xlnx ,g (x )=322x ax x +-+(1)求f (x )的单调区间;(2)若对于任意的x ∈(0,+∞),2f (x )≤g ′(x )+2恒成立,求实数a 的取值范围. (3)设函数h (x )=f (x )﹣a (x ﹣1),其中a ∈R ,求函数h (x )在[1,e]上的最小值.22.(本小题满分12分)已知函数()ln 1f x x x =-+,(0,)x ∈+∞,3()g x x ax =-. (1)求()f x 的最大值;(2)若对1(0,)x ∀∈+∞,总存在2[1,2]x ∈使得12()()f x g x ≤成立,求a 的取值范围; (3)证明不等式:12()()()1nnn n e nnn e +++<-.1-6.CDABAC 7-12.BAB CCD13.24 141 15.{2,3,4} 16. 60°和120°17.(1)2213x y +=,R (2,2)(2)矩形周长最小为4,点P (1.5,0.5)不等式(1)113(,][,)33-∞+∞(2)求出a=3,再利用基本不等式即可18.(1)略(2) 19.(1)225(2)762(1),(2),(3)151515P X P X P X ======,5()3E X =20.(1)22341x y +=(2)t =±21.(1)f(x)在1(0,)e 上递减,在1(,)e+∞上递增(2)孤立a,2a ≥-(3)讨论a 22.试题解析: (1)∵()ln 1f x x x =-+ (0x >) ∴xx x x f -=-='111)( ∴当01x <<时,'()0f x >,1x >时'()0f x <∴()(1)0f x f ≤= ∴()f x 的最大值为0(2)),0(1+∞∈∀x ,]2,1[2∈∃x 使得12()()f x g x ≤成立,等价于max max ()()f x g x ≤由(1)知max ()0f x =,当0a ≤时,3()g x x ax =-在[1,2)x ∈时恒为正,满足题意.当0a >时,a x x g -='23)(,令0)(='x g 解得3a x ±=∴()g x 在(,-∞及)+∞上单调递增,在(上单调递减,1≤即03a <≤时,max ()(2)82g x g a ==-,∴820a -≥ ∴4a ≤ ∴03a <≤,若12<≤即312a <≤时,()g x 在,2], 而(1)10g a =-<,(2)82g a =-在]4,3(为正,在(4,12)为负, ∴34a <≤,2>而12a >时(1)0,(2)0g g <<不合题意,综上a 的取值范围为 4a ≤.(3)由(1)知()0f x ≤即ln 1x x ≤- (0x >)取k x n =∴n n k n k n k -=-≤1ln ∴ln k n k n n ≤-即()n k n k e n-≤∴n n n n k n n e e e nnn n ---+⋅⋅⋅++≤+⋅⋅⋅++21))2()1(( 1111111-<--=--=-⋅-=----e ee e e e e e e e e e n n n n n .。
河南省正阳县第二高级中学2018届高三数学下学期周练(六)理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(河南省正阳县第二高级中学2018届高三数学下学期周练(六)理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为河南省正阳县第二高级中学2018届高三数学下学期周练(六)理的全部内容。
河南省正阳县第二高级中学2017—2018学年高三下期理科数学周练(六)一。
选择题:1。
复数212i i+-的共轭复数的虚部是__________: A.—0。
6 B.0.6 C 。
—1 D.12。
下列说法正确的是________:A 。
若,a b R ∈,则2a b b a+≥ B 。
若x<0,则44x x +≥-=- C.若0ab ≠,则22b a a b a b+≥+ D 。
若x 〈0,则222x x -+> 3。
设m,n 为不同的直线,α,β,γ是三个不同的平面,有以下四个命题:①若m ⊥α,n ⊥α,则m ∥n ②若,,m n αγβγ== m ∥n,则α∥β③若α∥β,γ∥β,m ⊥α,则m ⊥γ ④α⊥γ,β⊥γ,则α∥β其中正确命题的序号是______:A 。
①③B 。
②③C 。
③④D 。
①④4。
已知n S 是等比数列{}n a 的前n 项和,481,3S S ==,则17181920a a a a +++=____A.20 B 。
14 C.16 D.185.某校在暑假组织社会实践活动,将8名高一学生,平均分配甲,乙两家公司,其中两名英语成绩优秀的学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有( )种A 。
河北定州2016-2017学年第二学期高四数学周练试题(2)
一、单项选择题
1.若直线100ax by (a,b (,))+-=∈+∞平分圆222220x y x y +---=,则
12a b
+的最小值是( )
A ..3+.2 D .5 2.直线32-=x y 与双曲线12
22
=-y x 相交于B A ,两点,则AB =( )
A 4
B D 3.已知x 是函数f(x)=2x + 11x
-的一个零点.若1x ∈(1,0x ),2x ∈(0x ,+∞),则 A .f(1x )<0,f(2x )<0
B . f(1x )<0,f(2x )>0
C . f(1x )>0,f(2x )<0
D . f(1x )>0,f(2x )>0 4.函数
sin(),2y x x R π=+∈ ( ) A .在[,]22ππ-上是增函数 B .在[0,]π上是减函数
C .在[,0]π-上是减函数
D .在[,]ππ-上是减函数
5.下列给出的赋值语句中正确的是( )
A. 3=A B .d=d+5 C .B=A=2 D . x+y=0
6.不等式2230x x -->的解集为
A .3{|1}2
x x x ><-或 B .3{|1}2
x x -<< C .3{|1}2
x x -
<< D .3{|1}2x x x ><-或 7.已知函数y =log 2(ax -1)在(1,2)上单调递增,则实数a 的取值范围是( )
A .(0,1]
B .[1,2]
C .[1,+∞)
D .[2,+∞)
8.若一几何体的主视图与左视图均为边长是1的正方形,则下列图形一定不是该几何体的俯视图的是()
9.若抛物线y2=2px,(p>0)上一点P(2,y0)到其准线的距离为4,则抛物线的标准方程为()A.y2=4x B.y2=6x C.y2=8x D.y2=10x
10.已知直线m,n和平面α,β满足m⊥n,m⊥α,α⊥β,则( )
(A)n⊥β (B)n∥β
(C)n⊥α (D)n∥α或n⊂α
11.一个几何体的三视图如图所示,则这个几何体的体积为()
A B
12.已知抛物线y2=2px(p>0)的准线与曲线x2+y2-4x-5=0相切,则p的值为()
A.1
4
B.
1
2
C.1 D.2
二、填空题
13.函数
sin
()
x
f x
x
的导函数为_________.
14.若直线y=k(x﹣4)与曲线有公共的点,则实数k的取值范围.15.下表是我市某厂1~4月份用水量(单位:百吨)的一组数据:
4 由散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归直线方程是a x y +-=7.0,则=a ___________.
16.设中心在坐标原点,以坐标轴为对称轴的圆锥曲线C ,离心率为2,且过点(5,4),则其焦距为
三、综合题
17.选修4-4:坐标系与参数方程
在直角坐标系中,以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知点M 的极坐标
为4π⎛⎫ ⎪⎝⎭,曲线 C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).
(1)直线l 过M 且与曲线C 相切,求直线l 的极坐标方程;
(2)点N 与点M 关于y 轴对称,求曲线C 上的点到点N 的距离的取值范围.
18.(本题15分)如图,已知平面QBC 与直线PA 均垂直于Rt ABC ∆所在平面,且AC AB PA ==.
(Ⅰ)求证://PA 平面QBC ;
(Ⅱ)若PQ QBC ⊥平面,求二面角A PB Q --的余弦值.
19.(本小题满分12分)已知椭圆2222:1(0)x y C a b a b
+=>>的离心率为12,椭圆的短轴端点与双曲线2
212
y x -=的焦点重合,过点(4,0)P 且不垂直于x 轴的直线l 与椭圆C 相交于,A B 两点. (1)求椭圆C 的方程;
(2)求OA OB ⋅的取值范围.
20.在平行四边形ABCD 中,E ,G 分别是BC ,DC 上的点且3=,3=.DE 与BG 交于
点O.
(1
的面积. (2)若平行四边形ABCD的面积为21,求BOC
参考答案
BDBBB DCDCD
11.A
12.D
13.2cos sin ()x x x f x x -'=
14.[﹣
]. 15.5.25
16.26
17.(1)直线l 的极坐标方程为sin 2ρθ=或4cos 3sin 140ρθρθ+-=;(2)2⎤-+⎦.
(1)由题意得点M 的直角坐标为()2,2,曲线C 的一般方程为()2214x y -+=. 设直线l 的方程为()22y k x -=-,即220kx y k --+=,
∵直线l 过M 且与曲线 C 2=,
即2340k k +=,解得403
k =或k=-, ∴直线l 的极坐标方程为sin 2ρθ=或4cos 3sin 140ρθρθ+-=,
(2)∵点N 与点M 关于y 轴对称,∴点N 的直角坐标为()2,2-,
则点N 到圆心C =,
曲线C 上的点到点N 22+
曲线 C 上的点到点N 的距离的取值范围为2⎤+⎦
18.(Ⅰ)见解析;(Ⅱ). (Ⅰ)证明:过点Q 作QD BC ⊥于点D ,
∵ 平面QBC ⊥平面ABC ,
∴ QD ⊥平面ABC ,
又 PA ⊥平面ABC ,
∴ QD ∥PA , 又QD ⊆平面QBC 且,
∴ PA ∥平面QBC ;
(Ⅱ)解:∵ PQ ⊥平面QBC ,
∴ 90PQB PQC ∠=∠= 又∵,PB PC PQ PQ ==,
∴ PQB PQC ∆≅∆ ∴BQ CQ =,
∴ 点D 是BC 的中点,连结AD ,则AD BC ⊥,
∴ AD ⊥平面QBC , ∴//PQ AD ,AD QD ⊥,
∴ 四边形PADQ 是矩形,
设2PA a =
,则PQ AD ==
,PB =,
∴BQ =, 过Q 作QR PB ⊥于点R ,
∴QR ==
,22PQ PR PB ===, 取PB 中点M ,连结AM ,取PA 的中点N ,连结RN , ∵1142PR PB PM ==,12
PN PA = ∴MA ∥RN , ∵PA AB = ∴AM PB ⊥, ∴RN PB ⊥,
∴QRN ∠为二面角Q PB A --的平面角,
连结QN
,则QN ===,
又∵RN =,
∴222222
313cos 2a a a QR RN QN QRN QR RN +-+-∠===⋅, 即二面角Q PB A --
的余弦值为
19.(1)13422=+y x ;(2)⎪⎭⎫⎢⎣
⎡-413,4 解:(1)由题意知22222211,24
c c a b e e a a a -==∴===, 2243
a b =.
又双曲线的焦点坐标为(0,b =,224,3a b ∴==, ∴椭圆的方程为22
143
x y +=. (2)若直线l 的倾斜角为0,则(2,0),(2,0),4A B OA OB -⋅=-,
当直线l 的倾斜角不为0时,直线l 可设为4x my =+,
22224(34)243603412
x my m y my x y =+⎧⇒+++=⎨+=⎩,由 2220(24)4(34)3604m m m ∆>⇒-⨯+⨯>⇒>
设1122(4,),(4,)A my y B my y ++,1212222436,3434m y y y y m m +=-=++, 21212121212(4)(4)416OA OB my my y y m y y my y y y ⋅=+++=+++
2116434
m =-+,2134,(4,)4m OA OB >∴⋅∈-,综上所述:范围为13[4,)4-. 20.(1
7
1=;(2)23=∆BOC S (1)由E O D ,,三点共线设出)(=∈R λDE λOE ,根据定比分点公以及G ,O ,B 三点共线可得到EG m EB m EO )-1(+=,列出关于m ,λ的方程组解出λ即可;(2)观察可知BDC BOC ∆∆,的
底是相同的可根据(1
)中BDC BOC ∆∆,的高的比,进而求出BOC ∆的面积.
(1)设,==,据题意可得)(=∈R λλ3
2-=,从而有λλλ3
2-=)32-(=.由G ,O ,B 三点共线,则存在实数m ,使得EG m EB m EO )-1(+=,即 )3
1-32)(1-(+31=])-1(+-[=m m m m m m 32-3+3-1=,由平面向量基本定理,132323
3m m λλ-⎧=⎪⎪⎨--⎪=⎪⎩解得71=λ
71=(7分)
(2)由(1)可知71=ΔΔBDC BOC h h ,所以23221717171=⨯==⇒=∆∆∆∆BDC BOC BDC BOC S S S S (13分).。