单变量描述统计分析讲解
- 格式:pptx
- 大小:1.14 MB
- 文档页数:53
第十章单变量的描述统计调查所得的原始资料经过审核、整理与汇总后,还需要进行系统的统计分析,才能揭示出调查资料所包含的众多信息,才能得出调查的结论。
根据变量数量的差别统计分析划分为单变量分析、双变量分析和多变量分析。
在这一讲中我们先介绍单变量的统计分析。
单变量统计分析可以分为两个大的方面,即描述统计和推论统计。
描述统计是用最简单的概括形式反映出大量数据资料所容纳的基本信息。
推论统计是用样本调查中所得到的数据资料来推断总体的情况。
这一讲我们讲解单变量的描述统计方法。
一、变量的分布(Distributions)变量的分布分为两类,一类是频数分布,一类是频率分布。
频数分布就是变量的每一取值出现的次数;频率分布是用变量每一取值的频数除以总个案数,它是一个相对指标,可以用来比较不同样本。
频数分布与频率分布一般以统计表与统计图的形式表达。
1、统计表(1)统计表就是以表格的形式来表示变量的分布。
如下表所示:表9-1甲校学生的父亲职业职业 f p工人农民干部1522881100.2760.5240.20027.652.420.0总数550 1.000 100.0数值中的小数的取舍:通俗的做法是“四舍五入”。
“四舍”没有问题,但无原则的“五入”就会产生一定的误差。
例如数值6.25、4.45、3.75、和7.15的总合是21.60。
如果对原数的最后一位小数作简单的四舍五入,原数就变成 6.3、4.5、3.8、7.2,其总合是21.8,把原来的总合变大了。
近代统计学有一项新原则,就是“前单五入”,即“五”前面是单数就进位,若是双数就舍掉(0也算双数)。
(2)对于定序及以上层次的变量我们更多的是使用累加频数和累加频率。
如下所示:表9-2甲校学生之父亲教育水平教育 f cf ↑ cf ↓ % c % ↑ c %↓ 一级 二级 三级 四级 五级 68 550 68 90 482 158 106 392 264 193 286 457 93 93 550 12.4 100.0 12.4 16.3 87.6 28.7 19.3 71.3 48.0 35.1 52.0 83.1 16.9 16.9 100.0 总数 550100.02、统计图统计图是以图形表示变量的分布情况。
统计学-单变量描述性统计复习⼀遍统计学基础,准备spss的考试。
拿到⼀组陌⽣的数据,就像遇见⼀个陌⽣⼈,我们遇到⼀个陌⽣⼈,第⼀件事往往就是打量打量ta,处理数据也是如此。
描述性统计就是在打量⼀组数据,对数据有个⼤概对了解。
⼀般来说,对数据做三个处理:集中趋势central tendency,离散趋势dispersion tendency,分布形态distribution tendency。
虽然简单,但是最为基础,是我们后续数据分析的前提,通过对数据的描述性统计,我们才能选择合适的统计⽅法,以防误⽤。
单变量统计分析在⼀些书上⼜被叫做⼀元统计,只⾯对⼀个变量,⽅法⽐较死板固定单⼀。
part one:central tendency⼀种位置的统计量,把⼀个变量的不同观测(observation)集中到⼀个值上来表⽰。
1.mean(x-bar),算数均值(the average)⼀个东西。
——注意,使⽤时,数据要呈现正态分布,即使不满⾜,也应该要单峰&基本对称分布。
有极端值时不要选择⽤算数均值2.median,位置的中间数的值。
先找位置,再找值。
位置:(n+1)/2,奇数位置对应值,偶数?.5左右两个数字的mean。
——任意分布形态均可使⽤3.mode,众数4.其他:4.1截尾均数trimmed mean,⼜叫修正均数。
去除Max、Min5%。
好处是去掉了极端值的影响——有极端值时可以选⽤。
缺点是,10%的数据本⾝是真实信息,去掉了使得信息减少。
4.2⼏何均数 G(geometric mean)医学统计学中多使⽤,当data分布不对称,但是转换后呈现对称分布可以使⽤。
4.3调和均数mean和median相⽐,应该说mean的使⽤更⼴,使⽤的信息更全,在抽样调查中,mean的值随样本的变化⽽变化的幅度⼩,更为稳定,应该说是⼀个更好的统计量,但是⼀旦有极端值的存在,mean将会受到很⼤影响,因此此时应该使⽤median。
报告中的描述性统计和变量分析引言:描述性统计和变量分析是数据分析的重要组成部分,它们提供了对数据集的整体情况和特征进行解释和描述的方法。
本文将介绍描述性统计和变量分析的基本概念和方法,并通过具体的示例说明其应用场景和实际价值。
第一部分:描述性统计的基本方法1.1 平均值和中位数的比较与解释平均值和中位数是描述数据集中心趋势的重要统计量。
通过比较平均值和中位数的差异,我们可以了解数据集中是否存在极端值或者数据偏离的情况,并进一步分析其原因和影响。
1.2 方差和标准差的计算与解释方差和标准差是描述数据集离散程度的统计量。
它们可以帮助我们判断数据的散布情况和数据的可靠性。
较大的方差和标准差意味着数据的波动较大,反之则表示数据的波动较小。
1.3 频率分布表的绘制与分析频率分布表是将数据按照不同取值范围进行分类并计算各个类别的频数和频率的方法。
通过绘制频率分布表,我们可以直观地了解数据分布情况,并分析数据的集中度和分散度。
第二部分:变量分析的基本方法2.1 相关分析的概念与应用相关分析用于衡量两个变量之间的关系程度,常用的方法包括皮尔逊相关系数和斯皮尔曼相关系数。
通过相关分析,我们可以了解不同变量之间是否存在显著相关性,并进一步解释其背后的原因和机制。
2.2 回归分析的基本原理与应用回归分析用于探究一个或多个自变量与一个因变量之间的关系,常用的方法包括简单线性回归和多元线性回归。
通过回归分析,我们可以预测因变量在给定自变量条件下的取值,并评估自变量对因变量的影响程度。
2.3 t检验与方差分析的原理与应用t检验和方差分析用于比较两个或多个样本之间的差异,以评估变量在不同组别或处理条件下的显著性差异。
通过t检验和方差分析,我们可以判断样本之间是否存在显著差异,并进一步分析差异的原因和影响。
结论:描述性统计和变量分析是数据分析中不可或缺的工具,它们提供了对数据集的全面理解和深入解释的方法。
在报告中进行描述性统计和变量分析,可以帮助读者快速了解数据的整体特征和变量之间的关系,提高报告的可读性和可信度。
对单变量量别数据进行描述统计的主要方法首先,频数分布是对数据进行分类并计数的方法。
将数据分成若干类别,然后统计每个类别中的数据个数,得到每个类别的频数。
频数分布能
够清晰地展示数据的分布情况。
其次,百分比是以百分比形式表示数据所占比例的方法。
通过计算每
个类别频数与总频数的比例,然后乘以100,即可得到各个类别的百分比。
百分比能够直观地了解各个类别在整体数据中的占比情况。
在单变量量别数据中,众数是指出现频率最高的数据值。
通过计算频
数分布表中频数最大的数据值,即可确定众数。
众数能够反映出数据的主
要集中趋势。
中位数是将数据按照大小排序后,位于中间位置的数值。
如果数据个
数为奇数,则中位数是排序后的中间值;如果数据个数为偶数,则中位数
是排序后中间两个数值的平均值。
中位数能够判断数据的中间位置,而不
受极端值的影响。
四分位数是将数据分成四个部分的方法,其中第一四分位数是将数据
分成四等分后位于第一部分的数值,即25%分位数;第二四分位数即为中
位数;第三四分位数是将数据分成四等分后位于第三部分的数值,即75%
分位数。
四分位数能够判断数据的位置及数据集的分布情况。
综上所述,对单变量量别数据进行描述统计的主要方法包括频数分布、百分比、众数、中位数和四分位数。
这些方法能够全面地描述数据的分布
情况、集中趋势和位置,并帮助我们更好地理解和分析数据。
报告中的变量分析和描述性统计引言:在进行统计分析时,变量分析和描述性统计是非常重要的步骤。
变量分析帮助我们了解变量的性质和特征,而描述性统计则提供了对数据的整体概括和描述。
本文将探讨报告中的变量分析和描述性统计的各个方面。
一、变量分析的概念和目的1.1 变量的概念变量是指在研究中可以被观察或测量的属性。
它可以是定量的,如年龄、收入;也可以是定性的,如性别、职业。
了解变量的性质对分析结果的解释和应用具有重要意义。
1.2 变量分析的目的变量分析的目的是通过对变量的研究和分析,揭示其内在规律和特点。
通过对变量的分析,可以进一步理解研究主题,并为后续的统计分析提供基础。
二、变量分析的方法和技巧2.1 单变量分析单变量分析是对单个变量进行分析的方法。
常用的单变量分析方法包括频数分析、百分比分析、均值分析等。
通过单变量分析,可以了解变量的分布情况和总体特征。
2.2 多变量分析多变量分析是对多个变量之间的关系进行分析的方法。
常用的多变量分析方法包括相关分析、回归分析、因子分析等。
通过多变量分析,可以了解变量之间的相互影响和关系,进一步深入研究问题。
三、描述性统计的概念和应用3.1 描述性统计的概念描述性统计是对数据进行概括和总结的统计方法。
通过描述性统计,可以了解数据的中心趋势、分散程度和形态特征。
常用的描述性统计指标包括均值、标准差、中位数等。
3.2 描述性统计的应用描述性统计可以帮助我们对数据集的整体特征进行了解和把握。
在报告中使用描述性统计指标,可以直观地呈现数据的分布情况,从而更好地展示研究结果和结论。
四、变量分析和描述性统计的实例应用4.1 假设检验与描述性统计的结合应用假设检验是统计分析中常用的方法之一,通过对样本数据进行分析,推断总体参数的性质。
在假设检验中,借助描述性统计的指标,可以更好地理解和说明研究结果的可信度和意义。
4.2 变量分析与实证研究的关系和应用变量分析是实证研究中不可或缺的一环。
单变量数据的描述和分析简介:在统计学中,单变量数据(univariate data)是指只有一个单独的变量的数据集合。
这种类型的数据通常用于观察、描述和分析一个特定的量或属性。
本文将讨论如何对单变量数据进行合适的描述和分析,以揭示数据集中的模式、趋势和分布。
一、数据描述1. 数据的基本统计量对于单变量数据,我们需要了解一些基本的统计量,以获得对数据的整体概括。
常见的基本统计量包括:(1)均值(mean):描述数据的平均水平,计算方法为将所有数据值相加后除以观测次数。
(2)中位数(median):描述数据的中间位置,即将数据按照大小顺序排列,取中间位置的值。
(3)众数(mode):描述数据中出现频率最高的值或值的集合。
(4)极差(range):描述数据的范围,即最大值与最小值之间的差异。
(5)方差(variance):描述数据的离散程度,计算方法为每个数据值与均值之差的平方的平均值。
(6)标准差(standard deviation):描述数据的离散程度,是方差的平方根。
2. 数据的分布图表除了基本统计量之外,数据的可视化也是揭示数据特征的重要方法。
以下是几种常见的单变量数据的分布图表:(1)频率分布表(frequency table):将数据按照不同的取值范围划分为区间,统计每个区间的频数或频率。
(2)直方图(histogram):将数据按照取值范围划分为一系列不相交的区间,描绘出每个区间的频数或频率的柱状图。
(3)箱线图(box plot):展示数据的分散情况,包括最大值、最小值、中位数、上四分位数和下四分位数等统计信息。
(4)饼图(pie chart):用于表示数据的比例关系,适用于离散型数据。
二、数据分析1. 总体推断通过单变量数据的描述,我们可以对所研究的总体进行推断。
总体推断是建立在样本数据上的,用于推断整个总体的特征和性质。
常见的总体推断方法包括:(1)参数估计:通过样本数据估计总体的参数,如均值、方差等。
第十章单变量的描述统计调查所得的原始资料经过审核、整理与汇总后,还需要进行系统的统计分析,才能揭示出调查资料所包含的众多信息,才能得出调查的结论。
根据变量数量的差别统计分析划分为单变量分析、双变量分析和多变量分析。
在这一讲中我们先介绍单变量的统计分析。
单变量统计分析可以分为两个大的方面,即描述统计和推论统计。
描述统计是用最简单的概括形式反映出大量数据资料所容纳的基本信息。
推论统计是用样本调查中所得到的数据资料来推断总体的情况。
这一讲我们讲解单变量的描述统计方法。
一、变量的分布(Distributions)变量的分布分为两类,一类是频数分布,一类是频率分布。
频数分布就是变量的每一取值出现的次数;频率分布是用变量每一取值的频数除以总个案数,它是一个相对指标,可以用来比较不同样本。
频数分布与频率分布一般以统计表与统计图的形式表达。
1、统计表(1)统计表就是以表格的形式来表示变量的分布。
如下表所示:表9-1甲校学生的父亲职业数值中的小数的取舍:通俗的做法是“四舍五入”。
“四舍”没有问题,但无原则的“五入”就会产生一定的误差。
例如数值6.25、4.45、3.75、和7.15的总合是21.60。
如果对原数的最后一位小数作简单的四舍五入,原数就变成6.3、4.5、3.8、7.2,其总合是21.8,把原来的总合变大了。
近代统计学有一项新原则,就是“前单五入”,即“五”前面是单数就进位,若是双数就舍掉(0也算双数)。
(2)对于定序及以上层次的变量我们更多的是使用累加频数和累加频率。
如下所示:表9-2甲校学生之父亲教育水平f cf cf c c2、统计图统计图是以图形表示变量的分布情况。
与统计表相比,统计图更直观、生动、醒目,但不够精确。
统计图有圆瓣图、条形图、直方图和折线图。
(1)圆瓣图:多用于描述定类变量的分布,主要目的为显示各部分在整体中所占的比重,以及各部分之间的比较。
如表9-1的资料可用下图(图1)所示:农民部分=360°×52.4%=188.64°工人部分=360°×27.6%=99.36°干部部分=360°×20.2%=72°(图一)甲校学生的父亲职业分布(2)条形图:多用于描述定类与定序变量的分布,它是以长条的高度表示变量不同取值的频数(率)分布的,其中长条的宽度没有意义,一般均画成等宽长条。
单变量分析单变量分析是统计学中的一种常用方法,用于分析与一个变量相关的统计量。
该方法适用于各个领域的数据分析,例如生物学、经济学、医学等等。
本文将介绍单变量分析的基本概念、方法和应用,并通过实例来说明其在实际问题中的应用。
在统计学中,变量是研究对象的某个特征或属性,可以是数值型的,也可以是分类型的。
在单变量分析中,我们只关注一个变量,通过计算其统计量来得到对该变量的描述和总结。
首先,我们需要介绍一些常用的统计量,用于描述一个变量的特征。
其中,最常见的统计量是均值和中位数。
均值是所有观测值的总和除以观测次数,它能够反映一个变量的平均水平;而中位数是将所有观测值按照大小排序后位于中间的值,它能够反映一个变量的中间位置。
除了均值和中位数,我们还可以使用其他统计量来描述一个变量的不同方面。
例如,众数是出现次数最多的观测值,用于描述一个变量的频数分布情况;标准差是观测值与均值之间的离散程度,用于描述一个变量的变异程度。
在实际应用中,我们通常需要根据数据的特点和研究目的选择适当的统计量。
例如,如果我们想要了解一个群体的平均收入水平,可以计算均值;如果我们想要了解一个群体的最常见疾病,可以计算众数。
在单变量分析中,我们还可以通过绘制直方图、箱线图等图表来可视化数据的分布情况。
直方图是将数据分成若干个区间,并统计每个区间中数据的频数,用于描述数据的频数分布情况;箱线图则通过绘制数据的最大值、最小值、中位数、上四分位数和下四分位数来描述数据的整体特征。
除了描述统计量和绘制图表,我们还可以使用假设检验来判断一个变量是否具有统计学意义。
假设检验是一种基于样本数据进行推断的方法,用于判断一个推断性问题的成立与否。
例如,我们可以使用假设检验来判断一个变量的均值是否显著不同于一个特定的值。
最后,我们需要注意的是,在进行单变量分析时,我们需要注意数据的来源、采集方式和样本的选择。
只有在这些方面都符合统计学要求的情况下,我们才能够得到准确和可靠的结果。