练习_用加减消元法解二元一次方程组-优质公开课-北京版7下精品
- 格式:ppt
- 大小:217.50 KB
- 文档页数:8
学科数学班级任课教师课题解二元一次方程组课型新授日期学习重点运用加减消元法解二元一次方程组学习难点领会加减消元法表达的化未知为的化归思想。
教具学具多媒体教学方法探究法、讨论法教学过程一、复习、诊测、引入1、口述代入消元法的一般步骤:3x+2y=12、用代入消元法解方程组x-2y=3想一想:观察上面方程组的结构特点,想一想,除了可以用代入法解方程组外,是否有更简捷的解法。
二、学习新知:教学过程通过观察我们发现,这个方程组的两个方程中分别有2y和-2y的项,它们互为相反数,因此他们的和为零,所以,我们还可以用下面的方法解这个方程组。
3x+2y=1x-2y=3x+3y=1例1:解方程组2x+3y=5议一议:1、分析上面的解题过程,请你总结一下这类方程组具有什么特点?可以运用怎样的方法求解。
2、如果一个二元一次方程组中,两个方程的某个未知数的系数相同或互为相反数时,又可以运用什么样的方法求解?归纳结论〔解法〕:当二元一次方程组中,两个方程的某个未知数的系数相同或互为相反数时,可以把方程的两边分别相加〔当某个未知数的系数互为相反数时〕或相减〔当某个未知数的系数相等时〕来消去这个未知数,得到一个一元一次方程,从而求得二元一次方程组的解。
像上面这种解二元一次方程组的方法叫做加减消元法,简称加减法。
想一想:如果二元一次方程组的两个方程中,不含有系数互为相反数〔或向等〕的两项,我们是否可以对方程变形,把它化归为可以运用加减消元法求解的二元一次方程组呢?教例2:用加减消元法解以下方程组3x+2y=141〕5x-y=62x-3y=3这两个方程中含y的项的系数互为相反数,把两个方程相加就可消去y,进而求解这两个方程中含y的项的系数相等,把两个方程相减就可消去y,进而求解思考:怎样创造条件,运用加减消元法求解?学过程2)3x-2y=7解:略议一议:怎样根据方程组的特点选择恰当的方法,是求解的过程比拟简捷?请举出两例加以说明。
七年级数学(下)第八章《消元——解二元一次方程组》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.用加减消元法解方程组23537x y x y -=⎧⎨=+⎩①②正确的方法是A .①+②得2x =5B .①+②得3x =12C .①+②得3x +7=5D .先将②变为x -3y =7③,再①-③得x =-2【答案】D【解析】先将②变为x -3y =7③,再①-③得x =-2.故选D . 2.用代入法解方程组2503510x y x y -=⎧⎨+-=⎩①②时,最简单的方法是A .先将①变形为x =52y ,再代入② B .先将①变形为y =25x ,再代入②C .先将②变形为x =153y-,再代入①D .先将①变形为5y =2x ,再代入② 【答案】D【解析】由①得:5y =2x ,把5y =2x 代入②即可.故选D . 3.解方程组35237x y x y +=⎧⎨+=⎩①②,错误的解法是A .先将①变形为53x y =+,再代入②B .先将①变形为53x y =-,再代入②C .将-②①,消去yD .将2⨯-①②,消去x 【答案】A【解析】用代入法解二元一次方程组时先将①变形为53x y =-,移项要变号,选项A 错误.故选A .4.解方程组:(1)4273210x y x y -=⎧⎨+=⎩;(2)2359x y x y =⎧⎨-=⎩;(3)459237x y x y +=⎧⎨-=⎩;(4)7341x y x y +=⎧⎨-=⎩比较适宜的方法是A .(1)(2)用代入法,(3)(4)用加减法B .(1)(3)用代入法,(2)(4)用加减法C .(2)(3)用代入法,(1)(4)用加减法D .(2)(4)用代入法,(1)(3)用加减法 【答案】D(4)第一个方程转化为x =7-y ,代入第二个方程即可消去未知数x ,用代入法比较适宜.故选D .5.二元一次方程组320x y x y -=-⎧⎨+=⎩的解是A .12x y =-⎧⎨=⎩B . 12x y =⎧⎨=-⎩C .12x y =-⎧⎨=-⎩D .21x y =-⎧⎨=⎩【答案】A【解析】将方程组中的两个方程相加得3x =-3,解得x =-1,将x =-1代入方程组中得任意一个方程可得y =2,所以12x y =-⎧⎨=⎩.故选A .6.已知方程组323()11x y y x y -=⎧⎨+-=⎩,那么代数式3x -4y 的值为A .1B .8C .-1D .-8【答案】B【解析】将x -y =3代入方程2y +3(x -y )=11得2y +9=11,解得y =1,将y =1代入x -y =3得x =4, 所以3x -4y =3×4-4×1=8.故选B . 7.若2425y x a b -与352x y a b +是同类项,则x 、y 的值为 A .21x y =⎧⎨=⎩B .31x y =⎧⎨=⎩C .12x y =⎧⎨=⎩D .21x y =⎧⎨=-⎩【答案】D【解析】由同类项的定义可得24325y xx y-=⎧⎨=+⎩,整理得34225x yy x+=⎧⎨=-⎩①②,将②代入①得3x+4(2x-5)=2,解得x=2,将x=2代入②得y=-1,所以21xy=⎧⎨=-⎩.故选D.8.已知21xy=⎧⎨=⎩是二元一次方程组81mx nynx my+=⎧⎨-=⎩的解,则2m-n的算术平方根为A.±2 B.2C.2 D.4 【答案】C9.已知关于x,y的方程组343x y ax y a+=-⎧⎨-=⎩,给出下列结论:①51xy=⎧⎨=-⎩是方程组的一个解;②当2a=时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x-2y=3的解;④x,y间的数量关系是x+y=4-a,其中正确的是A.②③B.①②③C.①③D.①③④【答案】C【解析】①中将51xy=⎧⎨=-⎩代入方程组得534513aa-=-⎧⎨+=⎩,解得:a=2,所以①正确;②中将a=2代入方程组中得326x yx y+=⎧⎨-=⎩①②,①+②得x+y=4,所以②错误;③中将a=1代入方程组得333x yx y+=⎧⎨-=⎩,解得3xy=⎧⎨=⎩,将其代入x-2y=3-2×0=3,所以③正确;④中,将方程组中的两个方程相加得x+y=2+a,所以④错误.故选C.二、填空题:请将答案填在题中横线上.10.已知23523x yx y+=⎧⎨+=-⎩,则3x+3y的值为__________.【答案】32【解析】23523x y x y +=⎧⎨+=-⎩①②,①+②得:442x y +=,即12x y +=,13333()322x y x y +=+=⨯=.故答案为:32. 11.方程组221x y x y +=-=⎧⎨⎩的解是__________.【答案】11x y ==⎧⎨⎩【解析】221x y x y +=⎧⎨-=⎩①②,①+②,得:3x =3,解得x =1,把x =1代入①得,y =1.故方程组的解为:11x y ==⎧⎨⎩,故答案为:11x y ==⎧⎨⎩.12.若关于x 、y 的二元一次方程组59x y kx y k+=-=⎧⎨⎩的解也是二元一次方程2x +3y =6的解,则k 的值为__________.【答案】3413.已知|2x -3y +4|与(x -2y +5)2互为相反数,则(x -y )2019=__________.【答案】1【解析】由题意,得2|234|(25)0x y x y -++-+=,∴2x −3y +4=0,x −2y +5=0,∴x =7,y =6,∴20192019()(76)1x y -=-=,故答案为:1.14.若方程组42ax by ax by -=⎧⎨+=⎩与方程组234456x y x y +=⎧⎨-=⎩的解相同,则a =__________,b =__________.【答案】3319;112-【解析】解方程组234456x y x y +=⎧⎨-=⎩得1911211x y ⎧=⎪⎪⎨⎪=⎪⎩,将1911211x y ⎧=⎪⎪⎨⎪=⎪⎩代入第一个方程组中得1924111119221111a b a b ⎧-=⎪⎪⎨⎪+=⎪⎩,解得3319112a b ⎧=⎪⎪⎨⎪=-⎪⎩,故答案为:3319;112-.三、解答题:解答应写出文字说明、证明过程或演算步骤. 15.用合适的方法解下列方程组:(1)4023222y x x y =-⎧⎨+=⎩①②;(2)235421x y x y +=⎧⎨-=⎩①②;(3)651533x y x y +=⎧⎨-=-⎩①②.【解析】(1)将①代入②得,32(402)22x x +-=, 解得x =58,故原方程组的解为:131698x y ⎧=⎪⎪⎨⎪=⎪⎩.(3)②×5得:15x -5y =-15③, ①+③得:21x =0, 解得:x =0,将x =0代入②,得y =3, 故原方程组的解为:03x y =⎧⎨=⎩.16.已知关于x ,y 的方程组54522x y ax by +=⎧⎨+=-⎩与2180x y ax by -=⎧⎨--=⎩有相同的解,求a ,b 的值.【解析】由题意可将x +y =5与2x -y =1组成方程组521x y x y +=⎧⎨-=⎩,解得23x y =⎧⎨=⎩,把23x y =⎧⎨=⎩代入4ax +5by =-22,得8a +15b =-22①,把23x y =⎧⎨=⎩代入ax -by -8=0,得2a -3b -8=0②,与②组成方程组,得815222380a b a b +=-⎧⎨--=⎩,解得12a b =⎧⎨=-⎩.17.已知关于,x y 的方程组212x y x y m +=⎧⎨-=⎩①②.(1)若用代入法求解,可由①得:x =__________③,把③代入②解得y =__________,将其代入③解得x =__________,∴原方程组的解为__________;(2)若此方程组的解x y ,互为相反数,求这个方程组的解及m 的值. 【解析】(1)若用代入法求解,可由①得12x y =-③,把③代入②解得14m y -=, 将其代入③解得12m x +=,∴原方程组的解为1214m x m y +⎧=⎪⎪⎨-⎪=⎪⎩.故答案为:12y -;14m -;12m +;1214m x m y +⎧=⎪⎪⎨-⎪=⎪⎩.(2)∵方程组的解x y ,互为相反数, ∴x y =-③,将③代入①得21y y -+=, ∴1y =, ∴1x =-,∴2123m x y =-=--=-,∴方程组的解是11x y =-⎧⎨=⎩,3m =-.18.小明在做家庭作业时发现练习册上一道解方程的题目被墨水污染325x y x y -=+=⎩∆⎧⎨,“口”和“△”表示被污染的内容,他着急,翻开书后面的答案,这道题的解是21x y ==-⎧⎨⎩,你能帮助他补上“口”和“△”的内容吗?说出你的方法.【解析】把x =2,y =-1代入两方程,得3×2-2×(-1)=8,5×2-1=9. ∴被污染的内容是8和9.。
第7章 一次方程7.2.3 用加减法解二元一次方程组(1)1.用加减法解二元一次方程组⎩⎨⎧3x -2y =5,①3x +4y =-1.②下列四种解法中,正确的是( )A .①+②,得6x -2y +(-4y )=5-1B .②-①,得4y -2y =-1+5,所以y =2C .②-①,得4y +2y =-1-5,所以y =-1D .②-①,得4y +2y =1-5,所以y =-232.[xx·宁夏]已知x 、y 满足方程组⎩⎨⎧x +6y =12,3x -2y =8,则x +y 的值为( )A .9B .7C .5D .33.[xx·北京]方程组⎩⎨⎧x -y =3,3x -8y =14的解为 ( )A.⎩⎨⎧x =-1y =2B.⎩⎨⎧x =1y =-2 C.⎩⎨⎧x =-2y =1 D.⎩⎨⎧x =2y =-1 4.[xx·无锡]方程组⎩⎨⎧x -y =2,x +2y =5的解是____.5.[xx·嘉兴]用消元法解方程组⎩⎨⎧x -3y =5,①4x -3y =2 ②时,两位同学的解法如下:解法一:由①-②,得3x =3.解法二:由②,得3x +(x -3y )=2.③把①代入③,得3x +5=2.(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“×”; (2)请选择一种你喜欢的方法,完成解答. 6.解方程组:(1)[xx·常州]⎩⎨⎧2x -3y =7,x +3y =-1;(2)[xx·宿迁]⎩⎨⎧x +2y =0,3x +4y =6.7.[xx·随州]已知⎩⎨⎧x =2,y =1是关于x 、y 的二元一次方程组⎩⎨⎧ax +by =7,ax -by =1的一组解,则a+b =____.8.校田园科技社团计划购进A 、B 两种花卉,两次购买每种花卉的数量以及每次的总费用如下表所示:花卉数量/株 总费用/元AB 第一次购买 10 25 225 第二次购买2015275(1)你从表格中获取了什么信息?(请用自己的语言描述,写出一条即可) (2)A 、B 两种花卉每株的价格各是多少元?9.对于有理数x 、y ,定义新运算:x y =ax +by ,其中a 、b 是常数,等式右边是通常的加法和乘法运算.例如,34=3a +4b ,则若34=8,即可知3a +4b =8.已知12=1,(-3)3=6,求2(-5)的值.参考答案【分层作业】 1. C 2. C 3. D【解析】⎩⎨⎧x -y =3,①3x -8y =14.②②-①×3,得-5y =5,解得y =-1. 把y =-1代入①,得x +1=3,解得x =2.故原方程组的解为⎩⎨⎧x =2,y =-1.4.⎩⎨⎧x =3,y =1【解析】⎩⎨⎧x -y =2,①x +2y =5.②②-①,得3y =3,解得y =1.把y =1代入①,得x -1=2,解得x =3.故原方程组的解是⎩⎨⎧x =3,y =1.5.解:(1)解法一中的解题过程有错误. 由①-②,得3x =3“×”, 应为由①-②,得-3x =3.(2)由①-②,得-3x =3,解得x =-1. 把x =-1代入①,得-1-3y =5,解得y =-2.所以原方程组的解是⎩⎨⎧x =-1,y =-2.6. (1)解:⎩⎨⎧2x -3y =7,①x +3y =-1.②①+②,得3x =6,解得x =2. 将x =2代入①,得y =-1.故原方程组的解为⎩⎨⎧x =2,y =-1.(2)解:⎩⎨⎧x +2y =0,①3x +4y =6.②由①,得x =-2y .③把③代入②,得3×(-2y )+4y =6, 解得y =-3.将y =-3代入③,得x =6.故原方程组的解为⎩⎨⎧x =6,y =-3.7. 5【解析】根据二元一次方程组的定义,将⎩⎨⎧x =2,y =1代入⎩⎨⎧ax +by =7,ax -by =1,得⎩⎨⎧2a +b =7,2a -b =1,解得⎩⎨⎧a =2,b =3,所以a +b =5.8.解:(1)略.答案不唯一,信息合理即可. (2)设A 、B 两种花卉每株的价格分别是x 元、y 元.由题意,得⎩⎨⎧10x +25y =225,20x +15y =275,解得⎩⎨⎧x =10,y =5.答:A 、B 两种花卉每株的价格分别是10元、5元.9.解:根据题意,得⎩⎨⎧a +2b =1,①-3a +3b =6.②①×3+②,得b =1. 将b =1代入①,得a =-1. 故2(-5)=2a -5b =-2-5=-7.。
第八章二元一次方程组8.2解二元一次方程组(第二课时加减消元法)精选练习答案基础篇一、单选题(共10小题)1.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为()A .﹣4B .4C .﹣2D .2【答案】B 【详解】试题解析:512{34a b a b +=-=①②,①+②:4a+4b=16则a+b=4,故选B .2.若|321|20x y x y --++-=,则x ,y 的值为()A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩【答案】D 【详解】详解:∵32120x y x y --++-,∴321020x y x y --⎧⎨+-⎩==将方程组变形为32=1=2x y x y -⎧⎨+⎩①②,①+②×2得,5x=5,解得x=1,把x=1代入①得,3-2y=1,解得y=1,∴方程组的解为11x y =⎧⎨=⎩.故选D .3.以方程组21x y x y +=⎧⎨-=⎩的解为坐标的点(x ,y )在平面直角坐标系中的位置是()A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【详解】解:解方程组21x yx y+=⎧⎨-=⎩,得1.50.5xy=⎧⎨=⎩,∴点(1.5,0.5)在第一象限.故选:A.4.用加减消元法解二元一次方程组3421x yx y+=⎧⎨-=⎩①②时,下列方法中无法消元的是()A.①×2﹣②B.②×(﹣3)﹣①C.①×(﹣2)+②D.①﹣②×3【答案】D【详解】方程组利用加减消元法变形即可.解:A、①×2﹣②可以消元x,不符合题意;B、②×(﹣3)﹣①可以消元y,不符合题意;C、①×(﹣2)+②可以消元x,不符合题意;D、①﹣②×3无法消元,符合题意.故选:D.5.方程组3276211x yx y+=⎧⎨-=⎩,的解是()A.15xy=-⎧⎨=⎩,B.12xy=⎧⎨=⎩,C.31xy,=⎧⎨=-⎩D.212xy=⎧⎪⎨=⎪⎩,【答案】D 【详解】解:327 6211x yx y+=⎧⎨-=⎩①②,①+②得:9x=18,即x=2,把x=2代入②得:y=1 2,则方程组的解为:212 xy=⎧⎪⎨=⎪⎩,故选D.6.若二元一次方程组3,354x yx y+=⎧⎨-=⎩的解为,,x ay b=⎧⎨=⎩则-a b的值为()A .1B .3C .14-D .74【答案】D 【详解】解:3,354,x y x y +=⎧⎨-=⎩①②+①②,得447x y -=,所以74x y -=,因为,,x a y b =⎧⎨=⎩所以74x y a b -=-=.故选D.7.若方程组31331x y ax y a+=+⎧⎨+=-⎩的解满足x +y =0,则a 的值为()A .﹣1B .1C .0D .无法确定【答案】A 【详解】方程组两方程相加得:4(x+y )=2+2a ,即x+y=12(1+a ),由x+y=0,得到12(1+a )=0,解得:a=-1.故选A .8.用加减法解方程组2333211x y x y +=⎧⎨-=⎩时,有下列四种变形,其中正确的是()A .4669633x y x y +=⎧⎨-=⎩B .6396222x y x y +=⎧⎨-=⎩C .6936411x y x y +=⎧⎨-=⎩D .4639611x y x y +=⎧⎨-=⎩【答案】A 【详解】解:若消去x ,则有:6996422x y x y +=⎧⎨-=⎩;若消去y ,则有:4669633x y x y +=⎧⎨-=⎩;∴用加减消元法正确的是A ;9.关于x ,y 的方程组2318517ax y x by +=⎧⎨-+=⎩(其中a ,b 是常数)的解为34x y =⎧⎨=⎩,则方程组2()3()18()5()17a x y x y x y b x y ++-=⎧⎨+--=-⎩的解为()A .34x y =⎧⎨=⎩B .71x y =⎧⎨=-⎩C . 3.50.5x y =⎧⎨=-⎩D . 3.50.5x y =⎧⎨=⎩【答案】C 【详解】详解:由题意知:3{4x y x y +=-=①②,①+②,得:2x =7,x =3.5,①﹣②,得:2y =﹣1,y =﹣0.5,所以方程组的解为 3.50.5x y =⎧⎨=-⎩.故选C .10.“若方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是()A .48x y =⎧⎨=⎩B .912x y =⎧⎨=⎩C .1520x y =⎧⎨=⎩D .9585x y ⎧=⎪⎪⎨⎪=⎪⎩【答案】D 【详解】∵方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,∴111222985985a b c a b c +=⎧⎨+=⎩,两边都除以5得:11122298559855a b c a b c ⎧+=⎪⎪⎨⎪+=⎪⎩,对照方程组111222a x b y c a x b y c +=⎧⎨+=⎩可得,方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为9585x y ⎧=⎪⎪⎨⎪=⎪⎩,提升篇二、填空题(共5小题)11.已知x 、y 满足方程组3123x y x y +=-⎧⎨+=⎩,则x y +的值为__________.【答案】1【详解】解:3123x y x y +=-⎧⎨+=⎩①②①2⨯得:262x y +=-③③-②得:55,y =-1,y ∴=-把1y =-代入①:31,x ∴-=-2,x ∴=所以方程组的解是:2,1x y =⎧⎨=-⎩1.x y ∴+=故答案为:1.12.已知x 2{y 1==是二元一次方程组mx ny 7{nx my 1+=-=的解,则m+3n 的立方根为.【答案】2【详解】把x 2{y 1==代入方程组mx ny 7{nx my 1+=-=,得:2m n 7{2n m 1+=-=,解得13m 5{9n 5==,∴139m 3n 3855+=+⨯=33m 3n 82+,故答案为2.13.若单项式﹣5x 4y 2m+n 与2017x m ﹣n y 2是同类项,则m-7n 的算术平方根是_________.【答案】4【详解】根据同类项定义由单项式﹣5x 4y 2m+n 与2017x m ﹣n y 2是同类项,可以得到关于m 、n 的二元一次方程4=m ﹣n ,2m+n=2,解得:m=2,n=﹣2,因此可求得m ﹣7n=16,即m ﹣7n 的算术平方根==4,故答案为4.14.二元一次方程组627x y x y +=⎧⎨+=⎩的解为_____.【答案】15x y =⎧⎨=⎩【详解】627x y x y +=⎧⎨+=⎩①②,②﹣①得1x =③将③代入①得5y =∴15x y =⎧⎨=⎩故答案为15x y =⎧⎨=⎩15.已知32x y =⎧⎨=-⎩是方程组37ax by bx ay +=⎧⎨+=-⎩的解,则代数式(a+b)(a-b)的值为_________【答案】−8【详解】解:把32x y =⎧⎨=-⎩代入方程组得:323 327a b b a -=⎧⎨-=-⎩①②,①×3+②×2得:5a =−5,即a =−1,把a =−1代入①得:b =−3,则(a+b)(a-b)=a 2−b 2=1−9=−8,故答案为−8.三、解答题(共2小题)16.解二元一次方程组(1)31529x y x y +=⎧⎨-=⎩(2)3523153232x y x y x+=⎧⎪-+⎨-=-⎪⎩【答案】(1)12x y =⎧⎨=-⎩(2)2345x y ⎧=-⎪⎪⎨⎪=⎪⎩【详解】(1)31529x y x y +=⎧⎨-=⎩①②,将①式×2+②得6529x x +=+,1111x =,解得1x =,将1x =代入①得:2y =-,故解为:12x y =⎧⎨=-⎩(2)3523153232x y x y x +=⎧⎪-+⎨-=-⎪⎩,将方程组整理得:()()35223135312x y x y x +=⎧⎪⎨--+=-⎪⎩即35231510x y x y +=⎧⎨--=-⎩①②,①+②得:108y -=-,解得:45y =,将45y =代入①得:23x =-,∴解为2345x y ⎧=-⎪⎪⎨⎪=⎪⎩17.用消元法解方程组35432x y x y -=⎧⎨-=⎩①②时,两位同学的解法如下:解法一:解法二:由②,得3(3)2x x y +-=,③由①-②,得33x =.把①代入③,得352x +=.(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“⨯”.(2)请选择一种你喜欢的方法,完成解答.【答案】(1)解法一中的计算有误;(2)原方程组的解是12x y =-⎧⎨=-⎩【详解】(1)解法一中的计算有误(标记略)(2)由①-②,得:33x -=,解得:1x =-,把1x =-代入①,得:135y --=,解得:2y =-,所以原方程组的解是12x y =-⎧⎨=-⎩.。
用加减消元法解二元一次方程组 同步练习【主干知识】1.方程组231534m n m n +=⎧⎨+=⎩中,n 的系数的特别是_______,所以我们只要将两式________,•就可以消去未知数,化成一个一元一次方程,达到消元的目的.2.方程组532534m n m n -+=⎧⎨+=⎩中,m 的系数的特别是________,所以我们只要将两式________,就可以消去未知数m ,化成一个一元一次方程,进而求得方程组的解.3.•用加减法解二元一次方程组时,••两个方程中同一个未知数的系数必须________•或_______,•即它们的绝对值______.•当未知数的系数的符号相同时,•用_______;当未知数的系数的符号相反时,用_______.•当方程组里两个方程的同一个未知数的系数成整数倍时,可以利用________性质,将方程经过简单变形,•使这个未知数的系数的绝对值________,再用加减法消元,进一步求得方程组的解.4.方程组421721x y x y +=⎧⎨-=⎩里两个方程只要两边________,就可以消去未知数________. 5.方程组3133131x y x y +=⎧⎨-=-⎩的两个方程只要两边_______,就可以消去未知数_______.6.用加减法解二元一次方程组21349x y x y -=⎧⎨+=⎩时,你能让两个方程中x 的系数相等吗?•你的办法是_________. 7.用加减法解方程组326231x y x y +=⎧⎨+=⎩时,要使方程中同一个未知数的系数相等或互为相反数,必须适当变形,以下四种变形正确的是( )966961896186412(1)(2)(3)(4)462462462693x y x y x y x y x y x y x y x y +=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨+=-=+=+=⎩⎩⎩⎩A .(1)(2)B .(2)(3)C .(3)(4)D .(4)(1)8.用加减法解二元一次方程组2931x y x y +=⎧⎨-=-⎩.【点击思维】1.用加减法解二元一次方程组的关键是使方程组里两个方程中同一个未知数系数的绝对值_______,然后把方程两边分别相______或____,实现化二元为______,从而解出它的解.3.判断正误:(1)已知方程组238329x y x y +=⎧⎨+=⎩则x 、y 的值都是负值 ( ) (2)方程组373272282383x x x y x x y y -⎧=⎪-=⎧⎪⎨⎨+-=⎩⎪=⎪⎩与有相同的解 ( ) (3)方程组606030%60%10%60220x y x y x y x y +=+=⎧⎧⎨⎨+=⨯+=⎩⎩与解相同 ( ) 4.解下列方程组:(1)35132718x y x y -=⎧⎨+=⎩ 2(2)34x y y z z x +=⎧⎪+=⎨⎪+=⎩【基础能力训练】1.对于方程组2353433x yx y-=⎧⎨+=⎩而言,你能设法让两个方程中x的系数相等吗?你的方法是_______;若让两个方程中y的系数互为相反数,你的方法是________.2.用加减消元法解方程组358752x yx y-=⎧⎨+=⎩将两个方程相加,得()A.3x=8 B.7x=2 C.10x=8 D.10x=103.用加减消元法解方程组231354y xx y+=⎧⎨-=-⎩,①-②得()A.2y=1 B.5y=4 C.7y=5 D.-3y=-34.用加减消元法解方程组23537x yx y-=⎧⎨=+⎩正确的方法是()A.①+②得2x=5 B.①+②得3x=12C.①+②得3x+7=5 D.先将②变为x-3y=7③,再①-③得x=-25.已知方程组5112mx n xmy n y+==⎧⎧⎨⎨-==⎩⎩的解是,则m=_______,n=_______.6.在方程组341236x yx y+=⎧⎨-=⎩中,若要消x项,则①式乘以_______得______③;•②式可乘以______得________④;然后再③④两式_______即可.7.在341236x yx y+=⎧⎨-=⎩中,①×③得________③;②×4得_____④,这种变形主要是消________.8.•用加减法解0.70.31725x yx y+=⎧⎨-+=⎩时,•将方程①两边乘以________,•再把得到的方程与②相________,可以比较简便地消去未知数________.9.方程组356234x yx y-=⎧⎨-=⎩,②×3-①×2得()A.-3y=2 B.4y+1=0 C.y=0 D.7y=-810.已知23x yx y-=⎧⎨+=⎩,则xy的值是()A.2 B.1 C.-1 D.211.方程组1325y xx y+=⎧⎨+=⎩的解是()A.3333...2422 x x x xB C Dy y y y==-==-⎧⎧⎧⎧⎨⎨⎨⎨=-===-⎩⎩⎩⎩12.已知2441x xy y=-=⎧⎧⎨⎨==⎩⎩和都是方程y=ax+b的解,则a和b的值是()A.1111...2222 5311 a a a aB C Db b b b⎧⎧⎧⎧==-==-⎪⎪⎪⎪⎨⎨⎨⎨⎪⎪⎪⎪===-=-⎩⎩⎩⎩13.用合适的方法解下列方程组:(1)4022356515(2)(3) 322242133 y x x y x yx y x y x y=-+=+=⎧⎧⎧⎨⎨⎨+=-=-=-⎩⎩⎩152343(1)4(4)(4)(5)(6)3532115(1)3(5)7525x x y x y x y x y y x y x +-⎧+=-=-=⎧⎧⎪⎨⎨⎨-=-=+⎩⎩⎪=+⎩ 349323(4)4(5)12105353217x z x y x y y x x y z -=-⎧+--⎪===-⎨⎪++=⎩15.如果二元一次方程组1532234ax by x ax by y -==⎧⎧⎨⎨+==⎩⎩的解是,则a-b=______.【综合创新训练】16.在方程y=kx+b 中,当x=2时,y=2;当x=-4时,y=-16,求当x=1时,y=_______.17.已知a 、b 都是有理数,观察下表中的运算,在空格处填上数.a 、b 的运算 a+b a-b 1a b+ 运算的结果 -49 -9718.若方程组431(1)3x y ax a y +=⎧⎨+-=⎩的解与x 与y 相等,则a 的值等于( ) A .4 B .10 C .11 D .1219.已知方程组22331x y k x y k +=⎧⎨+=-⎩的解x 和y 的和等于6,k=_______.20.甲、乙两位同学一起解方程组2,32ax by cx y +=⎧⎨-=-⎩,甲正确地解得11x y =⎧⎨=-⎩,乙仅因抄错了题中的c ,解得26x y =⎧⎨=-⎩,求原方程组中a 、b 、c 的值.21.已知232x y a x y a+=⎧⎨-=⎩,求x y 的值.【探究学习】皇帝巧算牛马价有一年,康熙皇帝微服南巡,在扬州城一个集市上看见两个公差正和几个卖牛马的伙计争执,只听伙计苦苦央求两公差:“这位大爷,按我们讲好的价钱,您买4•匹马,6头牛,共48两银子;这位大爷,您买3匹、5头牛,共38两银子,加起来,•一共是86两银子,可是你们只给了80两,还少6两,我们可亏不起这么多呀!•”而两位公差不仅不补给银子,反而瞪眼呵斥,强赶牛、马要走.正在这时,身着便服的康熙,走到公差面前说:“买卖公平,这是天经地义的事,一匹马,一头牛都有个价,要想买牛马,该付多少银子,就付多少银子,怎么能仗势欺人!”甲公差见此人竟敢当众管教他们,大怒:“你找死呀!你知道一匹马、一头牛是什么价?”康熙微微一笑,略略思索了一会儿,便说:“我事先不知道,但可以算出来,马每匹6两,牛每头4两!”伙计们和围观的人一听无不惊奇,而公差去恼羞成怒,上前就要抓康熙,此时,康熙从口袋里掏出玉玺,公差一看,方知皇帝驾到,吓得魂飞魄散,连忙跪下求饶. 原来,康熙是一位精通数学的皇帝,他当时是用算术的方法求出马和牛的价格的.同学们,你不妨用二元一次方程算一算,看与康熙皇帝求得的结果一样吗?。