单变量描述统计分析
- 格式:ppt
- 大小:661.50 KB
- 文档页数:39
第十章单变量的描述统计调查所得的原始资料经过审核、整理与汇总后,还需要进行系统的统计分析,才能揭示出调查资料所包含的众多信息,才能得出调查的结论。
根据变量数量的差别统计分析划分为单变量分析、双变量分析和多变量分析。
在这一讲中我们先介绍单变量的统计分析。
单变量统计分析可以分为两个大的方面,即描述统计和推论统计。
描述统计是用最简单的概括形式反映出大量数据资料所容纳的基本信息。
推论统计是用样本调查中所得到的数据资料来推断总体的情况。
这一讲我们讲解单变量的描述统计方法。
一、变量的分布(Distributions)变量的分布分为两类,一类是频数分布,一类是频率分布。
频数分布就是变量的每一取值出现的次数;频率分布是用变量每一取值的频数除以总个案数,它是一个相对指标,可以用来比较不同样本。
频数分布与频率分布一般以统计表与统计图的形式表达。
1、统计表(1)统计表就是以表格的形式来表示变量的分布。
如下表所示:表9-1甲校学生的父亲职业职业 f p工人农民干部1522881100.2760.5240.20027.652.420.0总数550 1.000 100.0数值中的小数的取舍:通俗的做法是“四舍五入”。
“四舍”没有问题,但无原则的“五入”就会产生一定的误差。
例如数值6.25、4.45、3.75、和7.15的总合是21.60。
如果对原数的最后一位小数作简单的四舍五入,原数就变成 6.3、4.5、3.8、7.2,其总合是21.8,把原来的总合变大了。
近代统计学有一项新原则,就是“前单五入”,即“五”前面是单数就进位,若是双数就舍掉(0也算双数)。
(2)对于定序及以上层次的变量我们更多的是使用累加频数和累加频率。
如下所示:表9-2甲校学生之父亲教育水平教育 f cf ↑ cf ↓ % c % ↑ c %↓ 一级 二级 三级 四级 五级 68 550 68 90 482 158 106 392 264 193 286 457 93 93 550 12.4 100.0 12.4 16.3 87.6 28.7 19.3 71.3 48.0 35.1 52.0 83.1 16.9 16.9 100.0 总数 550100.02、统计图统计图是以图形表示变量的分布情况。
对单变量量别数据进行描述统计的主要方法首先,频数分布是对数据进行分类并计数的方法。
将数据分成若干类别,然后统计每个类别中的数据个数,得到每个类别的频数。
频数分布能
够清晰地展示数据的分布情况。
其次,百分比是以百分比形式表示数据所占比例的方法。
通过计算每
个类别频数与总频数的比例,然后乘以100,即可得到各个类别的百分比。
百分比能够直观地了解各个类别在整体数据中的占比情况。
在单变量量别数据中,众数是指出现频率最高的数据值。
通过计算频
数分布表中频数最大的数据值,即可确定众数。
众数能够反映出数据的主
要集中趋势。
中位数是将数据按照大小排序后,位于中间位置的数值。
如果数据个
数为奇数,则中位数是排序后的中间值;如果数据个数为偶数,则中位数
是排序后中间两个数值的平均值。
中位数能够判断数据的中间位置,而不
受极端值的影响。
四分位数是将数据分成四个部分的方法,其中第一四分位数是将数据
分成四等分后位于第一部分的数值,即25%分位数;第二四分位数即为中
位数;第三四分位数是将数据分成四等分后位于第三部分的数值,即75%
分位数。
四分位数能够判断数据的位置及数据集的分布情况。
综上所述,对单变量量别数据进行描述统计的主要方法包括频数分布、百分比、众数、中位数和四分位数。
这些方法能够全面地描述数据的分布
情况、集中趋势和位置,并帮助我们更好地理解和分析数据。
1第2章SAS 数据管理2.1 录入数据与创建SAS 数据集EXCEL , WORD 等都有数据录入功能,而SAS 系统下建立数据文件或直接产生数据集,可以免去不同系统间的转换。
21)用PGM 窗口录入数据、创建SAS 数据集设一个资料包含m 个变量、n 个观测,将每一个观测的m个数据录在PGM 窗口的同一行上,同一行上各数据间留一个或一个以上的空格。
于是排成一个n 行m 列的数据方阵,用save 或save as 将数据以一个文件名的方式存在指定的硬盘或软盘上,就建立了一个数据文件(.sas 扩展名)。
如录入:(5个变量、2个观测)alice f 1356.584 becka f 1365.398;3 注意:数据文件需要通过编写和发送一段SAS 引导程序才能将其转变成SAS 数据集,只有SAS 数据集,才能方便地被SAS 中的非编程模块所调用。
因此,加引导程序,变成如下:4单击[submit],创建数据集work.pgm ,然后可以被非编程模块调用,进行各种统计分析。
当数据量少时,直接将数据与程序语句写在一起,发送后,就可直接获得计算结果。
562)用viewtable 创建SAS 数据集进入tools, 进入table editor,直接录入数据,然后save 或save as :7 这样就建立了数据集,可被非编程模块调用。
83)用SAS/ASSIST 创建SAS 数据集 solutions →assist →data management →create data →interactively →enter datain tabular form9在Table 后,选SAS 数据集名10Lable 标签,format 输入输出格式,可不输入11录入完后,单击close ,显示窗口:1213录入数据(Insert),一行输入完后,回车,录入下一个记录:14录入结束,单击close ,将录入信息存盘,创建数据集,并退出数据输入状态。
单变量数据的描述和分析简介:在统计学中,单变量数据(univariate data)是指只有一个单独的变量的数据集合。
这种类型的数据通常用于观察、描述和分析一个特定的量或属性。
本文将讨论如何对单变量数据进行合适的描述和分析,以揭示数据集中的模式、趋势和分布。
一、数据描述1. 数据的基本统计量对于单变量数据,我们需要了解一些基本的统计量,以获得对数据的整体概括。
常见的基本统计量包括:(1)均值(mean):描述数据的平均水平,计算方法为将所有数据值相加后除以观测次数。
(2)中位数(median):描述数据的中间位置,即将数据按照大小顺序排列,取中间位置的值。
(3)众数(mode):描述数据中出现频率最高的值或值的集合。
(4)极差(range):描述数据的范围,即最大值与最小值之间的差异。
(5)方差(variance):描述数据的离散程度,计算方法为每个数据值与均值之差的平方的平均值。
(6)标准差(standard deviation):描述数据的离散程度,是方差的平方根。
2. 数据的分布图表除了基本统计量之外,数据的可视化也是揭示数据特征的重要方法。
以下是几种常见的单变量数据的分布图表:(1)频率分布表(frequency table):将数据按照不同的取值范围划分为区间,统计每个区间的频数或频率。
(2)直方图(histogram):将数据按照取值范围划分为一系列不相交的区间,描绘出每个区间的频数或频率的柱状图。
(3)箱线图(box plot):展示数据的分散情况,包括最大值、最小值、中位数、上四分位数和下四分位数等统计信息。
(4)饼图(pie chart):用于表示数据的比例关系,适用于离散型数据。
二、数据分析1. 总体推断通过单变量数据的描述,我们可以对所研究的总体进行推断。
总体推断是建立在样本数据上的,用于推断整个总体的特征和性质。
常见的总体推断方法包括:(1)参数估计:通过样本数据估计总体的参数,如均值、方差等。
第十章单变量的描述统计调查所得的原始资料经过审核、整理与汇总后,还需要进行系统的统计分析,才能揭示出调查资料所包含的众多信息,才能得出调查的结论。
根据变量数量的差别统计分析划分为单变量分析、双变量分析和多变量分析。
在这一讲中我们先介绍单变量的统计分析。
单变量统计分析可以分为两个大的方面,即描述统计和推论统计。
描述统计是用最简单的概括形式反映出大量数据资料所容纳的基本信息。
推论统计是用样本调查中所得到的数据资料来推断总体的情况。
这一讲我们讲解单变量的描述统计方法。
一、变量的分布(Distributions)变量的分布分为两类,一类是频数分布,一类是频率分布。
频数分布就是变量的每一取值出现的次数;频率分布是用变量每一取值的频数除以总个案数,它是一个相对指标,可以用来比较不同样本。
频数分布与频率分布一般以统计表与统计图的形式表达。
1、统计表(1)统计表就是以表格的形式来表示变量的分布。
如下表所示:表9-1甲校学生的父亲职业数值中的小数的取舍:通俗的做法是“四舍五入”。
“四舍”没有问题,但无原则的“五入”就会产生一定的误差。
例如数值6.25、4.45、3.75、和7.15的总合是21.60。
如果对原数的最后一位小数作简单的四舍五入,原数就变成6.3、4.5、3.8、7.2,其总合是21.8,把原来的总合变大了。
近代统计学有一项新原则,就是“前单五入”,即“五”前面是单数就进位,若是双数就舍掉(0也算双数)。
(2)对于定序及以上层次的变量我们更多的是使用累加频数和累加频率。
如下所示:表9-2甲校学生之父亲教育水平f cf cf c c2、统计图统计图是以图形表示变量的分布情况。
与统计表相比,统计图更直观、生动、醒目,但不够精确。
统计图有圆瓣图、条形图、直方图和折线图。
(1)圆瓣图:多用于描述定类变量的分布,主要目的为显示各部分在整体中所占的比重,以及各部分之间的比较。
如表9-1的资料可用下图(图1)所示:农民部分=360°×52.4%=188.64°工人部分=360°×27.6%=99.36°干部部分=360°×20.2%=72°(图一)甲校学生的父亲职业分布(2)条形图:多用于描述定类与定序变量的分布,它是以长条的高度表示变量不同取值的频数(率)分布的,其中长条的宽度没有意义,一般均画成等宽长条。
单变量分析单变量分析是统计学中的一种常用方法,用于分析与一个变量相关的统计量。
该方法适用于各个领域的数据分析,例如生物学、经济学、医学等等。
本文将介绍单变量分析的基本概念、方法和应用,并通过实例来说明其在实际问题中的应用。
在统计学中,变量是研究对象的某个特征或属性,可以是数值型的,也可以是分类型的。
在单变量分析中,我们只关注一个变量,通过计算其统计量来得到对该变量的描述和总结。
首先,我们需要介绍一些常用的统计量,用于描述一个变量的特征。
其中,最常见的统计量是均值和中位数。
均值是所有观测值的总和除以观测次数,它能够反映一个变量的平均水平;而中位数是将所有观测值按照大小排序后位于中间的值,它能够反映一个变量的中间位置。
除了均值和中位数,我们还可以使用其他统计量来描述一个变量的不同方面。
例如,众数是出现次数最多的观测值,用于描述一个变量的频数分布情况;标准差是观测值与均值之间的离散程度,用于描述一个变量的变异程度。
在实际应用中,我们通常需要根据数据的特点和研究目的选择适当的统计量。
例如,如果我们想要了解一个群体的平均收入水平,可以计算均值;如果我们想要了解一个群体的最常见疾病,可以计算众数。
在单变量分析中,我们还可以通过绘制直方图、箱线图等图表来可视化数据的分布情况。
直方图是将数据分成若干个区间,并统计每个区间中数据的频数,用于描述数据的频数分布情况;箱线图则通过绘制数据的最大值、最小值、中位数、上四分位数和下四分位数来描述数据的整体特征。
除了描述统计量和绘制图表,我们还可以使用假设检验来判断一个变量是否具有统计学意义。
假设检验是一种基于样本数据进行推断的方法,用于判断一个推断性问题的成立与否。
例如,我们可以使用假设检验来判断一个变量的均值是否显著不同于一个特定的值。
最后,我们需要注意的是,在进行单变量分析时,我们需要注意数据的来源、采集方式和样本的选择。
只有在这些方面都符合统计学要求的情况下,我们才能够得到准确和可靠的结果。
第⼆章单变量统计描述分析第⼆章单变量统计描述分析第⼀节单变量统计描述基本技术⼀、变量的计量尺度/层次1、定类变量——最低层次的变量类型。
只有类别属性之分,⽆⼤⼩程度之分。
根据变量值,只能知道研究对象的异同。
从数学运算特性来看,定类变量只有等于或不等于的性质。
2、定序变量——层次⾼于定类变量。
取值除类别属性外,还有等级、次序之分。
数学运算特性除等于或不等于外,还有⼤于或⼩于。
3、定距变量——层次⾼于定序变量。
取值除类别属性、次序之外,取值之间的距离可以⽤标准化的举例度量。
数学运算特性除等于不等于,⼤于⼩于之外,还可以加减。
如收⼊,以1元为标准化距离,则2000元⽐1500元多了500元。
4、定⽐变量——最⾼层次变量。
除了上述三种属性外,可以进⾏乘除运算。
1、社会学研究中,能够满⾜定距⽽不能同时满⾜定⽐要求的变量不多。
如智商,因为智商0分只有相对的意义,0分不等于没有智商,且0值不固定。
当前社会统计⽅法很少要求达到定⽐层测,所以只介绍前三种层次变量。
2、在社会学研究当中,有些变量的层次是不统⼀可变的,可⽤定序层次也可⽤定距层次,根据研究需要。
⾼层次变量可以降低层次来使⽤。
⼀般来说,测量层次越⾼越好,数学特性就越多,统计分析就越⽅便,能了解资料的程度就越深⼊。
⼆、基本技术1、次数分布(定类)——针对定类变量最基本的统计分析⽅法。
⾯对⼤量的数据资料,⾸先要组织整理,第⼀步就是要采⽤次数分布来简化资料,看某变量的每⼀个值出现的次数是多少。
定类变量的取值要求:变量取值必须完备,使得每个各观察值都有所归类;必须互斥,⼀个观察值只能归⼊⼀类,对于分组数据遵循上限不包括在内原则。
次数分布可简化资料,但不能⽐较样本,因为样本量不同。
2、⽐、⽐例和⽐率(通常保留⼀位或两位⼩数)⽐:某两类的次数相除,如性别⽐=男性/⼥性⽐例:某类次数除以总数,⽼年⼈⼝⽐例=⽼年⼈⼝数/总⼈⼝数×100%⽐率:某⼀确定变量相对应的某些事件发⽣的频率。
对单变量量别数据进行描述统计的主要方法单变量数据是指只有一个变量的数据集,即只有一个属性或特征的数据。
对于单变量数据,描述统计是一种通过一些关键的统计指标来总结和描述数据集的方法。
描述统计的主要方法包括测量中心趋势、测量离散程度、测量分布形态以及进行数据可视化等。
一、测量中心趋势测量中心趋势是指通过一个代表性的数值来描述数据的集中程度,常用的方法包括:1. 平均数(Mean):平均数是将所有数据相加后再除以数据的总数,表示数据的平均水平。
2. 中位数(Median):中位数是将数据按照大小排序后的中间值,可以排除极端值对数据的影响。
3. 众数(Mode):众数是数据集中出现次数最多的数值,用于描述数据的典型值。
二、测量离散程度测量离散程度是指度量数据的变异程度或分散程度,常用的方法包括:1. 方差(Variance):方差是数据偏离平均数的平均平方差,用于度量数据的离散程度。
2. 标准差(Standard Deviation):标准差是方差的平方根,表示数据的平均偏离程度。
3. 范围(Range):范围是数据集中最大值和最小值之间的差别,用于衡量数据的全局变化。
4. 四分位数(Quartiles):四分位数可以将数据分成四等份,用于描述数据的分布情况。
三、测量分布形态测量分布形态是描述数据分布的形状和特征,常用的方法包括:1. 偏态(Skewness):偏态是数据分布偏离正态分布的程度,可以判断数据的对称性和偏斜性。
2. 峰度(Kurtosis):峰度是数据分布的尖峰程度,可以判断数据的平峰或尖峰性。
四、数据可视化数据可视化是将数据以图像的形式展示出来,以便更好地理解和分析数据集,常用的方法包括:1. 直方图(Histogram):直方图用于展示数据的分布情况,可以看出数据的集中和离散程度。
2. 箱线图(Box Plot):箱线图用于展示数据的统计特征,包括中位数、四分位数、离群值等。
3. 折线图(Line Plot):折线图用于展示数据随时间或其他变量的变化趋势。