龙泉中学2020届高三理科数学周练试卷(33)
- 格式:pdf
- 大小:469.17 KB
- 文档页数:2
山东省潍坊市临朐县龙泉中学2020年高三数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 若函数f(x)=x+(x>2),在x=a处取最小值,则a=( )A.1+B.1+C.3 D.4参考答案:C【考点】基本不等式.【专题】计算题.【分析】把函数解析式整理成基本不等式的形式,求得函数的最小值和此时x的取值.【解答】解:f(x)=x+=x﹣2++2≥4当x﹣2=1时,即x=3时等号成立.∵x=a处取最小值,∴a=3故选C【点评】本题主要考查了基本不等式的应用.考查了分析问题和解决问题的能力.2. 已知点M是⊿ABC的重心,若A=60°,,则的最小值为A. B. C. D.2参考答案:B3. (5分)(2015?万州区模拟)f(x)=Asin(ωx+φ)(A>0,ω>0)在x=1处取最大值,则().A. f(x﹣1)一定是奇函数 B. f(x﹣1)一定是偶函数C. f(x+1)一定是奇函数 D. lgx+lgy一定是偶函数参考答案:【考点】:正弦函数的奇偶性;三角函数的最值.【专题】:计算题.【分析】:由题意根据图象平移可以判定A、B、C是错误的,验证D即可.解析: f(x)=Asin(ωx+φ)(A>0,ω>0)在x=1处取最大值图象左移一个单位,是偶函数,即f(x+1)是偶函数,所以判定A、B、C是错误的.∵f(x)=Asin(ωx+φ)(A>0,ω>0)在x=1处取最大值∴lgx+lgy在x=0处取最大值,即y轴是函数lgx+lgy的对称轴∴函数lgx+lgy是偶函数故选D.【点评】:本题考查正弦函数的奇偶性,三角函数的最值,是基础题.4. 下列选项叙述错误的是()A.命题“若”的逆否命题是“若”B.若命题C.若为真命题,则p,q均为真命题D.“”是“”的充分不必要条件参考答案:C略5. 甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面。
2020年高考数学模拟试卷(理科)(6月份)一、选择题(共12小题). 1.已知a 是实数,1a iz i-=+是纯虚数,则z 的虚部为( ) A. 1 B. 1-C. iD. i -【答案】B 【解析】 【分析】利用复数的除法运算化简,且结合纯虚数定义求得a ,进而得z 的虚部. 【详解】由复数的除法运算化简可得()()()()11111122a i i a i a a z i i i i ----+===-++-, 由纯虚数的定义可知满足102102a a -⎧=⎪⎪⎨+⎪-≠⎪⎩,解得1a =, 所以z i =-, z 的虚部为1-,故选:B.【点睛】本题考查了复数的除法运算,复数的定义简单应用,属于基础题.2.已知集合{}220A x x x =+-<,集合11B x x ⎧⎫=<⎨⎬⎩⎭,则A B =( )A. ∅B. {}1x x <C. {}01x x << D. {}20x x -<<【答案】D 【解析】 【分析】先利用一元二次不等式的解法化简集合A ,B ,再用交集的定义求解. 【详解】{}21A x x =-<<,{0B x x =<或}1x >, 所以{}20A B x x ⋂=-<<,故选:D .【点睛】本题主要考查集合的基本运算以及一元二次不等式的不等式的解法,还考查了运算求解的能力,属于基础题.3.“ln ln x y >”是“1132xy⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭”的( ) A. 充分不必要条件 B. 必要不充分条件C . 充要条件 D. 既不充分也不必要条件【答案】A 【解析】 【分析】利用对数函数,指数函数和幂函数的单调性,根据逻辑条件的定义判断.【详解】由ln ln x y >,得0x y >>,此时111332x y y⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 反之1132xy⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭成立时,可以取1x =-,2y =-,不能推出ln ln x y >.故选:A .【点睛】本题主要考查逻辑条件的判断,还考查了运算求解的能力,属于基础题.4.斐波拉契数列,指的是这样一个数列:1,1,2,3,5,8,13,21,…,在数学上,斐波拉契数列{a n }定义如下:a 1=a 2=1,a n =a n ﹣1+a n ﹣2(n ≥3,n ∈N ),随着n 的增大,1nn a a +越来越≈0.618,故此数列也称黄金分割数列,而以a n +1、a n 为长和宽的长方形称为“最美长方形”,已知某“最美长方形”的面积约为200平方厘米,则该长方形的长大约是( ) A. 20厘米 B. 19厘米C. 18厘米D. 17厘米【答案】C 【解析】 【分析】因为由已知有112n n a a +=≈0.618,又1200n n a a +⋅=,得0.61821n a +≈200,进而解得1n a +.【详解】解:由已知有112n n a a +=≈0.618, 得:10.618n n a a +≈, 由1200n n a a +⋅=, 得0.61821n a +≈200,即21323.62n a +≈,由于172=289,182=324, 所以a n +1≈18(厘米), 故选:C.【点睛】本题考查了数学文化及数列新定义的应用,属于基础题.5.设S n 是等差数列{a n }的前n 项和,若2413S S =,则36S S 等于( )A.316B.13C.516D.716【答案】C 【解析】 【分析】设等差数列{a n }的首项为a 1,公差为d ,由2413S S =得到首项与公差的关系,再把S 3,S 6用含有d 的代数式表示,则答案可求.【详解】设等差数列{a n }的首项为a 1,公差为d , 由2413S S =,得3(2a 1+d )=4a 1+6d ,即132a d =. ∴3191533322S a d d d d =+=+=, 616518304862222d dS a d d ⨯=+=+=.∴36155248162dS S d==. 故选:C.【点睛】本题主要考查等差数列前n 项和公式的性质应用,考查了运算求解的能力,属于中档题.6.函数()2e 2xf x x x =--的图象大致为( )A. B. C. D.【答案】B 【解析】 【分析】求导分析导函数的单调性与零点可得原函数存在两个极值点,再代入1x =求值判断即可.【详解】解法一:因为()e 22x f x x '=--,设2()(),()e xg x f x g x =''=-,令()e 20xg x '=-=,得ln 2x =,当ln 2x <时()0g x '<,()g x 为减函数,即()f x '为减函数; 当ln 2x >时,()0g x '>,()g x 为增函数,即()f x '为增函数, 而()ln 222ln 222ln 20f '=--=-<,所以原函数存在两个极值点,故淘汰选项C 和D.将1x =代入原函数,求得()1e 120f =--<,淘汰选项A. 解法二:()1e 210f =--<,淘汰选项A,D ;当x →-∞时,()e xf x =-()2x x +→-∞,淘汰选项C.故选:B.【点睛】本小题考查函数的图象与性质等基础知识;考查运算求解能力;考查数形结合思想,考查直观想象、数学运算等核心素养,属于中档题.7.已知函数()()sin 0f x x x =≥,方程()f x kx =恰有三个根,记最大的根为θ,则()21sin 2θθθ+=( )A. 2-B.12C. 1D. 2【答案】D 【解析】 【分析】依题意,函数()y f x =在x θ=处的切线为y kx =,且3,2πθπ⎛⎫∈ ⎪⎝⎭,利用导数的几何意义可得cos sin k k θθθ=-⎧⎨=-⎩,再化简所求式子即可得解.【详解】如图,要使方程()f x kx =恰有三个根,且最大的根为θ,则函数()y f x =在x θ=处的切线为y kx =,显然3,2πθπ⎛⎫∈ ⎪⎝⎭,当3,2x ππ⎛⎫∈ ⎪⎝⎭时,()sin f x x =-,()cos f x x =-',cos sin k k θθθ=-⎧∴⎨=-⎩,可得tan θθ=,()()()()()()22222221sin 212sin cos 12sin cos 21tan sin cos tan 1θθθθθθθθθθθθθθθθθ++⋅+⋅+⋅∴===⋅+⋅+()()222121θθθθ+⋅==⋅+. 故选:D.【点睛】本题考查利用导数研究方程的根,解答的关键就是利用tan θθ=化简计算,考查计算能力,属于中等题.8.为了让居民了解垃圾分类,养成垃圾分类的习惯,让绿色环保理念深入人心.某市将垃圾分为四类:可回收物,餐厨垃圾,有害垃圾和其他垃圾.某班按此四类由9位同学组成四个宣传小组,其中可回收物宣传小组有3位同学,其余三个宣传小组各有2位同学.现从这9位同学中选派5人到某小区进行宣传活动,则每个宣传小组至少选派1人的概率为( ) A. 27B.37C.821D.1021【答案】D 【解析】 【分析】利用组合计数原理计算出基本事件的总数以及事件“从这9位同学中选派5人到某小区进行宣传活动,则每个宣传小组至少选派1人”所包含的基本事件数,利用古典概型的概率公式可计算出所求事件的概率.【详解】某市将垃圾分为四类:可回收物、餐厨垃圾、有害垃圾和其他垃圾. 某班按此四类由9位同学组成四个宣传小组,其中可回收物宣传小组有3位同学,其余三个宣传小组各有2位同学.现从这9位同学中选派5人到某小区进行宣传活动,基本事件总数59126n C ==,每个宣传小组至少选派1人包含的基本事件个数为()()3221112132332260m C C C C C C =+=,则每个宣传小组至少选派1人的概率为601012621m P n ===. 故选:D.【点睛】本题考查古典概型概率的计算,涉及组合计数原理的应用,考查计算能力,属于中等题.9.设抛物线y 2=4x 的焦点为F ,过点F 的直线l 与抛物线相交于A ,B ,点A 在第一象限,且|AF |﹣|BF |32=,则AF BF =( ) A.32B. 2C. 3D. 4【答案】B【解析】【分析】过A,B分别作准线的垂线,再过B作AA'的垂线,由抛物线的性质及三角形相似可得对应边成比例,求出|AF|,|BF|的值,进而求出比值.【详解】解:设|BF|=m,则由|AF|﹣|BF|32=可得|AF|32=+m,由抛物线的方程可得:F(1,0),过A,B分别作准线的垂线交于A',B',过B作AA'的垂线交AA',OF分别于C,D点,则△BFD∽△BAC,所以BF DFAB AC=,即233222m mm-=+,解得:m32=,所以332232AFBF+==2,故选:B.【点睛】本题考查了抛物线的定义、抛物线的标准方程,考查了基本运算能力,属于基础题.10.某几何体的三视图如图所示,其中网格纸上小正方形的边长为1,则该几何体的外接球的表面积为().A. 8πB. 9πC. 12πD. 16π【答案】B 【解析】 【分析】首项根据几何体的三视图换元得到几何体,进一步求出三棱锥的外接球的半径,利用球的表面积公式,即可求解.【详解】根据几何体的三视图可得:该几何体是底面为等腰直角三角形,高为2SD =的三棱锥, 如图所示:设该三棱锥的外接球的球心为O ,则外接球的半径为OA r =, 则222OA OD AD =+,即222(2)(2)r r =-+,解得32r =, 所以外接球的表面积为22344()92S r πππ==⨯=. 故选:B.【点睛】本题主要考查了空间几何体的三视图的转换,以及几何体的外接球的半径的求法和表面积的计算,着重考查运算能力,以及空间想象能力,属于中档试题.11.已知函数f (x )满足2()2()1ln x f x xf x x '+=+,1()f e e=,当x >0时,下列说法正确的是( )①()f x 只有一个零点; ②()f x 有两个零点; ③()f x 有一个极小值点; ④()f x 有一个极大值点 A. ①③ B. ①④ C. ②③ D. ②④【答案】B 【解析】 【分析】令2()()g x x f x =,则'()1+ln g x x =,所以()ln +g x x x C =⋅,即()2xlnx Cf x x+=,由21()e C f e e e +==,解得0C =,所以()lnx f x x=,求导得()'21x lnx f x -=,利用导数可求出函数()f x 的单调区间,进而得()f x 在x e =处取得极大值1()f e e=,而这也是最大值,从而可对③和④作出判断;又(1)0f =,且当>x e 时,()0f x >恒成立,所以()f x 只有一个零点为1x =,从而可对①和②作出判断.【详解】令2()()g x x f x =,则'2()()2()1+ln g x x f x x x x '=+=,()ln +g x x x C =⋅,即2()ln x f x x x C =⋅+,∴()2xlnx Cf x x +=, ∵()f e 21e C e e +==,∴0C =,∴()lnx f x x=,()'21x lnx f x -=, 当0x e <<时,()0f x '>,()f x 单调递增;当x e >时,()0f x '<,()f x 单调递减,()f x ∴在x e =处取得极大值1()f e e=,而这也是最大值,即③错误,④正确;又0()1f =,且当 x e >时,()0f x >恒成立,()f x ∴只有一个零点为1x =,即①正确,②错误.∴正确的有①④, 故选:B .【点睛】本题考查命题的真假判断与应用,考查利用导数研究函数的单调性,利用导数求函数的最值,属于难度题.12.已知梯形ABCD满足AB∥CD,∠BAD=45°,以A,D为焦点的双曲线Γ经过B,C两点.若CD=7AB,则双曲线Γ的离心率为()A. 324B.334C. 35D.35+【答案】A【解析】【分析】先画出大致图象,结合双曲线的定义以及余弦定理求得a,c之间的关系即可得到结论. 【详解】如图:连接AC,BD,设双曲线的焦距AD=2c,实轴长为2a,则BD﹣AB=AC﹣CD=2a,设AB=m,则CD=7m,BD=2a+m,AC=2a+7m,∠BAD=45°,∠ADC=135°,在△ABD中,由余弦定理及题设可得:(2a+m)2=m2+4c2﹣2mc,在△ACD中,由余弦定理及题设可得:(2a+7m)2=49m2+4c22mc,2c2﹣a2)=m2a+c)2(c2﹣a2)=7m2a﹣c),2a+c=72a﹣c),故2a=8c,∴双曲线Γ的离心率为e32ca==.故选:A.【点睛】本题考查了双曲线的离心率,意在考查学生的计算能力和综合应用能力,画出图像是解题的关键.二、填空题(本大题共4小题,每小题5分,共20分)13.在三角形ABC中,|AB|=5,AB AC⋅=8,则AB BC⋅=_____.【答案】﹣17. 【解析】 【分析】直接利用向量的数量积转化求解即可.【详解】在三角形ABC 中,因为|AB |=5,AB AC ⋅=8, 所以()2AB AB BC AB AB BC ⋅+=+⋅=25AB BC +⋅=8, 所以AB BC ⋅=-17. 故答案为:﹣17.【点睛】本题主要考查平面整理的数量积运算以及向量的加法运算,还考查了运算求解的能力,属于基础题. 14.若(3)nx x-的展开式中各项系数之和为64,则展开式的常数项为 . 【答案】- 540 【解析】 【详解】若的展开式中各项系数之和为,解得,则展开式的常数项为,故答案为.15.在数列{}n a ,{}n b 中, ()22122n n n n n a a b a b +++=+,()22122n n n n n b a b a b +++=-,111a b ==,设数列{}n c 满足11n n nc a b =+,则数列{}n c 的前10项和10S =_____. 【答案】1023256. 【解析】 【分析】首先根据递推公式求出n n a b +和n n a b ,代入11n n nc a b =+中求出数列{}n c 的通项公式,最后由等比数列求和公式即可求出数列的前10项和.【详解】数列{}n a ,{}n b 中,()12n n n a a b ++=+()12n n n b a b ++=-,②所以①+②得:()114n n n n a b a b ++=++,整理得114n n n na b a b +++=+(常数),所以数列{}n n a b +是以112a b +=为首项,4为公比的等比数列.所以121242n n n n a b --+=⨯=.①×②得:222114()4()8n n n n n n n n a b a b a b a b ++=+-+=,所以118n n n na b a b ++=(常数), 故数列{}n n a b 是以111a b =为首项,8为公比的等比数列,所以11188n n n n a b --=⨯=,由于数列{}n c 满足212111228n n n n n n n n n n a b c a b a b ---=+===+, 所以101012110232125612S ⎛⎫- ⎪⎝⎭==-, 故答案为:1023256. 【点睛】本题考查了由递推公式求通项公式的应用,由递推公式证明数列为等比数列,等比数列前n 项和公式的应用,属于中档题. 16.四面体P ﹣ABC 中,PA =PB =PC =AB =AC =2,BC =,动点Q 在△ABC 的内部(含边界),设∠PAQ =α,二面角P ﹣BC ﹣A 的平面角的大小为β,△APQ 和△BCQ 的面积分别为S 1和S 2,且满足124S S sin αβ=,则S 2的最大值为_____. 【答案】4﹣. 【解析】 【分析】取BC 的中点M ,由题意可得AM =PM =PA 2=,则β=∠PMA =60°,作QH ⊥BC于H ,则1213312142342AP AQ sin S sin sin S sin BC QH αααβ⋅⋅====⋅⋅sinα,再由BC =2PA =22,可得AQ =QH ,即Q 为三角形ABC 内的一条抛物线,当Q 在AB 或AC 上时,S 2最大,求出S 2的最大值. 【详解】如图所示:取BC 的中点M ,连接AM ,PM , 因为PB =PC =AB =AC ,AM ⊥BC ,PM ⊥BC ,且PA 2=PB =PC =AB =AC =2,BC =2,所以AM =PM =PA 2=所以β=∠PMA =60°, 作QH ⊥BC 于H ,所以1213312142342AP AQ sin S sin sin S sin BC QH ααβ⋅⋅====⋅⋅sinα, 所以12⋅=⋅AP AQ BC QH 而BC =2PA =2, 所以AQ =QH ,所以Q 的轨迹是△ABC 内的一条抛物线, 当Q 在AB 或AC 上时,S 2最大,不妨设在AB 上,此时()cos 45AB AQ QH -=,即()222AQAQ -⋅=, 解得AQ =QH =2(2-1), 所以S 2=4﹣22. 故答案为:4﹣22【点睛】本题主要考查二面角的求法以及面积比与相似比的应用,抛物线的定义,还考查了空间想象和逻辑推理的能力,属于难题.三、解答题:(本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.已知ABC 的内角,,A B C 的对边分别为,,a b c ,且2,2cos 2a c A b a ==-.(1)求C ;(2)如图,若点D 在边AC 上,,AD DB DE AB =⊥,E 为垂足,且2DE =,求BD 的长.【答案】(1)3π;(2)55. 【解析】 【分析】(1)利用正弦定理将方程中2cos 2c A b a =-的边化成角,再利用诱导公式,可求得cos C 的值,即可得答案;(2)在BCD 中,由正弦定理得sin sin BD BCC BDC =∠,22sin sin 23A A =,求出sin A 的值,即可得答案;【详解】(1)2cos 2c A b a =-,∴由正弦定理得2sin cos 2sin sin C A B A =-,2sin cos 2sin()sin C A A C A ∴=+-,2sin cos 2sin cos 2cos sin sin C A A C A C A =+-∴, 2sin cos sin A C A ∴=.(0,),sin 0A A π∈∴≠.1cos 2C ∴=. (0,),3C C ππ∈∴=.(2),sin DE AB DE AD A⊥=∴=, sin BD AD A∴==. ,2A ABD BDC A ABD A ∴∠=∠∴∠=∠+∠=∠.在BCD 中,由正弦定理得sin sin BD BCC BDC=∠,2sin 22A =,整理得cos A =sin 45A BD AD ∴=∴==. 【点睛】本题考查诱导公式、正余弦定理解三角形,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意边角关系的互相转化.18.如图,在矩形ABCD 中,将ACD 沿对角线AC 折起,使点D 到达点P 的位置,且平面ABP ⊥平面ABC .(1)求证:AP PB ⊥;(2)若直线PC 与平面ABP 所成角的正弦值为34,求二面角P AC B --的余弦值. 【答案】(1)证明见解析;(2)916. 【解析】 【分析】(1)由四边形ABCD 是矩形,得AB BC ⊥,推导出BC ⊥平面ABP ,可得出BC AP ⊥,再由AP PC ⊥,可得出AP ⊥平面PBC ,由此能证明AP PB ⊥;(2)过P 作PO AB ⊥于点O ,则PO ⊥平面ABC ,以OB 所在直线为x 轴,过O 作y 轴平行于BC ,OP 为z 轴,建立空间直角坐标系O xyz -,由BC ⊥平面ABP ,得出直线PC 与平面ABP 所成角为CPB ∠,设3BC =,可得4PC =,然后利用空间向量法能求出二面角P AC B --的余弦值.【详解】(1)由四边形ABCD 是矩形,得AB BC ⊥, 平面ABP ⊥平面ABC ,平面ABP平面ABC AB =,BC ⊂平面ABC ,BC ∴⊥平面ABP ,AP ⊂平面ABP ,则BC AP ⊥,又AP PC ⊥,BC PC C ⋂=,AP ∴⊥平面PBC ,PB ⊂平面PBC ,AP PB ∴⊥;(2)过P 作PO AB ⊥,垂足为点O , 平面ABP ⊥平面ABC ,平面ABP平面ABC AB =,PO ⊂平面ABP ,PO ∴⊥平面ABC ,以点O 为坐标原点,以OB 所在直线为x 轴,过O 作y 轴平行于BC ,以OP 所在直线为z 轴,建立如下图所示的空间直角坐标系O xyz -,由(1)知BC ⊥平面ABP ,CPB ∴∠是直线PC 与平面ABP 所成角,即3sin 4CPB ∠=, 在Rt PBC 中,3sin 4CB CPB CP ∠==, 设3CB =,则4CP =,227PB CP CB ∴-,PO ⊥平面ABC ,可取平面ABC 的一个法向量()0,0,1m =,由(1)知,AP BP ⊥,在Rt APB △中,PO AB ⊥,3AP =,4AB =,7PB =374AP BP PO AB ⋅∴==,2294AO AP PO =-=,74BO AB AO =-=, 37P ⎛∴ ⎝⎭,9,0,04A ⎛⎫- ⎪⎝⎭,7,3,04C ⎛⎫⎪⎝⎭, ()4,3,0AC ∴=,937,0,4AP ⎛= ⎝⎭,设平面PAC 的法向量(),,n x y z =,由43093704n AC x y n AP x z ⎧⋅=+=⎪⎨⋅==⎪⎩,取37x =7y =-9z =-, 所以,平面PAC 的一个法向量为()37,47,9n =--,99cos ,11616m n m n m n ⋅==-=-⋅⨯. 由图形可知,二面角P AC B --的平面角为锐角,它的余弦值为916. 【点睛】本题考查利用线面垂直证明线线垂直,同时也考查了利用线面角的定义求长度,以及利用空间向量法求二面角,考查推理能力与计算能力,属于中等题.19.已知圆O :x 2+y 2=3,直线PA 与圆O 相切于点A ,直线PB 垂直y 轴于点B ,且|PB |=2|PA |. (1)求点P 的轨迹E 的方程;(2)过点(1,0)且与x 轴不重合的直线与轨迹E 相交于P ,Q 两点,在x 轴上是否存在定点D ,使得x 轴是∠PDQ 的角平分线,若存在,求出D 点坐标,若不存在,说明理由.【答案】(1)()224310x y x +=≠(2)存在;定点D (4,0)【解析】 【分析】(1)设P (x ,y ),根据直线PA 与圆O 相切于点A ,利用切线长公式得到|PA |2=x 2+y 2﹣3,|再根据直线PB 垂直y 轴于点B ,得到|PB |2=x 2,然后由|PB |=2|PA |求解. (2)设直线l 的方程为:x =my +1,与椭圆方程联立,利用韦达定理得到122643my y m+=-+,122943y y m ⋅=-+,代入k PD +k QD=0,化简整理得()022611804343---=++m x mm m ,解得x 0即可. 【详解】(1)设P (x ,y ),因为直线PA 与圆O 相切于点A , 所以|PA |2=|PO |2﹣3=x 2+y 2﹣3,| 又因为直线PB 垂直y 轴于点B , 所以|PB |2=x 2, 又因为|PB |=2|PA | 所以x 2+y 2﹣3=x 2, 即x 2=4(x 2+y 2﹣3),化简得()224310x y x +=≠,∴点P 的轨迹E 的方程为:()224310x y x +=≠;(2)设直线l 的方程为:x =my +1,P (x 1,y 1),Q (x 2,y 2),联立方程221431x y x my ⎧+=⎪⎨⎪=+⎩,整理得:(4+3m 2)y 2+6my ﹣9=0,∴122643m y y m +=-+,122943y y m ⋅=-+, 假设存在定点D (x 0,0),使得x 轴是∠PDQ 的角平分线,则k PD +k QD =0,∴1210200y y x x x x +=--, ∴121020011y y my x my x +=+-+-, ∴()()()()120210102011011y my x y my x my x my x +-++-=+-+-,∴()()()()12012102021011my y x y y my x my x +-+=+-+-,即()()()0120122261182104343m x m my y x y y m m-+-+=--=++, 解得:x 0=4,所以存在定点D (4,0),使得x 轴是∠PDQ 的角平分线.【点睛】本题主要考查椭圆方程的求法以及直线的对称问题,还考查了运算求解的能力,属于中档题.20.某工厂的一台某型号机器有2种工作状态:正常状态和故障状态.若机器处于故障状态,则停机检修.为了检查机器工作状态是否正常,工厂随机统计了该机器以往正常工作状态下生产的1000个产品的质量指标值,得出如图1所示频率分布直方图.由统计结果可以认为,这种产品的质量指标值服从正态分布()2,N μσ,其中μ近似为这1000个产品的质量指标值的平均数x ,2σ近似为这1000个产品的质量指标值的方差2s (同一组中的数据用该组区间中点值为代表).若产品的质量指标值全部在()3,3μσμσ-+之内,就认为机器处于正常状态,否则,认为机器处于故障状态.(1)下面是检验员在一天内从该机器生产的产品中随机抽取10件测得的质量指标值: 29 45 55 63 67 73 78 87 93 113 请判断该机器是否出现故障?(2)若机器出现故障,有2种检修方案可供选择:方案一:加急检修,检修公司会在当天排除故障,费用为700元;方案二:常规检修,检修公司会在七天内的任意一天来排除故障,费用为200元. 现需决策在机器出现故障时,该工厂选择何种方案进行检修,为此搜集检修公司对该型号机器近100单常规检修在第i (1i =,2,…,7)天检修的单数,得到如图2所示柱状图,将第i 天常规检修单数的频率代替概率.已知该机器正常工作一天可收益200元,故障机器检修当天不工作,若机器出现故障,该选择哪种检修方案? 18813.71≈,20814.42≈22815.10≈.【答案】(1)可判断该机器处于故障状态;(2)选择加急检修更为适合 【解析】 【分析】(1)由图1可估计1000个产品的质量指标值的平均数70x =和方差2188s =,所以70μ=,18813.71σ=≈,从而得到产品的质量指标值允许落在的范围为(28.87,111.13),由于抽取产品质量指标值出现了113,不在(28.87,111.13)之内,故机器处于故障状态; (2)方案一:工厂需要支付检修费和损失收益之和为700+200=900元;方案二:设损失收益为X 元,求出X 的可能值,然后由图2可得出每个X 的取值所对应的概率,求出数学期望,可得工厂需要支付检修费和损失收益之和,与900对比,即可得出结论.【详解】(1)由图1可估计1000个产品质量指标值的平均数x 和方差2s 分别为400.04500.08600.24700.30800.20900.101000.0470x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=,()()()22222300.04200.08100.2400.30s =-⨯+-⨯+-⨯+⨯+ 222100.20200.10300.04188⨯+⨯+⨯=,依题意知,70μ=,13.71σ=≈,所以328.87μσ-≈,3111.3μσ+≈,所以产品质量指标值允许落在的范围为()28.87,111.13,又抽取产品质量指标值出现了113,不在()28.87,111.13之内,故可判断该机器处于故障状态;(2)方案一:若安排加急检修,工厂需要支付检修费和损失收益之和为700200900+=元; 方案二:若安排常规检修,工厂需要要支付检修费为200元,设损失收益为X 元,则X 的可能取值为200,400,600,800,1000,1200,1400, X 的分布列为:2000.074000.186000.258000.2010000.15EX =⨯+⨯+⨯+⨯+⨯12000.1214000.03147215016015014442732+⨯+⨯=++++++=元;故需要支付检修费和损失收益之和为200732932+=元,因为900932<,所以当机器出现故障,选择加急检修更为适合.【点睛】本题考查频率分布直方图中的数字特征、离散型随机变量的分布列和数学期望,及期望的实际应用,考查学生对数据的分析与处理能力,属于基础题.21.已知函数f (x )=(x ﹣1)2﹣alnx (a <0).(1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2(x 1<x 2),且关于x 的方程f (x )=b (b ∈R )恰有三个实数根x 3,x 4,x 5(x 3<x 4<x 5),求证:2(x 2﹣x 1)>x 5﹣x 3.【答案】(1)答案不唯一,具体见解析(2)证明见解析【解析】【分析】(1)求导得f ′(x )222x x a x--=,令f ′(x )=0,即2x 2﹣2x ﹣a =0,∆=4+8a ,分两种情况①∆≤0,②∆>0,讨论f (x )单调性;(2)由题意得12-<a <0,画出草图,知0<x 3<x 1<x 4<x 2<x 5,0<x 1<x 2<1,要证:2(x 2﹣x 1)>x 5﹣x 3,即证:2(x 2﹣x 1)>(x 5+x 4)﹣(x 3+x 4),只需证:54234122x x x x x x +⎧⎨+⎩<>,先证:x 3+x 4>2x 1.即证x 4>2x 1﹣x 3,由(1)f (x )单调递减,只需证f (x 4)<f (2x 1﹣x 3),即证:f (x 3)<f (2x 1﹣x 3),令g (x )=f (x )﹣f (2x 1﹣x ),0<x <x 1,求导数,分析单调性,可得g (x )<g (x 1)=0,故f (x )<f (2x 1﹣x ),在(0,x 1)恒成立,f (x 3)<f (2x 1﹣x 3)得证,同理可以证明:x 3+x 4<2x 2,综上,2(x 2﹣x 1)>x 5﹣x 3,得证.【详解】(1)由题意得()f x '=2(x ﹣1)222a x x a x x ---=, 令()f x '=0,即2x 2﹣2x ﹣a =0,∆=4+8a ,①当a 12≤-时,∆≤0,()f x '≥0,函数f (x )在(0,+∞)上单调递增, ②当12-<a <0时,∆>0,2x 2﹣2x ﹣a =0的两根为x1=,x2=且0<x1=x 2, 当x),()f x '>0,f (x )单调递增, 当x)时,()f x '<0,f (x )单调递减, 综上,当a 12≤-时,函数f (x )在(0,+∞)上单调递增, 当12-<a <0时,f (x )在(0)上单调递增,在上单调递减,在(121a ++,+∞)上单调递增. (2)证明:由题意得12-<a <0,0<x 3<x 1<x 4<x 2<x 5,0<x 1<x 2<1,如图,要证:2(x 2﹣x 1)>x 5﹣x 3,即证:2(x 2﹣x 1)>(x 5+x 4)﹣(x 3+x 4);只需证:54234122x x x x x x +⎧⎨+⎩<> 先证:x 3+x 4>2x 1.即证x 4>2x 1﹣x 3,又由(1)知f (x )在(x 1,x 2)上单调递减,只需证f (x 4)<f (2x 1﹣x 3),而f (x 4)=f (x 3),即证:f (x 3)<f (2x 1﹣x 3),令g (x )=f (x )﹣f (2x 1﹣x ),0<x <x 1,()g x '=()f x '+1()2x x f '﹣=2x ﹣2a x -+2(2x 1﹣x )﹣212a x x --, =4(x 1﹣1)12a a x x x--- ()()()2111141222x x x x ax x x x ---=-又2(x 1﹣1)1a x -=0,即x 1﹣112a x =,那么,()g x '()()()221121111122()222a x x x x x x x a x x x x x x x ---==---,而0<x <x 1,且102a -<<, 则()g x '>0,故g (x )在(0,x 1)单调递增,则g (x )<g (x 1)=0,故f (x )<f (2x 1﹣x ),在(0,x 1)恒成立,又0<x 3<x 1,则f (x 3)<f (2x 1﹣x 3)得证,同理可以证明:x 3+x 4<2x 2,综上,2(x 2﹣x 1)>x 5﹣x 3,得证.【点睛】本题主要考查了利用导数讨论函数的单调区间,利用导数研究函数的单调性、最值,证明不等式,考查了分类讨论的思想,转化思想,属于难题.请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,直线l的参数方程为x m t y =+⎧⎪⎨=⎪⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2241sin ρθ=+. (1)求l 的普通方程和C 的直角坐标方程;(2)直线l 上的点(,0)P m 为曲线C 内的点,且直线l 与曲线C 交于,A B ,且2PA PB ⋅=,求m 的值.【答案】(10y --=,22142x y +=(2)m 2=± 【解析】【分析】(1)把曲线C 的极坐标方程变形,结合极坐标与直角坐标的互化公式可得曲线C 的直角坐标方程,直接把直线参数方程中的参数消去,可得直线的普通方程.(2)化直线的参数方程为标准形式,代入曲线C 的直角坐标方程,得到关于t 的一元二次方程,由根与系数的关系结合参数t 的几何意义求解m 值.【详解】(1)∵曲线C 的极坐标方程为2241sin ρθ=+,∴222sin 4ρρθ+=, 即2224x y +=,得22142x y +=.∴曲线C 的直角坐标方程为22142x y +=. 直线l的参数方程为x m t y =+⎧⎪⎨=⎪⎩(t 为参数),消去参数t , 可得直线l0y -=;(2)设直线l的标准参数方程为122x m t y ⎧=+⎪⎪⎨⎪=⎪⎩,代入椭圆方程, 得227404t mt m ++-=. 设,A B 对应的参数分别为12,t t ,则()212447m t t -=.又点(,0)P m 为曲线C 内的点,∴24m <,即22m -<<. 由2124427m PA PB t t -⋅=⋅==,解得2m =±. 【点睛】本题第一问考查了直线的参数方程和椭圆的极坐标方程,第二问考查了直线参数方程的几何意义,属于中档题.[选修4-5:不等式选讲]23.若对于实数x ,y 有|12|4x -≤,|31|3y +≤. (Ⅰ)求16x y +-的最大值M ; (Ⅱ)在(Ⅰ)的条件下,若正实数a ,b 满足12M a b +=,证明:50(1)(2)9a b ++≥. 【答案】(Ⅰ)3;(Ⅱ)证明见解析.【解析】分析】 (Ⅰ)111(21)(31)623x y x y +-=-++,然后再由绝对值三角不等式求得最大值即可; (Ⅱ)由(Ⅰ)知,123a b +=,即23a b ab +=,又2a b +≥ab 的最小值,进而可得出50(1)(2)9a b ++≥. 【详解】(Ⅰ)因为111(21)(31)623x y x y +-=-++ 1111|21||31|4332323x y ≤-++≤⨯+⨯=, 当5223x y ⎧=⎪⎪⎨⎪=⎪⎩或3243x y ⎧=-⎪⎪⎨⎪=-⎪⎩时等号成立,所以16x y +-的最大值M 为3; (Ⅱ)由(Ⅰ)知,123a b +=,所以23a b ab +=≥89ab ≥. 所以850(1)(2)22424299a b a b ab ab ++=+++=+≥⨯+=. 【点睛】本题考查绝对值不等式的性质以及基本不等式在证明中的应用,考查逻辑思维能力和运算能力,属于常考题.。
龙泉中学、宜昌一中2020届高三年级9月联合考试理科数学试题一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.tan165=( )A .2-B .2-C .2D .22.已知集合1{|0}xA x x-=≥, {|lg(21)}B x y x ==-,则=B A ( ) A .1(0,)2 B .1(,1)2 C .1(,1]2 D .1[,1]23.命题“对任意2[1,2),0x x a ∈-<”为真命题的一个充分不必要条件可以是( )A .4a ≥B .4a >C .1a ≥D .1a > 4.函数()sin ln ||f x x x x =+在区间[2,2]ππ-上的大致图象为( )5.已知R 上的单调函数log ,3()7,3a x x f x mx x ≥⎧=⎨+<⎩满足(2)1f =,则实数a 的取值范围是( )A .B .(0,1)C .D . 6.电流强度I (单位:安)随时间t (单位:秒)变化的函数sin()(0,0,0)2I A t A πωϕωϕ=+>><<的图象如图所示,则当0.01t =秒时,电流强度是( )A .5-安B .5安C .安D .10安 7.围棋棋盘共19行19列,361个格点,每个格点上可能出现“黑”“白”“空”三种情况,因此有3613种不同的情况;而我国北宋学者沈括在他的著作《梦溪笔谈》中,也讨论过这个问题,他分析得出一局围棋不同的变化大约有“连书万字五十二”种,即5210000,下列数据最接近36152310000的是( ) (lg30.477≈) A .3710- B .3610- C .3510- D .3410-8.如图,四边形OABC 是边长为2的正方形,曲线段DE 所在的曲线方程为1xy =,现向该正方形内抛掷1枚豆子,则该枚豆子落在阴影部分的概率为 ( )A .32ln 24- B .12ln 24+ C . 52ln 24- D .12ln 24-+ 9.sin 70cos 430-= ( )A .8B .8-C.-D.10.已知(2)f x +是偶函数,()f x 在(]2-∞,上单调递减,(0)0f =,则(23)0f x ->的解集是( ) A .2()(2)3-∞+∞,, B .2(2)3, C .22()33-, D .22()()33-∞-+∞,,11.已知函数⎪⎩⎪⎨⎧≤+-=0,230>,2ln )(2x x x x x x x x f 的图像上有且仅有四个不同的关于直线1-=y 对称的点在1)(-=kx x g 的图像上,则k 的取值范围是( )A .)43,31( B .)43,21( C .)1,31( D .)1,21(12.若对任意的[1,5]x ∈,存在实数a ,使226(,0)x x ax b x a R b ≤++≤∈>恒成立,则实数b 的最大值为( )A .9B .10C .11D .12 二、填空题:本大题共4小题,每小题5分.13.在平面直角坐标系xoy 中,以ox 轴为始边作角α,角4πα+的终边经过点(2,1)P -.则sin2α= .14.已知tan()7cos()2ππαα-=+,11cos()14αβ+=-,,(0,)2παβ∈,则β= ___ _. 15.已知函数2()ln f x x ax x =++有两个不同的零点,则实数a 的取值范围是 . 16.已知函数()f x ,对于任意实数[,]x a b ∈,当0a x b ≤≤时,记0|()()|f x f x -的最大值为[,]0()a b D x .①若2()(1)f x x =-,则[0,3](2)D = ;②若22,0,()21,0,x x x f x x x ⎧--≤⎪=⎨-->⎪⎩则[,2](1)a a D +-的取值范围是 .三、解答题:本大题共6大题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本小题12分)已知:p 1x 和2x 是方程2:20p x mx --=的两个实根,不等式21253a a x x --≥-对任意的[1,1]m ∈-恒成立,:q 关于x 的方程2210ax x ++=的解集有唯一子集,若p 或q 为真,p 且q 为假,求实数a 的取值范围.18. (本小题12分)已知函数44()2cos sin 1f x x x x ωωω=+-+ (其中01ω<<),若点(,1)6π-是函数()f x 图象的一个对称中心.(1)求()f x 的解析式,并求()f x 的最小正周期; (2) 将函数()y f x =的图象向左平移6π个单位,再将所得图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数()y g x =的图象,用 “五点作图法”作出函数()f x 在区间[,3]ππ-上的图象.19.(本小题12分)自2018年9月6日美拟对华2000亿美元的输美商品加征关税以来,中美贸易战逐步升级,我国某种出口产品的关税税率为t ,市场价格x (单位:千元)与市场供应量p (单位:万件)之间近似满足关系式:2(1)()2kt x b p --=,其中,k b 均为常数.当关税税率75%t =时,若市场价格为5千元,则市场供应量约为1万件;若市场价格为7千元,则市场供应量约为2万件.(1)试确定,k b 的值;(2)市场需求量q (单位:万件)与市场价格x 近似满足关系式:2x q -=,当p q =时,市场价格称为市场平衡价格,当市场平衡价格不超过4千元时,试确定关税税率的最大值. 20.(本小题12分)已知抛物线2:2(0)C y px p =>的焦点为F ,A 为C 上位于第一象限的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D . (1)若当点A 的横坐标为3,且ADF ∆为等边三角形,求C 的方程;(2)对于(1)中求出的抛物线C ,若点001(,0)()2D x x ≥,记点B 关于x 轴的对称点为E ,AE 交x 轴于点P ,且AP BP ⊥,求证:点P 的坐标为0(,0)x -,并求点P 到直线AB 的距离d 的取值范围.21.(本小题12分)已知函数R a ax ax e x x f x∈+++=,221)1()(2. (1)讨论)(x f 极值点的个数;(2)若)2(00-≠x x 是)(x f 的一个极值点,且-2e >)2(-f ,证明: 1<)(0x f .请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题10分)【选修4-4:坐标系与参数方程】以平面直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知点M 的直角坐标为(1,0),若直线l cos()104πθ+-=,曲线C 的参数方程是244x m y m ⎧=⎨=⎩,(m 为参数).(1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)设直线l 与曲线C 交于,A B 两点,求11MA MB+.23.(本小题10分)【选修4-5:不等式选讲】已知函数2()4f x x ax =++,()11g x x x =++-.(1)求不等式()3g x ≥的解集;(2)若21[2,2],[2,2]x x ∀∈-∃-,使得不等式12()()f x g x ≤成立,求实数a 的取值范围.龙泉中学、宜昌一中2020届高三年级9月联合考试理科数学试题(参考答案)B C B B C A B A C D D A 13. 35- 14.3π15. (1,0)- 16. 3; [1,4] 17.【解析】若p 真,因为12,x x 是方程220x mx --=的两个实根,所以12x x m +=,122x x ⋅=-所以12x x -==,所以当[1,1]m ∈-时,12max3x x -=, (3)分所以由不等式21253a a x x --≥-对任意的[1,1]m ∈-恒成立,所以6a ≥或1a ≤- ……5分若q 真,则2210ax x ++=的解集为空集,2240a ∆=-<,………………………7分解得:1a > ………………………8分因为p 或q 为真,p 且q 为假,所以p 与q 一真一假. ……………………9分若p真q假,则有6a ≥或1a ≤-且1a ≤, 得1a ≤- ……………………10分若p假q真,则有16a -<<且1a >, 得16a << …………………11分综上知,实数a的取值范围是(,1](1,6)-∞-. ……………………12分18.【解析】(1) 2222()2(cos sin )(cos sin )1f x x x x x x ωωωωω=+-++2cos 212sin(2)16x x x πωωω=++=++ ………………………1分因为点(,1)6π-是函数()f x 图象的一个对称中心,所以36k ωπππ-+=,k Z ∈,所以132k ω=-+,k Z ∈ (2)分因为01ω<<,所以10,2k ω==, 所以()2sin()16f x x π=++ (4)分最小正周期2T π= ………………………5分(2)由(1)知,()2sin()16f x x π=++,向左平移6π个单位得2sin()13y x π=++,再将所得图象上各点的横坐标伸长为原来的2倍,纵坐标不变1()2sin()123g x x π=++ ………………………7分当[,3]x ππ∈-时,列表如下: ………………………10分则函数()f x 在区间[,3]ππ-上的图象如图所示: ………………………12分19.【解析】(1)由已知22(10.75)(5)(10.75)(7)1222k b k b ----⎧=⎪⎨=⎪⎩得22(10.75)(5)0(10.75)(7)1k b k b ⎧--=⎪⎨--=⎪⎩,解得5,1b k == ………………………6分(2)当p q =时,2(1)(5)22t x x ---=,所以2(1)(5)t x x --=- ,故211125(5)10x t x x x=+=+-+- ………………………9分 而25()f x x x=+在(0,4]上单调递减, 所以当4x =时,()f x 有最小值414此时,112510t x x=++-取得最大值5, ………………………11分 故,当4x =时,关税税率的最大值为500% ………………………12分20.【解析】(1)由题知(,0)2p F ,32p FA =+,则(3,0)D p +,FD 的中点坐标为33(,0)24p+,则33324p+=,解得2p =,故C 的方程为24y x =. …………………………4分 (2)依题可设直线AB 的方程为0(0)x my x m =+≠,1122(,),(,)A x y B x y ,则22(,)E x y -,由204y x x my x ⎧=⎨=+⎩消去x ,得20440y my x --=, (5)分 因为012x ≥,所以2016160m x ∆=+>, 124y y m +=,1204y y x ⋅=-, …………………………6分设P 的坐标为(,0)P x ,则22(,)P PE x x y =--,11(,)P PA x x y =--, 由题知//PE PA ,所以2112()()0P P x x y x x y -⋅+-⋅=,即2221121212211212()()44P y y y y y y y y x y x y y y x +++=+==, …………………………7分显然1240y y m +=≠,所以1204P y y x x ==-,即证00P x x +=, 由题知EPB ∆为等腰直角三角形,所以1AP k =,即12121y y x x +=-,也即12221211()4y y y y +=-, 所以124y y -=,所以21212()416y y y y +-⋅=.即220161616m x +=,201m x =-, 01x <, (10)分又因为012x ≥,所以0112x ≤<,d ===t =∈,202x t =-,22(2)42t d t t t -==-,易知4()2f t t t =-在上是减函数,所以2)d ∈. …………………………12分21.【解析】(1))(x f 的定义域为R ,()(2)()xf x x e a '=++ ……………………………1分若0a ≥,则0x e a +>,所以当(,2)x ∈-∞-时,()0f x '<;当(2,)x ∈-+∞时,()0f x '>,所以)(x f 在(,2)-∞-上递减,在(2,)-+∞递增所以2x =-为)(x f 唯一的极小值点,无极大值,故此时)(x f 有一个极值点.……………2分若0a <,令()(2)()0xf x x e a '=++=,则12x =-,2ln()x a =-当2a e -<-时,12x x <,则当1(,)x x ∈-∞时,()0f x '>;当12(,)x x x ∈时,()0f x '<;当2(,)x x ∈+∞时,()0f x '>.所以12,x x 分别为)(x f 的极大值点和极小值点,故此时)(x f 有2个极值点.…………………3分当2a e -=-时,12x x =, ()(2)()0xf x x e a '=++≥且恒不为0,此时)(x f 在R 上单调递增,无极值点 ……………………………………………4分当20e a --<<时,12x x >,则当2(,)x x ∈-∞时,()0f x '>;当21(,)x x x ∈时,()0f x '<; 当1(,)x x ∈+∞时,()0f x '>.所以12,x x 分别为)(x f 的极小值点和极大值点,故此时)(x f 有2个极值点.…………………5分综上,当2a e -=-时,)(x f 无极值点;当0a ≥时,)(x f 有1个极值点; 当2a e -<-或20e a --<<时,)(x f 有2个极值点.…………………6分(2)证明:若00(2)x x ≠-是)(x f 的一个极值点,由(1)可知22(,)(,0)a e e --∈-∞--又22(2)2f e a e ---=-->,所以2(,)a e -∈-∞-,且02x ≠-,…………………7分则0ln()x a =-,所以201()(ln())[ln ()2ln()2]2f x f a a a a =-=-+--, 令ln()(2,)t a =-∈-+∞,则t a e =-,所以21()(ln())(22)2t g t f a e t t =-=-+-故1()(4)2t g t t t e '=-+ …………………10分又因为(2,)t ∈-+∞,所以40t +>,令()0g t '=,得0t =.当(2,0)t ∈-时,()0g t '>,()g t 单调递增,当(0,)t ∈+∞时,()0g t '<,()g t 单调递减 所以0t =是()g t 唯一的极大值点,也是最大值点,即()(0)1g t g ≤=, 故(ln())1f a -≤,即0()1f x ≤ …………………12分22.【解析】(1cos()104πθ+-=,得cos sin 10ρθρθ--=,由cos ,sin x y ρθρθ==,得10x y --=, …………………2分因为244x m y m⎧=⎨=⎩,消去m 得24y x =,所以直线l 的直角坐标方程为10x y --=,曲线C 的普通方程为24y x =. (5)分(2)点M 的直角坐标为(1,0),点M 在直线l 上,设直线l的参数方程为12x y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),代入24y x =,得280t --=, …………………7分设点,A B 对应的参数分别为12,t t,则12t t +=128t t =-, 所以1212111||||t t MA MB t t -+====. …………………10分23.【解析】(1)()3g x …,即|1||1|3x x ++-…, 不等式等价于1(1)(1)3x x x -⎧⎨-+--⎩……或11(1)(1)3x x x -<<⎧⎨+--⎩…或1113x x x ⎧⎨++-⎩……, 解得32x ≤-或32x ≥, …………………4分 所以()3g x ≥的解集为33|22x x x ⎧⎫≤-≥⎨⎬⎩⎭或. …………………5分 (2)因为21[2,2],[2,2]x x ∀∈-∃∈-,使得12()()f x g x ≤成立,所以min min ()()([2,2])f x g x x ≤∈-, …………………6分 又min ()2g x =,所以min ()2([2,2])f x x ≤∈-,当22a -≤-,即4a ≥时,min ()(2)424822f x f a a =-=-+=-≤,解得3a ≥,所以4a ≥; 当22a -≥,即4a ≤-时,min ()(2)424822f x f a a ==++=+≤,解得3a ≤-,所以4a ≤-; 当222a -<-<,即44a -<<时22min ()()42242a a a f x f =-=-+≤,解得a ≥a ≤-,所以4a -<≤-或4a ≤<,综上,实数a 的取值范围为(,[22,)-∞-+∞. …………………10分。
2020届四川省成都市龙泉驿区一中高三下学期入学考试数学(理)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择),考生作答时,须将答案答答题卡上,在本试卷、草稿纸上答题无效。
满分150分,考试时间120分钟。
第Ⅰ卷(选择题,共60分)注意事项:1.必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑. 2.考试结束后,将本试题卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}73|{},03|{2<≤==-+=x x B x ax x A ,若A B ≠∅I ,则实数a 的取值集合为A.]0,121[-B.)494,121[--C.]0,494(-D.]0,494[-2. 已知i 是虚数单位,若i i z 31)1(+=+,则=zA. 2+iB. 2-iC. -1+iD. -1-i)则(命题已知,0)(),2,0(:,sin )(.3<∈∀+-=x f x p x x x f π0)(),2,0(:.≥∈∀⌝x f x p p A π是假命题,0)(),2,0(:.≥∈∃⌝x f x p p B π是假命题,0)(),2,0(:.≥∈∀⌝x f x p p C π是真命题,0)(),2,0(:.≥∈∃⌝x f x p p D π是真命题,4.某几何体的三视图如图所示,则该几何体的体积为A83 B 73 C 2 D 535.ABC ∆中,AB 边上的高为CD ,若,,0,||1,||2CB a CA b a b a b ==⋅===u u u r r u u u r r r r r r ,则AD =u u u rA .1133a b -r rB .2233a b -r rC .3355a b -r rD .4455a b -r r6.如下图,将绘有函数()())2,0(sin 2πϕπωϕω<<>+=x x f 的部分图象的纸片沿x 轴折成直二面角,若AB 之间的空间距离为17,则()=-1fA. 2-B.2C.3-D.37.已知抛物线的顶点在原点,焦点在y 轴上,抛物线上的点P (m ,-2)到焦点的距离为5,则m 的值为 A .4± B .52± C .62± D .5±8. 椭圆)>>05(12222a by a x =+的一个焦点为F ,该椭圆上有一点A ,满足△OAF 是等边三角形(O 为坐标原点),则椭圆的离心率是A.13-B. 32-C. 12-D. 22- 9.执行如图所示的程序框图,若输入的a 值为1,则输出的k 值为 A.1 B.2 C.3D.410.已知不等式0264cos 64cos 4sin 22≥--+m x x x 对于]3,3[ππ-∈x 恒成立,则实数m 的取值范围是A. ]2,(--∞B. ]22,(-∞ C. 2,22[ D. ),2[+∞ 11.某校三个年级共有24个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到24,现用系统抽样方法,抽取4个班进行调查,若抽到编号之和为48,则抽到的最小编号为 A.2B.3C.4D.512.要得到函数)52sin(2π+=x y 的图象,应该把函数)152sin(3)152cos(ππ---=x x y 的图象做如下变换A.将图象上的每一点横坐标缩短到原来的21而纵坐标不变 B.沿x 向左平移2π个单位,再把得图象上的每一点横坐标伸长到原来的2而纵坐标不变C.先把图象上的每一点横坐标缩短到原来的21而纵坐标不变,再将所得图象沿x 向右平移4π个单位 D.先把图象上的每一点横坐标缩短到原来的21而纵坐标不变,再将所得图象沿x 向左平移2π个单位第Ⅱ卷(非选择题,共90分)二、填空题(本体包括4小题,每小题4分,共20分) 13.二项式4)2(x x+的展开式中常数项为_______.14、已知n m x x x f )31()1()(+++= (*∈N n m 、)的展开式中x 的系数为11.则当2x 的系数取得最小值时,)(x f 展开式中x 的奇次幂项的系数之和为___________.15.已知直线l :y kx m =+(m 为常数)和双曲线22194x y-=恒有两个公共点,则斜率k 的取值范围为________.16、将一个真命题中的“平面”换成“直线”、“直线”换成“平面”后仍是真命题,则该命题成为“可换命题”.给出下列四个命题①垂直于同一平面的两直线平行;②垂直于同一平面的两平面平行;③平行于同一直线的两直线平行;④平行于同一平面的两直线平行.(平面不重合、直线不重合)其中是“可换命题”的是 。
湖北省荆门市龙泉中学2020届高三12月月考数学(理)试题全卷满分150分。
考试用时120分钟。
注意事项:1.答题前,考生务必将姓名、考号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|2,}xA y y x R ==∈,{|}B x y x R ==∈,则A B =A .{}1B .(0,)+∞C .(0,1)D .(0,1]2.若复数z 满足22zi z i +=-(i 为虚数单位),z 为z 的共轭复数,则1z +=A .2 C D .33. 某学校的两个班共有100名学生,一次考试后数学成绩()N ξξ∈服从正态分布()2100,10N ,已知()901000.4P ξ≤≤=,估计该班学生数学成绩在110分以上的人数为A.20B.10C.7D.54.古代数学著作《九章算术》有如下的问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上述已知条件,若要使织布的总尺数不少于50尺,则至少需要 A .7天 B .8天 C .9天 D .10天5.在矩形ABCD 中,6,4AB AD ==,若向该矩形内随机投一点P ,那么使得ABP ∆与ADP ∆的面积都不小于3的概率为 A .14 B .13 C .916 D .496. 执行如图所示的算法,则输出的结果是 A .2B .43C .54D .17. 有6名选手参加演讲比赛,观众甲猜测:4号或5号选手得第一名;观众乙猜测:3号选手不可能得第一名;观众丙猜测:1,2,6号选手中的一位获得第一名;观众丁猜测:4,5,6号选手都不可能获得第一名,比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是 A.甲 B.乙 C.丙D.丁8.一个几何体的三视图如右图所示,该几何体外接球的表面积为A.1723π B. 433π C. 48πD. 56π9. 设O 为坐标原点,点P 为抛物线C :22(0)y px p =>上异于原点的任意一点,过点P 作斜率为0的直线交y 轴于点M ,点P 是线段MN 的中点,连接ON 并延长交抛物线于点H ,则||||OH ON 的值为 A .pB .12C .2D .3210. 设函数()f x 为定义域为R 的奇函数,且()(2)f x f x =-,当[0,1]x ∈时,()sin f x x =,则函数()cos()()g x x f x π=-在区间[3,5]-上的所有零点的和为A .10B .8C .16D .2011. 已知函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的图象过点()0,1B ,且在72,183ππ⎛⎫ ⎪⎝⎭上单调,同时()f x 的图象向左平移π个单位之后与原来的图象重合,当12195,,126x x ππ⎛⎫∈--⎪⎝⎭,且12x x ≠时,()()12f x f x =,则()12f x x +=A.B.1-C. 1D.2-12. 在棱长为4的正方体1111ABCD A B C D -中,M 是BC 中点,点P 是正方形11DCC D 内的动点(含边界),且满足APD MPC ∠=∠,则三棱锥P BCD -A.649B.二、填空题:本大题共4小题,每小题5分,共20分.13.已知向量a ,b 的夹角为60︒,2a =,1b =,则3a b +=_______ .14.已知,x y 满足,2,2 2.y x x y x y ≥⎧⎪+≤⎨⎪-≥-⎩则2z x y =+最大值为_________.15.在ABC ∆中,,6B ACD π∠==是AB 边上一点,2,CD ACD =∆的面积为2,ACD ∠为锐角,则BC = .16.已知实数a ,b ,c 满足2211a a e cb d --==-,其中e 是自然对数的底数,那么()()22a cb d -+-的 最小值为________.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17题~21题为必考题,每个试题考生都必须作答.第22题和第23题为选考题,考生根据要求作答.17. (本小题满分12分)已知数列{}n a 的前n 项和为n S ,且21n n a S -=.(1)求数列{}n a 的通项公式; (2)设21(1)n n n b a n n +=⋅+,求数列{}n b 的前100项和100T .18. (本小题满分12分)如图,在四棱锥P ABCD -中,AB ⊥平面BCP ,//CD 平面ABP ,2BC CP BP ===,2,4CD AB ==(1)证明:平面ABP ⊥平面ADP ;(2)若直线PA 与平面PCD 所成角为α,求sin α的值.19.(本小题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>的长轴长为6,且椭圆C 与圆940)2(:22=+-y x M 的公共弦长为3104. (1)求椭圆C 的方程;(2)过点P (0,1)作斜率为)0(>k k 的直线l 与椭圆C 交于两点A ,B ,试判断在x 轴上是否存在点D ,使得ADB △为以AB 为底边的等腰三角形,若存在,求出点D 的横坐标的取值范围;若不存在,请说明理由.20. (本小题满分12分)随着生活节奏的加快以及智能手机的普及,外卖点餐逐渐成为越来越多用户的餐饮消费习惯,由此催生了一批外卖点餐平台。
()()()()()222111*********a x x x x x x a x g x x x x x x x x ---'==---,而10x x <<,且102a -<<, 则()0g x '>,故()g x 在()10,x 单调递增,则()()10g x g x <=,故()()12f x f x x <-在()10,x 恒成立,又310x x <<,则()()3132f x f x x <-得证;………………………………………………11分 同理可以证明:5422x x x +<,综上:()21532x x x x ->-,得证.…………………………………………………………12分 法二:由方程()f x b =恰有三个实数根()345345,,x x x x x x <<可得()()()2332442551ln 1ln 1ln x a x b x a x b x a x b ⎧--=⎪⎪--=⎨⎪--=⎪⎩,即()()()()()()4343435454542ln ln 2ln ln x x x x a x x x x x x a x x -+-=-⎧⎪⎨-+-=-⎪⎩①② 由①式得4343432ln ln a x x x x x x -=+--, …………………………………………………8分 先证434343ln ln 2x x x x x x -+<-,令()()()21ln ,11t h t t t t -=->+,则()()()22101t h t t t -'=>+, 所以()h t 在()1,+∞上单增,从而()()10h t h >=,取431x t x =>, 则有434343ln ln 2x x x x x x -+<-,故434322a x x x x +<+-,………………………………10分 从而()()2434322x x x x a +-+<,即()243121x x a +-<+,即43112x x x +>=,…………………………………………………………11分 同理可得545454542ln ln 2a x x x x x x x x -+=<+--,即54212x x x +<+=, 综上:()21532x x x x ->-,得证.…………………………………………………12分22.解:(Ⅰ)因为C 的极坐标方程为2241sin ρθ=+,即222sin 4ρρθ+=,则2224x y +=, 化简得22142x y +=,所以C 的直角坐标方程为22142x y +=..……………………………3分 l 参数方程消去参数t ,得l的普通方程为0y -=..…………………………5分 (Ⅱ)设l参数方程为12x m t y ⎧=+⎪⎪⎨⎪=⎪⎩,代入到椭圆方程中得227404t mt m ++-=,………7分 ,A B 对应的参数分别为12,t t ,2124427m PA PB t t -⋅===..…………………………8分又点(),0P m 为曲线C 内的点,则24m <,解得2m =±..…………………………10分23.解:(Ⅰ)因为111(21)(31)623x y x y +-=-++ 1111|21||31|4332323x y ≤-++≤⨯+⨯=,……………………………………………………3分 当5223x y ⎧=⎪⎪⎨⎪=⎪⎩或3243x y ⎧=-⎪⎪⎨⎪=-⎪⎩时等号成立,所以16x y +-的最大值M 为3;………………………5分 (Ⅱ)由(Ⅰ)知,123a b +=,所以23a b ab +=≥,所以89ab ≥.……………7分 所以850(1)(2)22424299a b a b ab ab ++=+++=+≥⨯+=.…………………………10分。
湖北省龙泉中学2020届高三年级5月月考数学(理科)试题一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知11xyi i=-+,其中,x y 是实数,i 是虚数单位,则x yi +的共轭复数为( ) A.12i + B.12i - C.2i + D.2i -2.如图中程序运行后,输出的结果为( )A . 3 43B . 43 3C .-18 16D . 16 -183.已知空间几何体的三视图如图所示,则该几何体的各侧面图形中,是直角三角形的有( ) A. 0个 B. 1个 C. 2个 D. 3 个4.下列四个判断:①若集合},0{2m A =,}2,1{=B ,则“1=m ”是“}2,1,0{=B A Y ”的充要条件; ②10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a ,中位数为b ,众数为c ,则有b a c >>;③命题“若x y =,则sin sin x y =”的逆否命题为真命题;④已知ξ服从正态分布(0N ,2)σ,且(20)0.4P ξ-≤≤=,则(2)0.2P ξ>=. 其中正确的个数有: ( )A .0个B . 1 个C .2 个D .3个 5.函数()sin()6f x A x πω=+(0)ω>的图象与x 轴的交点的横坐标构成一个公差为2π的等差数列,要得到函数()cos g x A x ω=的图象,只需将()f x 的图象 ( )A. 向左平移6πB. 向右平移3π C. 向左平移23π D. 向右平移23π6.已知数列*)(2N n n a n ∈=,把数列}{n a 的各项排列成如图所示的三角形数阵。
记),(t s M 表示该数阵中第s 行的第t 个数,则数阵中的2012对应于( )A .)16,45(MB .)26,45(MC .)16,46(MD .)26,46(M主视图侧视图22 俯视图 2 120033;x y IF x THEN x y ELSE y y END IF PRINT x y y xEND =-=<=+=--+7.某电视台曾在某时间段连续播放5个不同的商业广告,现在要在该时间段新增播一个商业广告与两个不同的公益宣传广告,且要求两个公益宣传广告既不能连续播放也不能在首尾播放,则在不改变原有5个不同的商业广告的相对播放顺序的前提下,不同的播放顺序共有 ( )A. 60种B. 120种C. 144种D. 300种8.已知约束条件340,210,380,x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩若目标函数(0)z x ay a =+>恰好在点(2,2)处取得最大值,则a 的取值范围为 ( )A. 103a <<B.13a ≥C. 13a >D. 102a <<9.下列四个命题中不正确...的是( ) A .若动点P 与定点(4,0)A -、(4,0)B 连线PA 、PB 的斜率之积为定值94,则动点P 的轨迹为双曲线的一部分;B .设,m n ∈R ,常数0a >,定义运算“*”:22)()(n m n m n m --+=*,若0≥x ,则动点),(a x x P *的轨迹是抛物线的一部分;C.已知两圆22:(1)1A x y ++=,圆22:(1)25B x y -+=,动圆M 与圆A 外切、与圆B 内切,则动圆的圆心M 的轨迹是椭圆;D.已知)12,2(),0,7(),0,7(--C B A ,椭圆过,A B 两点且以C 为其一个焦点,则椭圆的另一个焦点的轨迹为双曲线.10. 已知()f x 是定义在R 上的偶函数,且0x ≤时,21()1()(1)10x x f x ef x x +⎧≤-⎪=⎨⎪--<≤⎩, 若()f x x a ≥+对于任意x R ∈恒成立,则常数a 的取值范围是 ( )A.1,2e -∞-(]B.(,2]-∞-C.1(,1]e-∞- D. (,1]-∞-二、填空题:本大题共6小题,共需作答5个小题,每小题5分,共25分。