大学物理角动量和力矩
- 格式:ppt
- 大小:638.50 KB
- 文档页数:16
〔收稿日期〕1999-11-15刚体的角动量、角速度、力矩和角加速度的关系陈跃敏(濮阳广播电视大学,河南濮阳457000)[摘要]讨论了普通物理范围内刚体转动部分公式、定理的成立条件及使用范围。
[关键词]角动量;角速度;力矩;角加速度;转动惯量[中图分类号]O311.2 [文献标识码]B 一般情况下,刚体对某一轴(包括瞬时轴和固定轴)的转动,可用角速度矢量 ω及角加速度矢量 β描写,刚体运动时还有角动量L 和力矩 M 。
和 ω的关系及 M 和 β的关系如何?如问题属于理论力学的范围,但在普通物理学中也往往会涉及到这个问题。
因此,在普物范围内搞清它们之间的关系及成立条件和使用范围很有必要。
1 角动量和角速度的关系 首先看一个具体实例。
一个均匀杆绕其一端O 作水平转动.如图1所示.若取O 为参考点,则m i 是质量元,γ_i 是它对O 点的矢径,ν_i 是它的线速度。
显然,此时各质量元的γ_i ×m i ν_i 的方向正好都是Z 方向,即指向Z 轴的正方向。
同一旋转杆,如取Z 轴上方一点P 点作为参考点计算杆的角动量L _p ,则各质量元的γ_i ×m i ν_i 各不相同。
合成后,L _p 的方向大致如图2所示。
而且随着杆的转动,L _p 也转动。
可见,参考点的选择不同,刚体运动的角动量也就不同。
同样,若取转轴通过杆的质量中心,并取质心为参考点,角动量与角速度的方向也不一定一致。
下面直接引用理论力学的结果讨论它们之间的关系。
过参考点建立和刚体一起运动的坐标系,则刚体对活动坐标系X 、Y 、Z 轴的转动惯量及惯量积不随刚体的运动而改变其量值,角动量矢量的分量式为如果刚体绕Z 轴转动,则ωx =ωy =0,ωz =ω。
于是角动量矢量的分量式可写为L x =I xzωL y =-I yz ωL z =-I zzω由上面的分量式可以看出,刚体绕某一轴转动时,角动量沿该轴的分量与角速度成正比(L z =I zzω),但沿其它轴的分量却不一定为零。
大学物理角动量和力矩(一)引言概述:大学物理中,角动量和力矩作为重要的概念之一,对于研究物体的运动和旋转有着重要的影响。
角动量是描述物体旋转运动状态的物理量,而力矩则是描述旋转物体所受到的力和力臂的乘积。
本文将从角动量和力矩的基本概念入手,通过各个角度的阐述和分析,深入探讨角动量和力矩的原理及其在物理中的应用。
正文:一、角动量的基本概念1. 角动量的定义和量纲2. 角动量的计算方法及其守恒定律3. 角动量和动量的关系4. 角动量的矢量性质及其坐标表示5. 角动量的多体系下的计算方法二、力矩的基本概念1. 力矩的定义和量纲2. 力矩与力的关系3. 力矩的计算方法及其守恒定律4. 力矩的矢量性质及其坐标表示5. 力矩的多体系下的计算方法三、角动量和力矩的物理意义1. 角动量的物理意义及其应用领域2. 力矩的物理意义及其应用领域3. 角动量和力矩在自然界中的实际案例4. 角动量和力矩在机械工程中的应用5. 角动量和力矩在天文学研究中的应用四、角动量和力矩的数学推导和分析1. 角动量守恒定律的动力学推导2. 力矩与角加速度的关系及其推导3. 角动量和力矩的相互作用机制分析4. 角动量和力矩的转动惯量及其数学解析5. 角动量和力矩的数学计算公式及其推导五、角动量和力矩的实验测量方法1. 实验测定角动量的装置和方法2. 实验测定力矩的装置和方法3. 角动量和力矩的实验数据处理和分析4. 角动量和力矩实验的误差分析和改进措施5. 角动量和力矩实验的应用案例和展望总结:通过对角动量和力矩的深入讨论,我们可以更好地理解物体的旋转运动以及受到的力和力臂的影响。
角动量和力矩的物理意义在不同的领域中得到广泛应用,并通过数学推导和实验测量方法得以验证和实践。
未来,随着科学技术的不断进步,角动量和力矩的研究将继续向更深层次发展,为人们认识世界的运动规律提供更多的突破点和启示。
大学物理专业力学知识点大学物理专业力学知识点-总结质点运动学1.直角坐标下质点的位置、速度、加速度的矢量表示y某ijzkdrd某dydzijk质点的速度vdtdtdtdtdvd2rd2某d2yd2z2i2j2k 质点加速度adtdt2dtdtdtdrdvdrdv注意区分:与,与dtdtdtdt质点的位置矢量r问题:(1)如何从位置求速度、加速度?(求导)如何从加速度求速度,求位置?(积分)(2)位置、速度、加速度的大小怎么求?方向怎么表示?(3)如何从运动学方程求轨迹方程?(消去时间t,得到某,y,z之间的函数关系)2.自然坐标系下,速度、加速度的表达速率vdsdset,速度vdtdtd2sv2加速度aatetaneneen2tdt圆周运动角速度角线关系:vddt角加速度ddtR,atR问题:自然坐标系下,速度、加速度又怎样表示?切向加速度和法向加速度如何计算?3.速度合成法则:绝对速度等于相对速度与牵连速度的矢量和。
动量牛顿运动定律动量守恒定律1.牛顿定律及其应用Fma解题步骤:(1)确定研究对象(2)建立坐标系(3)分析研究对象的受力情况(4)在各方向上建立牛顿第二定律方程2.冲量动量t2冲量:恒力IFt,变力IF(t)dtt质点动量定理:Ipp0,质点所受冲量等于质点动量的增量质点系的动量定理:质点系所受外力的冲量等于质点系动量的增量注意:内力不会影响体系的动量3.质心质心定义:rcmriiim质心运动定理:质点系质量与质心加速度的乘积等于质点系所受一切外力的矢量合4.动量守恒定律质点系受合外力矢量合为零,则体系动量守恒。
要求:会用动量守恒定律求解问题!!动能和势能1.功功的定义:力在受力质点位移上的投影与位移的乘积Ar1Fr某1dr,对于一维情况AF(某)d某在一段有限路径上的功AFr0某02.质点及质点系动能定理质点动能定理:A质点系动能定理:EkEk0k1212mvmv0质点的动能增量等于作用于质点的合力所作的功22k0AEE 质点系的动能增量等于一切外力所作的功与一切内力所作功的代数和。