第二章 单变量统计描述分析
- 格式:doc
- 大小:39.00 KB
- 文档页数:3
1第2章SAS 数据管理2.1 录入数据与创建SAS 数据集EXCEL , WORD 等都有数据录入功能,而SAS 系统下建立数据文件或直接产生数据集,可以免去不同系统间的转换。
21)用PGM 窗口录入数据、创建SAS 数据集设一个资料包含m 个变量、n 个观测,将每一个观测的m个数据录在PGM 窗口的同一行上,同一行上各数据间留一个或一个以上的空格。
于是排成一个n 行m 列的数据方阵,用save 或save as 将数据以一个文件名的方式存在指定的硬盘或软盘上,就建立了一个数据文件(.sas 扩展名)。
如录入:(5个变量、2个观测)alice f 1356.584 becka f 1365.398;3 注意:数据文件需要通过编写和发送一段SAS 引导程序才能将其转变成SAS 数据集,只有SAS 数据集,才能方便地被SAS 中的非编程模块所调用。
因此,加引导程序,变成如下:4单击[submit],创建数据集work.pgm ,然后可以被非编程模块调用,进行各种统计分析。
当数据量少时,直接将数据与程序语句写在一起,发送后,就可直接获得计算结果。
562)用viewtable 创建SAS 数据集进入tools, 进入table editor,直接录入数据,然后save 或save as :7 这样就建立了数据集,可被非编程模块调用。
83)用SAS/ASSIST 创建SAS 数据集 solutions →assist →data management →create data →interactively →enter datain tabular form9在Table 后,选SAS 数据集名10Lable 标签,format 输入输出格式,可不输入11录入完后,单击close ,显示窗口:1213录入数据(Insert),一行输入完后,回车,录入下一个记录:14录入结束,单击close ,将录入信息存盘,创建数据集,并退出数据输入状态。
社会统计学讲义(卢淑华)第一章社会学研究与统计分析一、社会调查资料的特点(随时掌握)随机性、统计规律性;二、统计学的作用:为社会研究提供数据分析和推论的方法三、统计分析的作用及其前提。
四、统计分析方法的选择1、全面调查和抽样调查的分析方法2、单变量和多变量的统计分析方法五、不同变量层次的比较;定类、定序、定距、定比定义、数学特征、运算特性、涵盖关系、等第二章单变量统计描述分析一、统计图表,熟悉不同层次变量对应的分析图表,不能混淆。
尤其是直方图的意义。
二、标明组限与真实组限的换算,重要。
三、集中趋势测量法1、定义、优缺点、注意事项;2、众值:定义、计算公式、解释、运用,注意事项;3、中位值:定义、计算公式(频数和比例两种公式)、解释、运用,注意事项;4、均值:定义、计算公式(分组与加权)、解释、运用,注意事项;5、众值、中位值和均值的关系及其相互比较,会用众值和中位值估算均值;四、离散趋势测量法1、定义、优缺点、注意事项,与集中趋势的关系;2、异众比例:定义、计算公式、解释、运用,注意事项;3、质异指数:定义、计算公式、解释、运用,注意事项;4、四分位差:定义、计算公式(频数和比例两种公式)、解释、运用,注意事项;要会举一反三,如求十分位差、以及根据数据求其在总体中的位置。
4、方差及标准差:定义、计算公式(分组与加权)、解释、运用,注意事项;第三章概率一、概率:就是指随机现象发生的可能性大小。
随机现象具有不确定性和随机性。
二、概率的性质:1、不可能事件的概率为0;2、必然事件的概率为1;3、随机事件的概率在0-1之间;三、概率的计算方法:1、古典法:计算等概率事件,P=有效样本点数/样本空间数;2、频率法:求随机事件在多次试验后的极限频率。
3、概率是理论值,只有一个,频率是试验值,不同的试验有不同的频率。
四、概率的运算:会画文氏图1、加法公式:两个或多个随机事件的求和概率‘2、乘法公式:两个或多个随机时间共同发生的概率。
社会统计学整理第二章:单变量统计描述分析各种图:定类:圆瓣图、条形图定序:条形图定距:直方图、折线图组界:真实组界=标明组界0.5 条形图:定类变量:长条排列次序任意,条形离散。
定序变量:长条按序排列,条形是离散或紧挨。
直方图:由紧挨着的长条组成,面积表示频次或相对频次,高度是频次密度。
众值:用具有频数最多的变量值来表示集中值。
连续型变量用中心值来表示众值。
定类预测犯错最少。
异众比率:是非众值在总数N中所占的比例(:众值的频次)质异指数:理论上最多可能差异中实际出现了多少差异(k:类比数f:每类次数)中位值:定序预测犯错最少。
(也可以求25%和75%,改为和)n:中位值组的频次cf:含中位值区间的真实下界累积(向上)平次N:调查总数极差:极差=观察的最大值-观察的最小值四分互差:结论:50%位于*间均值:定距变量预测犯错最少。
标准差:第三章:概率互不相容:两者不能同时出现。
互为对立:不同时出现且两者相加为整体。
如果事件A与B互为对立,则必然满足互不相容,但逆定理不存在。
P(A);P(B),互不相容一定不满足互相独立,反之亦然。
互为对立与相互独立不能同时满足。
全概公式:逆概公式:方差:SKEWNESS(偏态)=>0:正偏态=0:对称<0:负偏态(峰在右边)KURTOSIS(峰态)=>0:正峰态=0:正态分布<0:负峰态(峰矮)第四章:二项分布及其他离散型随机变量的分布排列组合:第五章:正态分布、常用统计分布和极限定理大数定理:在什么条件下,随机事件可以转化为不可能事件或必然事件。
中心极限定理:在什么条件下,随机变量之和的分布可以近似为正态分布。
切贝谢夫不等式:贝努利大数定理:m是n次实验中事件A出现的次数,p是A每次出现的概率切贝谢夫大数定理:μ:数学期望:总体均值中心极限定理:只要n足够大,正态分布:众值=均值=中位值1S-68.26%;2S-95.46%;3S-99.37%;0.05-1.65;0.025-1.96;0.01-2.33;0.005-2.58;0.001-3.09;0.0005-3.30第六章:参数估计点估计:均值—样本均值成数—样本成数方差—样本方差S2是σ2的无偏估计,但S不是σ的无偏估计。
第二章单变量统计描述分析(练习题及答案)第二章单变量统计描述分析一、填空1.统计表从内容上看,是由(主词)和宾词两部分构成的。
2.主词是统计表要说明的(对象,);宾词是用来说明主词的(标志和标志值)。
3.变量数列有两个构成要素(变量值)和(频数)。
4.统计表通常有一定格式,统计表各部位的名称分别是(总标题)、横行标题、纵栏标题、(统计数值)。
5.对于连续变量,恰是某一组限的数据应按照(上组限不包括在内)的原则归入相应的组别。
6.统计表按主词的分组情况,可分为简单表、简单分组表和(复合分组表)。
7.统计分组的关键在于(选择分组标志)和划分各组界限。
二、单项选择题1.统计表的数字部分中符号“……”代表的含义是(B)。
A.某项数字不存在B.缺少某项数字C.某项数字较大D.提醒注意核计2.某城市男性青年27岁结婚的人最多,该城市男性青年平均结婚年龄为26.2岁,则该城市男性青年结婚的年龄分布为( B )。
A.正偏B.负偏C.对称D.不能作出结论3.上限与下限之差是(B)。
A.组限B.组距C.组中值D.极差4.小吴为写毕业论文去搜集数据资料,(D)是次级数据。
A.问卷调查上的答案B.班组的原始记录C.车间的台账D.统计局网站上的序列5.为掌握商品销售情况,对占该市商品销售额80%的五个大商场进行调查,这种调查方式属于(B)。
A.抽样调查B.重点调查C.统计报表D.普查6将总体中的各单位按某一标志排列,再依固定间隔抽选调查单位的抽样方式为(D)。
A.简单随机抽样B.整群抽样C.分层抽样D.等距抽样7在进行数据分组时,首先考虑的是(D)。
A.分成多少组B.各组差异大小C.分组后计算方便D. 选择什么标志分组8如果统计表中数据的单位都一致,我们可以把单位填写在表格的(A)A.右上角B. 右下角C.左上角D.左下角9. 现有某地区部分住户住房满意调查数据资料,其中包含有性别、文化程度、从业状况、家庭月可支配收入、人均住房面积、住房满意度、计划购买面积等字段。
第⼆章单变量统计描述分析第⼆章单变量统计描述分析第⼀节单变量统计描述基本技术⼀、变量的计量尺度/层次1、定类变量——最低层次的变量类型。
只有类别属性之分,⽆⼤⼩程度之分。
根据变量值,只能知道研究对象的异同。
从数学运算特性来看,定类变量只有等于或不等于的性质。
2、定序变量——层次⾼于定类变量。
取值除类别属性外,还有等级、次序之分。
数学运算特性除等于或不等于外,还有⼤于或⼩于。
3、定距变量——层次⾼于定序变量。
取值除类别属性、次序之外,取值之间的距离可以⽤标准化的举例度量。
数学运算特性除等于不等于,⼤于⼩于之外,还可以加减。
如收⼊,以1元为标准化距离,则2000元⽐1500元多了500元。
4、定⽐变量——最⾼层次变量。
除了上述三种属性外,可以进⾏乘除运算。
1、社会学研究中,能够满⾜定距⽽不能同时满⾜定⽐要求的变量不多。
如智商,因为智商0分只有相对的意义,0分不等于没有智商,且0值不固定。
当前社会统计⽅法很少要求达到定⽐层测,所以只介绍前三种层次变量。
2、在社会学研究当中,有些变量的层次是不统⼀可变的,可⽤定序层次也可⽤定距层次,根据研究需要。
⾼层次变量可以降低层次来使⽤。
⼀般来说,测量层次越⾼越好,数学特性就越多,统计分析就越⽅便,能了解资料的程度就越深⼊。
⼆、基本技术1、次数分布(定类)——针对定类变量最基本的统计分析⽅法。
⾯对⼤量的数据资料,⾸先要组织整理,第⼀步就是要采⽤次数分布来简化资料,看某变量的每⼀个值出现的次数是多少。
定类变量的取值要求:变量取值必须完备,使得每个各观察值都有所归类;必须互斥,⼀个观察值只能归⼊⼀类,对于分组数据遵循上限不包括在内原则。
次数分布可简化资料,但不能⽐较样本,因为样本量不同。
2、⽐、⽐例和⽐率(通常保留⼀位或两位⼩数)⽐:某两类的次数相除,如性别⽐=男性/⼥性⽐例:某类次数除以总数,⽼年⼈⼝⽐例=⽼年⼈⼝数/总⼈⼝数×100%⽐率:某⼀确定变量相对应的某些事件发⽣的频率。
社专本111 2011761114 梁雪彩
P59第二章单变量统计描述分析
六、根据以下统计资料:
(汉族,50,000)
(苗族,22,000)
(布依,20,000)
(藏族,1,000)
问:(1)能做成那些统计图?
(2)如果做成条形图,对变量值的排列是否有要求?
答:(1)能做成条形图和圆饼图
(2)如果做成条形图,对变量的排列没有要求,因为题目中的统计资料是定类变量,长条排列次序可以任意,定类变量无大小、高低次序之分。
七、根据以下资统计料:
(老年,1,000)
(中年,2,000)
(青年,5,000)
问:(1)能否做成直方图?为什么?
(2)如果做成条形图,对变量值的排列是否有要求?
答:(1)不能,因为上述为定序变量,定距变量才能做成直方图。
(2)如果做成条形图,对变量的排列有要求,因为题目中的统计资料是定序变量,长条按序排列,定序变量有大小、高低次序之分。
十三、以下是某班参加业余活动的情况的调查:
C=“书社”P=“摄影组”
J=“舞蹈团”O=“体育组”
C C C P O P C C C P O O P C O C P C C P
O C P C C O C J C O O C P C C O O O O P
O C O O O O P O P P
(1)试作统计图和统计表
某班参加业余活动情况的条形图
某班参加业余活动情况的圆饼图:
表1.1某班参加业余活动情况的调查表
(2)选择适当的集中值和离散值,并讨论之。
集中值
众值M0=书社则可知参加书社业余活动的人数最多
中位值Md=N+1/2=25.5 中位值Md=摄影组
均值=19+12+1+18/4=12.5
离散值
异众比率r=(N-fm0)/N=50-19/50=0.62 异众率比较高,则认为总数的代表性较差,所提供的信息量较少。
极差:R=观察的最大值-观察的最小值=18 极差大表示资料分散,人们选择的业余活动的人数有比较大的差异。
四分互差Q=Q75-Q25 Q50 的位置=50+1/2=25.5
Q25的位置=50+1/4=12.75
Q75的位置=3(50+1)/4=38.25
Q25=书社Q75=体育组
四分互差Q=Q75-Q25=体育组-书社
可知有50%的人选择体育组和书社这两项活动方差=[(19-12.5)^2+(12-12.5)^2+(1-12.5)^2+(18-12.5) ^2]/4=51.31
标准差=7.16。