解:解方程组
4
x
y
5,
得
3x 2 y 1
x 1, y 1
把 代x 入1 方程组
y 1
ax by 3,
ax解 b此y 方 1程,组得
所以 a2-2ab+b2=1.
a 2, b 1.
课堂练习
2、解方程组
2(x y) 3(x y) 30,① 2(x y) 3(x y) 6. ②
(1) 3x 2y 8,
①
6x 5y 47;
②
解:①×2得 6x + 4y = 16.③
③ y = 7 代入①得 3x + 2×7 = 8,
解得
x = -2.
因此原方程组的解是
x
-2
,
y
7.
巩固练习
(2) 2x 5y 24, ①
5x 2y 31.
3.代入法、加减法的基本思想是什么? 消去一个未知数(简称为消元),得到一个一元一次方程, 然后解这个一元一次方程.
4.我们在解二元一次方程组时,该选取何种方法呢?
复习回顾
加减消元法的主要步骤. (1) 变形 使同一个未知数的系数相同或互为相反数 (2) 加减 消去一个元 (3) 求解 求出两个未知数的值 (4) 写解 写出方程组的解
新知探究
例 6 解二元一次方程: 3x+4y=8, ①
4x+3y=﹣1. ②
代入消元法
解:由①式可得 x 8-4 y . 3
③
于是可以把③代入②式,得
(5 8-4 y )-3 y 1 ,
3
解得
y=5.
将y=5代入③式 ,得 因此原方程组的解是
x=﹣4, y=5.
x=﹣4.
新知探究