含参变量正常积分
- 格式:ppt
- 大小:627.51 KB
- 文档页数:29
387第十三讲 含参量积分§13.1 含参量正常积分一、知识结构 1、含参积分 定义含参积分 ⎰=dcdy y x f x I ),()(和⎰=)()(),()(x d x c dy y x f x F .含参积分提供了表达函数的又一手段 .我们称由含参积分表达的函数为含参积分. (1)含参积分的连续性 定理1 若函数),(y x f 在区域] , [ ] , [d c b a D ⨯=上连续, 则函数⎰=dcdy y x f x I ),()(在] , [b a 上连续.定理2 若函数),(y x f 在矩形域{}b x a x d y x c y x D ≤≤≤≤=),()( ),(上连续, 函数)(x c 和)(x d 在] , [b a 上连续,则函数⎰=)()(),()(x d x c dy y x f x F 在] , [b a 上连续.(2)含参积分的可微性定理3 若函数),(y x f 及其偏导数x f 都在矩形域] , [ ] , [d c b a D ⨯=上连续, 则函数⎰=dcdy y x f x I ),()(在] , [b a 上可导, 且⎰⎰=dcdcx dy y x f dy y x f dxd ),(),(.即积分和求导次序可换.定理4 设函数),(y x f 及其偏导数x f 都在矩形域] , [ ] , [q p b a D ⨯=上连续, 函数)(x c 和)(x d 定义在] , [b a 上其值域含于] , [q p 上的可微函数, 则函数⎰=)()(),()(x d x c dy y x f x F 在] , [b a 上可微, 且 ()())()(,)()(,),()()()(x c x c x f x d x d x f dy y x f x F x d x c x '-'+='⎰.(3) 含参积分的可积性定理5 若函数),(y x f 在区域] , [ ] , [d c b a D ⨯=上连续, 则函数388⎰=dcdy y x f x I ),()(和⎰=badx y x f y J ),()(分别在] , [b a 上和] , [ d c 上可积.定理6 若函数),(y x f 在区域] , [ ] , [d c b a D ⨯=上连续, 则⎰⎰⎰⎰=badcdcbadx y x f dy dy y x f dx ),(),(.即在连续的情况下累次积分可交换求积分的次序. 二、解证题方法例1 求⎰+→++αααα122.1limx dx例2 计算积分 dx xx I ⎰++=121)1ln(.例3 设函数)(x f 在点0=x 的某邻域内连续. 验证当||x 充分小时, 函数⎰---=xn dt t f t x n x 01)()()!1(1)(φ的1-n 阶导数存在, 且 )()()(x f x n =φ.§13.2 含参量反常积分一、知识结构 1、含参无穷积分含参无穷积分: 函数),(y x f 定义在) , [] , [∞+⨯c b a 上 (] , [b a 可以是无穷区间) .以⎰+∞=cdy y x f x I ),()(为例介绍含参无穷积分表示的函数)(x I .2. 含参无穷积分的一致收敛性逐点收敛(或称点态收敛)的定义:∈∀x ] , [b a ,c M >∃>∀ , 0ε,使得ε<⎰+∞Mdy y x f ),(.定义 1 (一致收敛性)设函数),(y x f 在) , [] , [∞+⨯c b a 上有定义.若对389c N >∃>∀ , 0ε, 使得当N M >,∈∀x ] , [b a 都有ε<-⎰Mcx I dy y x f )(),(即ε<⎰+∞Mdy y x f ),( 成立, 则称含参无穷积分⎰+∞cdy y x f ),(在] , [b a 上(关于x )一致收敛.定理1(Cauchy 收敛准则) 积分⎰+∞=cdy y x f x I ),()(在] , [b a 上一致收敛⇔,0>∀εM A A M >∀>∃21, , 0 , ∈∀x ] , [b a⇒ε<⎰21),(A A dy y x f 成立 .3、含参无穷积分与函数项级数的关系 定理2 积分⎰+∞=c dy y x f x I ),()(在] , [b a 上一致收敛⇔对任一数列}{n A )(1c A =,n A ↗∞+, 函数项级数∑⎰∑∞=∞=+=111)(),(n A A n nn nx udy y x f 在] , [b a 上一致收敛.4、含参无穷积分一致收敛判别法定理3(Weierstrass M 判别法)设有函数)(y g ,使得在) , [] , [∞+⨯c b a 上有)(|),(|y g y x f ≤.若积分∞+<⎰+∞)( cdy y g , 则积分⎰+∞cdy y x f ),(在] , [b a 一致收敛.定理4(Dirichlet 判别法) 设⑴对一切实数,c N >含参量积分⎰Ncdy y x f ),(对参量x在] , [b a 上一致有界; ⑵对每个x ∈] , [b a ,函数),(y x g 关于y 是单调递减且当+∞→y 时,对参量x ,),(y x g 一致地收敛于0,则含参量反常积分⎰+∞),(),(dy y x g y x f 在] , [b a 上一致收敛.定理5(Abel 判别法) 设⑴含参量积分⎰+∞cdy y x f ),(在] , [b a 上一致收敛; ⑵对每个x ∈] , [b a ,函数),(y x g 为y 的单调函数且对参量x ,),(y x g 在] , [b a 上一致有界,则含390参量反常积分⎰+∞),(),(dy y x g y x f 在] , [b a 上一致收敛.5、含参无穷积分的解析性质含参无穷积分的解析性质实指由其所表达的函数的解析性质. (1)连续性定理6 设函数),(y x f 在) , [] , [∞+⨯c b a 上连续.若积分⎰+∞=cdy y x f x I ),()(在] , [b a 上一致收敛, 则函数)(x I 在] , [b a 上连续. (化为级数进行证明或直接证明)推论 在定理6的条件下, 对∈∀0x ] , [b a , 有 ⎰⎰⎰∞+∞+∞+→→⎪⎭⎫ ⎝⎛==cccx x x x dy y x f dy y x f dy y x f .),(lim ),(),(lim000 (2)可微性定理7 设函数f 和x f 在) , [] , [∞+⨯c b a 上连续.若积分⎰+∞=cdy y x f x I ),()(在] , [b a 上收敛,积分⎰+∞cx dy y x f ),(在] , [b a 一致收敛.则函数)(x I 在] , [b a 上可微,且⎰+∞='cx dy y x f x I ),()(.(3)可积性定理8 设函数),(y x f 在) , [] , [∞+⨯c b a 上连续.若积分⎰+∞=cdy y x f x I ),()(在] , [b a 上一致收敛, 则函数)(x I 在] , [b a 上可积, 且有⎰⎰⎰⎰+∞+∞=baccbady y x f dy dy y x f dx ),(),(.定理9 设函数),(y x f 在) , []) , [∞+⨯∞+c a 上连续.若⑴⎰+∞adx y x f ),(关于y 在任何闭区间] , [d c 上一致收敛,⎰+∞cdy y x f ),(在任何闭区间] , [b a 上一致收敛;⑵积分⎰⎰+∞+∞acdy y x f dx ),(与⎰⎰+∞+∞cadx y x f dy ),(中有一个收敛,则另一个也收敛,且391⎰⎰⎰⎰+∞+∞+∞+∞=accady y x f dy dy y x f dx ),(),(.6、含参瑕积分简介(略)二、解证题方法例1 证明含参量非正常积分⎰+∞sin dy yxy 在) , [∞+δ上一致收敛,其中0>δ.但在区间) , 0 (∞+内非一致收敛.例2 证明含参无穷积分⎰∞++021cos dx xxy 在+∞<<∞-y 内一致收敛.例3 证明含参量反常积分⎰+∞-0sin dx xx exy在] , 0 [d 上一致收敛.例4 证明:若函数),(y x f 在) , [] , [∞+⨯c b a 上连续,又⎰+∞cdy y x f ),(在) , [b a 上收敛,但在b x =处发散,则⎰+∞cdy y x f ),(在) , [b a 上不一致收敛.例5 计算积分⎰+∞->>-=) , 0 ( , sin sin a b p dx xaxbx eI px例6 计算积分.sin 0dx xax ⎰+∞例7 计算积分⎰+∞-=0.cos )(2rxdx er xϕ例8(北京理工大学2008年)请分别用两种不同方法求()dx xx xI cos 1cos 1lncos 12αααπ-+⋅=⎰,1<α。
含参量积分的分析性质及其应用班级:11数学与应用数学一班成绩:日期: 2012年11月5日含参量积分的分析性质及其应用1. 含参量正常积分的分析性质及应用1。
1含参量正常积分的连续性定理1 若二元函数),(y x f 在矩形区域],[],[d c b a R ⨯=上连续,则函数()x ϕ=⎰dcdy y x f ),(在[a,b]上连续.例1 设)sgn(),(y x y x f -=(这个函数在x=y 时不连续),试证由含量积分⎰=1),()(dx y x f y F 所确定的函数在),(-∞+∞ 上连续.解 因为10≤≤x ,所以当y<0时,x —y>0,则sgn (x —y )=1,即f (x ,y)=1.-1,x<y 则⎰==101)(dx y F .当10≤≤y 时, f (x ,y)= 0,x=y ,1,x 〉y则⎰⎰-=+-=yyy dx dx y F 01.21)1()(1, y 〈0当y 〉1时, f (x,y)=-1,则⎰-=-=101)1()(dx y F ,即F (x)= 1-2y ,0≤y<0—1 y>1又因).1(1)(lim ),0(1lim 1F y F F y y =-===→→F(y )在y=0与y=1处均连续,因而F(y )在),(+∞-∞上连续。
例2 求下列极限:(1)dx a x ⎰-→+11220limα; (2)⎰→220cos lim xdx x αα.解 (1)因为二元函数22α+x 在矩形域R=[-1,1]⨯[—1.1]上连续,则由连续性定理得dx a x ⎰-+1122在[-1,1]上连续.则⎰⎰⎰--→-→==+=+1122110112201lim lim dx x dx a x dx a x αα。
(2)因为二元函数ax x cos 2在矩形域]2,2[]2,0[ππ-⨯=R 上连续,由连续性定理得,函数⎰202cos axdx x 在]2,2[ππ-上连续.则.38cos lim 2020220==⎰⎰→dx x axdx x α例3 研究函数=)(x F dx y x x yf ⎰+122)(的连续性,其中f (x )在闭区间[0,1]上是正的连续函数。
第十讲含参变量的积分10 . 1 含参变量积分的基本概念含参量积分共分两类:一类是含参量的正常积分;一类是含参量的广义积分. 一、含参量的正常积分 1 .定义设()y x f ,定义在平面区域[][]d c b a D ,,⨯=上的二元函数,对任意取定的[]b a x ,∈.()y x f ,关于 y 在[]d c ,上都可积,则称函数()()[]b a x dy y x f x I dc,,,∈=⎰为含参量二的正常积分.一般地,若 ()()(){}b x a x d y x c y x D ≤≤≤≤=,|, ,也称()()()()[]b a x dy y x f x I x d x c ,,,∈=⎰为含参量x 的正常积分.同样可定义含参量 y 的积分为()()[]d c y dx y x f y J ba,,,∈=⎰或()()()()[]d c y dx y x f y J y b y a ,,,∈=⎰2 .性质(以 I ( x )为例叙述)( l )连续性:若 ()y x f ,必在 D 上连续,()x c ,()x d 在[]b a ,连续,则 ()x I 在[]b a ,连续,即对[]b a x ,0∈∀,()()()()⎰=→000,lim 0x d x c x x dy y x f x I( 2 )可积性:若()y x f ,在 D 上连续,()x c ,()x d 在[]b a ,连续,则 ()x I 在[]b a ,可积.且有()()()⎰⎰⎰⎰⎰==bab ad cbadcdx y x f dy dy y x f dx dx x I ,,(若 D 为矩形区域, ·( 3 )可微性:若 ()y x f ,的偏导数()y x f x ,在 D 上连续,()x c ,()x d 在[]b a ,可导,则()x I 在 []b a ,可导,且()()()()()()()()()()x c x c x f x d x d x f dy y x f x I x d xc x''',,,-+=⎰·以上性质的证明见参考文献[ 1 ] ,这里从略,例10. l 求积分⎰>>-⎪⎭⎫ ⎝⎛10,ln 1ln sin a b dx xxx x ab 解法 1 (用对参量的微分法):设()⎰>>-⎪⎭⎫ ⎝⎛=100,ln 1ln sin a b dx x xx x b I ab ,()()()()()()()b I b b dx x x x x b x d x b dx x x b x b x b x d x dxx x b I b b b b b b b '221010121102101010111'11111ln sin |1ln cos 111ln cos 111ln cos 11|1ln sin 111ln sin 1ln sin +-+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=⎰⎰⎰⎰⎰++++所以()()()()()⎰++=++=⇒++=C b db b b I b b I 1arctan11111122',令a b =,则 ()()()1arctan 1arctan0+-=⇒++==a C C a a I 所以原积分()()()1arctan 1arctan+-+==a b b I I 解法 2 : (交换积分顺序方法)因为xx x dy x ab bayln -=⎰,所以⎰⎰⎰⎰⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=10101ln sin 1ln sin b a y b a y dx x x dy dy x x dx I同解法()⎰++=⎪⎭⎫ ⎝⎛1021111ln sin y dx x x y,所以有 ()()()⎰+-+=++=baa b dy y I 1arctan 1arctan1112注:在以上解题过程中,需要验证对参量积分求导和交换积分顺序的条件,为简洁省略了,但按要求是不能省的. 例10.2 设()()()dz z f yz x y x F xyyx ⎰-=,,其中f 为可微函数,求()y x F xy,·解:()()()()()()()()()()()()()()()()()()()xy f y y x y x f y x xy f xy x xy f y y x xy f y x x y f y x xy xf F xy f y yx dz z f xy f xy x y dz z f y x f x x y xy f xy x y dz z f F xy xyyx xyyx xyy x x '2222'222222213213111-+⎪⎪⎭⎫ ⎝⎛+-=-+-+⎪⎭⎫⎝⎛+=-+=-+=⎪⎪⎭⎫⎝⎛---+=⎰⎰⎰二、含参量的广义积分含参量的广义积分包括两类:含参量的无穷积分和含参量的瑕积分 (一)含参量的无穷积分1 .定义:设 ()y x f ,定义在[][)+∞⨯=,,c b a D 上,对每个取定的[]b a x ,∈,积分 ,()()[]⎰+∞∈=cb a x dy y x f x I ,,,都收敛(也叫逐点收敛),它是一个定义在[]b a ,上的函数,称该积分为含参量x 的无穷积分 同样可以定义 ()()[]⎰+∞∈=ad c y dx y x f y J ,,,2 .一致收敛若对c M >∃>∀,0ε,当 A > M 时,对一切[]b a x ,∈,恒有()()()εε<<-⎰⎰+∞AA cdy y x f dy y x f x I ,,或则称含参量积分在[]b a ,上一致收敛.注:非一致收敛定义:若00>∃ε,使得c M >∀,总存在M A >0,及存在[]b a x ,0∈,,使得()()()000000,,εε<<-⎰⎰+∞A A cdy y x f dy y x f x I 或3 .一致收敛的柯西准则含参量积分( l )在[]b a ,上一致收敛⇔对 c M >∃>∀,0ε,当 M A A >>12时,对一切[]b a x ,∈,都有()ε<⎰21,A A dy y x f注:非一致收敛的柯西准则:含参量积分( 1 )在[]b a ,上非一致收敛c M >∀>∃⇔,00ε存在M A A >>12,及存在[]b a x ,0∈,使得()0021,ε<⎰A A dy y x f4.一致收敛判别法( I ) M 判别法:若()()()D y x y g y x f ∈∀≤,,,而()⎰+∞cdy y g 收敛,则()⎰+∞cdy y x f ,在[]b a ,上一致收敛(同时也绝对收敛) .( 2 )阿贝尔判别法: ①()⎰+∞cdy y x f ,在[]b a ,上一致收敛; ② 对每一个[]b a x ,∈,()y x g ,关于y 单调,月关于x 一致有界,则积分()()⎰+∞cdy y x g y x f ,,在[]b a ,上一致收敛.( 3 )狄利克雷判别法: ①()[]()c A b a x M dyy x f Ac>∀∈∀≤⎰,,,(即一致有一界);② 对每一个[]()y x g b a x ,,,∈必关于 y 单调,且当 +∞→y 时()y x g ,对x 一致趋于零,则积分()()⎰+∞cdy y x g y x f ,,在[]b a ,上一致收敛 ·例 10 . 3 讨沦下列积分的一致收敛性: (1)()⎰∞++-122222dx y xx y 在()+∞∞-,;(2)[)⎰+∞-+∞∈0,0,sin y dx xxe xy 解: ( 1 )因为()()()()+∞∞-∈∀≤+=++≤+-,112222222222222y xy x y xy x y xx y ,而积分 ⎰+∞121dx x 收敛,由M 发,()⎰∞++-122222dx yx x y 在()+∞∞-,一致收敛 ·( 2 )因为⎰+∞sin dx xx收敛,且与y 无关,故关于y 一致收敛,而xy e -对固定的y 关于x 在[)+∞,1上单调减,且1≤-xye ,对()()()+∞⨯+∞∈∀,0,0,y x .由阿贝尔判别法知,积分⎰+∞-0sin dx xxe xy在()+∞∈,0y 上一致收敛. 5 .分析性质( l )连续性:若满足:① ()y x f ,在[][)+∞⨯=,,c b a D 上连续; ② ()()[]⎰+∞∈=cb a x dy y x f x I ,,,一致收敛;则()x I 在[]b a ,上连续,即()()()dy y x f x I x I cx x ⎰+∞→==,lim 000·( 2 )可积性:参量 []b a x ,∈若满足: ①()y x f ,在[][)+∞⨯=,,c b a D 上连续; ② ()()[]⎰+∞∈=cb a x dy y x f x I ,,,一致收敛;则()x I 在[]b a ,上可积,即()()()⎰⎰⎰⎰⎰+∞+∞==babaccb adx y x f dy dy y x f dx dx x I ,,参量[)+∞∈,a x ,若满足:① ()y x f ,在 [)[)+∞⨯+∞=,,c a D 上连续; ②()[]()c d d c y dy y x f a>∀∈⎰+∞,,,和()[]()a b b a x dy y x f c>∀∈⎰+∞,,,都一致收敛;③ 积分()⎰⎰+∞+∞acdy y x f dx ,与()⎰⎰+∞+∞cadx y x f dx ,收敛;则()x I 在[]b a ,上收敛,且()()dx y x f dy dy y x f dx acca⎰⎰⎰⎰+∞+∞+∞+∞=,,( 3 )可微性:若满足:①()y x f ,和()y x f x ,在 [][)+∞⨯=,,c b a D 上连续; ② ()()[]b a x dy y x f x I c,,,∈=⎰+∞收敛;③()[]b a x dy y x f cx ,,,∈⎰+∞一致收敛;则()x I 在[]b a ,上可微,且()()[]b a x dy y x f x I cx ,,,'∈=⎰+∞注: ( 1 )在定理的条件下,必可导出 ② 也是一致收敛的. ( 2 )定理的条件都是充分而非必要的. 6 .狄尼( Dini )定理若()y x f ,在 [][)+∞⨯=,,c b a D 连续且非负,则()()dy y x f x I c⎰+∞=,在[]b a ,上连续()x I 在[]b a ,上一致收敛.证明:充分性是显然的,下证必要性. (反证法)假设()()[]b a x dy y x f x I c,,,∈=⎰+∞不一致收敛,由定义,00>∃ε,对cM >∀总存在[]b a x M A ,,00∈∃>,使得()()0000,ε≥-⎰A cdy y x f x I .特别地,取 M 大于c 的自然数n ·则分别存在 []b a x n A n n ,,∈> ,使得()()0,ε≥-⎰nA cn n dy y x f x I · 注意到f 非负,可写作()()0,ε≥-⎰nA cn n dy y x f x I .由于{}[]b a x n ,⊂有界,记为{}(),...2,1=k x n ,则[]b a x x nk k ,lim 0∈=∞→,不妨设......21<<<<nk n n A A A ,再注意到 f 非负,因此有()()()()⎰⎰≥-≥-10,,n nkA cA cnk nk nk nk dy y x f x I dy y x f x I ε (*)由已知条件,对固定的1n A ,函数()()()⎰-=1,n A cdy y x f x I x F 在[]b a ,上连续,对(*)令∞→k 取极限得()()()00001,ε≥-=⎰dy y x f x I x F n A c.此与()x I 的定义(即逐点收敛)矛盾,即()()[]⎰+∞∈=cb a x dy y x f x I ,,,一致收敛 ·(二)含参量的瑕积分 1 .定义设()y x f ,在区域[](]d c b a D ,,⨯=上有定义,对取定的[]c y b a x =∈,,为函数 f 的瑕点, 若积分()()[]⎰∈=dcb a x dy y x f x I ,,,收敛,它是一个定义在[]b a ,上的函数,称其为含参量x 的瑕积分.2 一致收敛对c d -<<∃>∀δδε0:,0,当δη<<0时,恒有()εη<⎰+c cdy y x f ,,对一切[]b a x ,∈成立,称()()dy y x f x I dc⎰=,在[]b a ,上一致收敛.3.M 判别法设 g ( y )为定义在( c , d ]上以 c y =瑕点的非负函数.且()()[]()b a x y g y x f ,,∈∀≤ ,而()dy y g d c⎰收敛,则()()[]b a x dy y x f x I dc,,,∈=⎰必一致收敛其余的可仿照含参量无穷积分的相关内容平行推得,当然也可以将它转化为无穷积分进 行讨论,这里不再赘述.。