§5-1 角动量与力矩 第五章 角动量变化定理与角动量守恒 Z O
- 格式:pdf
- 大小:249.85 KB
- 文档页数:4
精品文档,知识共享!!!角动量定理及角动量守恒定律一、力对点的力矩:如图所示,定义力F对O 点的力矩为: F r M ⨯=大小为: θsin Fr M = 力矩的方向:力矩是矢量,其方向可用右手螺旋法则来判断:把右手拇指伸直,其余四指弯曲,弯曲的方向由矢径通过小于1800的角度转向力的方向时,拇指指向的方向就是力矩的方向。
二、力对转轴的力矩:力对O 点的力矩在通过O 点的轴上的投影称为力对转轴的力矩。
1)力与轴平行,则0=M;2)刚体所受的外力F在垂直于转轴的平面内,转轴和力的作用线之间的距离d 称为力对转轴的力臂。
力的大小与力臂的乘积,称为力F对转轴的力矩,用M表示。
力矩的大小为: Fd M = 或: θsin Fr M =其中θ是F 与r的夹角。
3)若力F 不在垂直与转轴的平面内,则可把该力分解为两个力,一个与转轴平行的分力1F,一个在垂直与转轴平面内的分力2F ,只有分力2F才对刚体的转动状态有影响。
对于定轴转动,力矩M的方向只有两个,沿转轴方向或沿转轴方向反方向,可以化为标量形式,用正负表示其方向。
三、合力矩对于每个分力的力矩之和。
合力 ∑=i F F合外力矩 ∑∑∑=⨯=⨯=⨯i i i M F r F r F r M=即 ∑i M M=四、质点的角动量定理及角动量守恒定律在讨论质点运动时,我们用动量来描述机械运动的状态,并讨论了在机械运动过程中所遵循的动量守恒定律。
同样,在讨论质点相对于空间某一定点的运动时,我们也可以用角动量来描述物体的运动状态。
角动量是一个很重要的概念,在转动问题中,它所起的作用和(线)动量所起的作用相类似。
在研究力对质点作用时,考虑力对时间的累积作用引出动量定理,从而得到动量守恒定律;考虑力对空间的累积作用时,引出动能定理,从而得到机械能守恒定律和能量守恒定律。
至于力矩对时间的累积作用,可得出角动量定理和角动量守恒定律;而力矩对空间的累积作用,则可得出刚体的转动动能定理,这是下一节的内容。
理学院物理系陈强第5章角动量变化定理与角动量守恒§5-1. 角动量与力矩§5-2. 质点的角动量变化定理角动量守恒§5-3.质点组的角动量变化定理角动量守恒§5-4.有心运动12理学院物理系陈强第5章角动量变化定理与角动量守恒一.质点的角动量(动量矩)v m r p r L r r r r r ×≡×≡又称动量矩Oαdpr L1.定义:在惯性参考系中选一固定的参考点O ,运动质点对O 点的位矢r ,动量为p ,则质点对O 点的角动量为:mvdsin rmv sin rp L ===ααα为r 和p 两矢量间的夹角角动量L 的大小:§5-1. 角动量与力矩垂直于矢径r 和动量p 所组成的平面,角动量L 的方向:指向由右手螺旋法则确定.3理学院物理系陈强第5章角动量变化定理与角动量守恒mαO L = rmvL r v例:•角动量的大小和方向不仅决定于质点的运动也依赖于所选定的参考点,参考点不同,质点的动量矩不同。
注意:•角动量的单位千克·米2/秒(kg ·m 2/s)水平面上质点做匀速圆周运动4理学院物理系陈强第5章角动量变化定理与角动量守恒例如:vr r r m r L om O ×=vlm L O =方向变化v r r r m r L m o O ×=′′αsin v lm L O =′方向竖直向上不变O l αv r O ′锥摆m5理学院物理系陈强第5章角动量变化定理与角动量守恒2.角动量的分量表示v m r p r L rr r r r ×≡×≡在直角坐标系中:yz y z x m z ym zp yp L v v −=−=zx x y m zm zp L v v x xp z −=−=xy x y z m y xm yp xp L v v −=−=()z y x z y x p p p zy x k j i L ,L ,L r rr =kL j L i L L z y x rrrr ++==L r6理学院物理系陈强第5章角动量变化定理与角动量守恒二.力矩即F r M r r r ×=力矩的大小:Fr sin rF M 0==ααsin r r 0=——称力臂。
第五章角动量角动量守恒定理本章结构框图学习指导本章概念和内容是中学没有接触过的,是大学物理教学的重点和难点。
许多同学容易将平动问题与转动问题中的概念和规律混淆,例如两种冲击摆问题。
建议采用类比方法,对质量与转动惯量、动量与角动量、力与力矩、冲量与角冲量、平动动能和转动动能、运动学的线量和角量、动量定理和角动量定理、动量守恒和角动量守恒……一一加以比较。
本章的重点是刚体定轴转动问题,注意定轴条件下,各种规律都应该用标量式表示。
还请注意动量守恒在天体问题、粒子问题中的应用。
基本要求1.理解质点、质点系、定轴刚体的角动量概念。
2.理解定轴刚体的转动惯量概念,会进行简单计算。
3.理解力矩的物理意义, 会进行简单计算。
4.掌握刚体定轴转动定律,熟练进行有关计算。
5.理解角冲量(冲量矩)概念,掌握质点、质点系、定轴刚体的角动量定理,熟练进行有关计算。
6.掌握角动量守恒的条件,熟练应用角动量守恒定律求解有关问题。
内容提要1.基本概念刚体对定轴的转动惯量:是描述刚体绕定轴转动时,其转动惯性大小的物理量。
定义为刚体上每个质元(质点、线元、面元、体积元)的质量与该质元到转轴距离平方之积的总和。
即:I的大小与刚体总质量、质量分布及转轴位置有关。
质点、质点系、定轴刚体的角动量:角动量也称动量矩,它量度物体的转动运动量,描述物体绕参考点(轴)旋转倾向的强弱。
表5.1对质点、质点系、定轴刚体的角动量进行了比较。
表5.1质点、质点系和定轴刚体的角动量力矩:力的作用点对参考点的位矢与力的矢积叫做力对该参考点的力矩(图5.1):即:大小:(力×力臂)方向:垂直于决定的平面,其指向由右手定则确定。
对于力矩的概念应该注意明确以下问题:•区分力对参考点的力矩和力对定轴的力矩:力对某轴的力矩是力对轴上任意一点的力矩在该轴上的投影。
例如:某力对x、y、z轴的力矩就是该力对原点的力矩在三个坐标轴上的投影:由上可知:力对参考点的力矩是矢量,而力对定轴的力矩是代数量。
角动量定理和角动量守恒定律
角动量定理和角动量守恒定律是描述刚体运动时的两个基本定律。
下面进行简单的介绍:
1. 角动量定理
角动量定理是描述角动量变化的定律。
它表示为:物体所受外力矩等于物体角动量对时间的变化率。
即
I*ω= ΔL/Δt
其中,I 为物体的转动惯量,ω为物体的角速度,L 为物体的角动量。
这个定理表明了一个物体的角动量发生变化时,必定受到了外部的力矩作用,即力矩等于角动量的变化率。
2. 角动量守恒定律
角动量守恒定律是描述角动量不变的定律,即如果没有外部力矩作用,系统的总角动量保持不变。
即:
L = L0
其中,L 为系统的总角动量,L0 为系统在某一时刻的总角动量。
这个定律表明,如果没有外部力矩作用,那么系统的总角动量保持不变。
如果一个物体在自由运动时,角动量发生变化,那么它将会改变自身的旋转状态(比如转速、方向等)。
总之,角动量定理和角动量守恒定律是描述刚体运动和角动量变化的基本定理,可以帮助我们更好地理解物体的运动和变化规律。