第五章劳斯判据
- 格式:ppt
- 大小:391.00 KB
- 文档页数:18
第五章简介:本章介绍了单输入单输出控制系统稳定性的定义及其判定依据。
对于不同的系统,稳定性的定义不同。
系统的稳定性指标是控制系统设计过程中需要考虑的众多性能指标中最重要的指标,不稳定的系统是无法使用的。
主要包括赫尔维茨判据、劳斯判据、幅角原理、奈奎斯特稳定性判据等概念.重点是赫尔维茨稳定性判据和劳斯稳定性判据及其在系统分析中的应用.难点是应用复变函数的幅角原理推导奈奎斯特稳定性判据和对稳定裕度的理解。
随堂测试:一、知识点名称1:控制系统稳定性的基本概念1。
是保证控制系统正常工作的先决条件。
()A.稳定性B.快速性C.准确性D.连续性正确答案:A解析:不稳定的系统是无法使用的。
2。
是控制系统最重要的性能指标。
()A.稳定性B.快速性C.准确性D.连续性正确答案:A解析:稳定性是控制系统最重要的性能指标知识点名称2:单输入单输出控制系统稳定的条件1.单输入单输出控制系统稳定的条件为()A 特征方程根具有副实部B特征方程根具有副实部C极点位于复平面的右半部D极点位于虚轴上正确答案:A解析:单输入单输出控制系统稳定的充分必要条件为特征方程根全部具有副实部2。
某单位反馈系统的开环传递函数为,则该系统稳定的K值范围为() A.K〉0 B。
K>1 C。
0〈K<10 D K〉-1正确答案:A解析:其特征方程为,根据二阶螺丝准则和朱里准则,该系统稳定条件为;所以的K的取值范围为K〉0知识点名称3:赫尔维茨稳定性判据1。
赫尔维茨矩阵的各项主子式行列式的值全部为正,是线性系统稳定的条件。
()A.充分 B 必要C充要 D 即不充分也不必要正确答案:C解析:线性系统稳定的充要条件赫尔维茨矩阵的各项主子式行列式的值全部为正。
2。
如果满足主子式前提下,若所有次顺序赫尔维茨矩阵的主子式为正,则所有次顺序赫尔维茨矩阵的主子式为正。
()A BC D正确答案:B解析:如果满足条件,若所有奇次顺序赫尔维茨矩阵的主子式为正,则所有偶次顺序赫尔维茨矩阵的主子式必为正;反之亦然。
第五章-1-劳斯稳定性判据[1]自动控制原理_浙江大学考研资料自动控制理论浙江大学控制科学与工程学系芳周立芳徐正国第五章控制系统特性1? 输入变量、输出变量? 方程的阶独立储能元件? 输入输出模型及其一般形式微分方程传递函数方块图? 状态空间模型? 线性化第二章回顾2第二章列写系统方第三章回顾? 稳态响应? 暂态响应? 系统暂态(动态)? 时间响应性能指标? 状态方程的全解3第三章微分方程的4第四章回顾? 系统整体传递函数? 仿真图? 信号流图? 从传递函数到状态空间模型的转换第四章系统表示方5第五章关键词? 系统稳定性? 劳斯稳定性判据? 相对稳定性? 系统型别? 稳态误差? 稳态误差系数6第五章要点? 引言? 劳斯稳定性判据? 数学量与物理量? 反馈系统型别? 稳态误差系数? 稳态误差系数的应用? 非单位反馈系统? 小结控制科学与工程学系引言? 引言? 系统稳定性8? 开环及闭环传递函数具有某些基本性质,这些性质为反馈控制系统的暂态及稳态分析提供了帮助。
开环及闭环传递函数具有某些基本性质,这些性质为反馈控制系统的暂态及稳态分析提供了帮助。
? 衡量反馈控制系统性能的五个重要指标? 稳定性? 稳态误差的存在性及量级? 可控性? 可观性? 参数灵敏性引言引言基于状态空间模型取决于系统的特征方程,有多种分析方法。
取决于系统的特征方程,有多种分析方法。
9? 劳斯稳定性判据为判别系统稳定性提供了途径,并且不需要直接计算系统特征方程的根。
为判别系统稳定性提供了途径,并且不需要直接计算系统特征方程的根。
? 稳态误差可以根据单位反馈系统(或等价的单位反馈系统)的(或等价的单位反馈系统)的开环传递函数获得,其作为一种性能指标,为系统分类提供了依据。
获得,其作为一种性能指标,为系统分类提供了依据。
引言引言10? 我们将介绍一种评价系统稳定性的有力工具劳斯- 赫尔维茨方法,该方法能够使我们在不计算特征方程根的确切值的情况下,推断位于复平面,该方法能够使我们在不计算特征方程根的确切值的情况下,推断位于复平面右半平面的特征根个数。
可编辑修改精选全文完整版1、劳斯判据证明思路:(1)将给定的描述系统运动的高阶齐次微分方程变换为齐次状态方程.(2)给定对称正定(或非负定)矩阵Q,根据式Ax x= ,Q PA P A T -=+求出相应的矩阵P(3)由要求矩阵P为正定的条件证明赫尔维茨稳定判据2、赫尔维茨稳定性判据证明.Ax x= (1) Q PA P A T -=+ (2)设在输入信号为零的情况下,系统的齐次微分方程为01111=++⋅⋅⋅++---x a dtdx a dt x d a dt x d n n n n n n (3) 式(3)的系数行列式为:n n n a a a a a a a a a a a 0000000000000000010000011123451231-⋅⋅⋅⋅⋅⋅⋅⋅⋅=∆ 赫尔维茨判据为:系数行列式n ∆的各阶顺序主子式大于0.证明:首先将系统的高阶微分方程写成状态方程的形式.选择系统的状态变量为 []T n x x x x 21=令x x =1,则式(2)等价于下列状态方程:Ax x= ,其中1210000010000000001000000100000010b b b b A n n----=-(4) 该矩阵特点是:主对角线上除最后一个元素外,其余元素均为0;主对角线以上各元素为1;主对角线以下各元素从第二行开始依次为-bn 到-b1。
其次,应给定矩阵Q,并根据式(2)去求矩阵P设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=21200000000b Q (5) 这是一个对称非负定矩阵,由此可知李雅普诺夫函数的导数为 2212nT x b Qx x V -=-= 。
只要x1,x2,…,xn 不全都为零,则0≠n x ,于是()x V 不可能恒为零.所以按式(4)选定的矩阵Q是合理的.再假设矩阵P是对角线矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=-121000000000000p p p p P n n (6) 将式(4)、式(5)、式(6)代人式(2),即可得 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=-11212112000000000000b b b b b b b b b P n n最后检验矩阵P的正定性.如欲系统的半衡点是大范围渐近稳定的,则矩阵P应是正定的,亦即矩阵P主对角线上各元素均应大于零,即有 0,0,012121>>>b b b b b b n 。