第5章聚类分析.复习过程
- 格式:ppt
- 大小:3.18 MB
- 文档页数:43
第五章聚类剖析5.1鉴别剖析和聚类剖析有何差别?答:即依据必定的鉴别准则,判断一个样本归属于哪一类。
详细而言,设有n 个样本,对每个样本测得p 项指标(变量)的数据,已知每个样本属于k 个类型(或整体)中的某一类,经过找出一个最优的区分,使得不一样类其余样本尽可能地域别开,并鉴别该样本属于哪个整体。
聚类剖析是剖析怎样对样品(或变量)进行量化分类的问题。
在聚类以前,我们其实不知道整体,而是经过一次次的聚类,使邻近的样品(或变量)聚合形成整体。
平常来讲,鉴别剖析是在已知有多少类及是什么类的状况下进行分类,而聚类剖析是在不知道类的状况下进行分类。
5.2试述系统聚类的基本思想。
答:系统聚类的基本思想是:距离邻近的样品(或变量)先聚成类,距离相远的后聚成类,过程向来进行下去,每个样品(或变量)总能聚到适合的类中。
5.3对样品和变量进行聚类剖析时,所结构的统计量分别是什么?简要说明为何这样结构?答:对样品进行聚类剖析时,用距离来测定样品之间的相像程度。
由于我们把n 个样本看作 p 维空间的 n 个点。
点之间的距离即可代表样品间的相像度。
常用的距离为pq)1/ q(一)闵可夫斯基距离: d ij (q) ( X ik X jkk 1q取不一样值,分为( 1)绝对距离(( 2)欧氏距离(q 1)q 2 )( 3)切比雪夫距离( q) (二)马氏距离(三)兰氏距离对变量的相像性, 我们更多地要认识变量的变化趋向或变化方向, 所以用有关性进行权衡。
将变量看作 p 维空间的向量,一般用(一)夹角余弦(二)有关系数5.4 在进行系统聚类时,不一样类间距离计算方法有何差别?选择距离公式应按照哪些原则?答: 设 d ij 表示样品 X i 与 X j 之间距离,用 D ij 表示类 G i 与 G j 之间的距离。
( 1) . 最短距离法( 2)最长距离法( 3)中间距离法D kr 21D kp21D kq 2D pq 22 2此中(4)重心法(5)类均匀法(6)可变类均匀法D kr2 (1 )( np D kp2nq D kq2 )D pq2 n r? <1n r此中 ?是可变的且( 7)可变法D kr21(D kp2 D kq2 )D pq2 此中 ?是可变的且 ? <12(8)离差平方和法往常选择距离公式应注意按照以下的基根源则:(1)要考虑所选择的距离公式在实质应用中有明确的意义。
第五讲聚类分析聚类分析是一种无监督学习方法,旨在将样本数据划分为具有相似特征的若干个簇。
它通过测量样本之间的相似性和距离来确定簇的划分,并试图让同一簇内的样本点相似度较高,而不同簇之间的样本点相似度较低。
聚类分析在数据挖掘、模式识别、生物信息学等领域有着广泛的应用,它可以帮助我们发现隐藏在数据中的模式和规律。
在实际应用中,聚类分析主要包含以下几个步骤:1.选择合适的距离度量方法:距离度量方法是聚类分析的关键,它决定了如何计算样本之间的相似性或距离。
常用的距离度量方法包括欧氏距离、曼哈顿距离、切比雪夫距离等。
2.选择合适的聚类算法:聚类算法的选择要根据具体的问题和数据特点来确定。
常见的聚类算法有K-means算法、层次聚类算法、DBSCAN算法等。
3.初始化聚类中心:对于K-means算法等需要指定聚类中心的方法,需要初始化聚类中心。
初始化可以随机选择样本作为聚类中心,也可以根据领域知识或算法特点选择合适的样本。
4.计算样本之间的相似度或距离:根据选择的距离度量方法,计算样本之间的相似度或距离。
相似度越高或距离越小的样本越有可能属于同一个簇。
5.按照相似度或距离将样本划分为不同的簇:根据计算得到的相似度或距离,将样本划分为不同的簇。
常用的划分方法有硬聚类和软聚类两种。
硬聚类将样本严格地分到不同的簇中,而软聚类允许样本同时属于不同的簇,并给出属于每个簇的概率。
6.更新聚类中心:在K-means等迭代聚类算法中,需要不断迭代更新聚类中心,以找到最优划分。
更新聚类中心的方法有多种,常用的方法是将每个簇内的样本的均值作为新的聚类中心。
7.评估聚类结果:通过评估聚类结果的好坏,可以判断聚类算法的性能。
常用的评估指标有轮廓系数、Dunn指数、DB指数等。
聚类分析的目标是让同一簇内的样本点尽量相似,而不同簇之间的样本点尽量不相似。
因此,聚类分析常常可以帮助我们发现数据中的分组结构,挖掘出数据的内在规律。
聚类分析在市场细分、社交网络分析、基因表达数据分析等领域都有广泛的应用。
例:有一混合样本集,如下图所示,试用ISODATA 进行聚类分析。
解:如下图所示,样本数目8=n ,取类型数目初始值1=c ,执行ISODATA 算法:⑴ 给定参数(可以通过迭代过程修正这些参数):4,0,4,1,2,2======I L K c s n θθθ预选1x 为聚合中心,即:TZ )0,0(1=。
令1=J ,迭代次数。
⑵ 聚类:因只有一个聚合中心TZ )0,0(1=,故},..,,{:82111x x x X w =,81=n 。
⑶ 因n n θ>=81,没有子集抛弃。
⑷ 计算新聚合中心:∑∈=1811X x x Z T )75.2,38.3()858621,8610821(=++++++++=⑸ 计算类内平均距离:∑∈-=1||||1111X x Z x n D ++++++++=22222222)82()85()86()811()814()819()822()827([8122222222)818()821()810()813()810()85()82()813(+++++++26.2=⑹ 计算类内总平均距离:26.21==D D 。
⑺ 不是最后一次迭代,且2kc =转⑻⑻ 计算聚合1X 中的标准偏差1σ:T ),(12111σσσ=∑∈-=j X x ji J Z x 2111))((81σ])8276()8275()8274()8275()8274()8272()8271()8270[(8122222222-+-+-+-+-+-+-+-=56.1])818()810()810()822()82()86()814()822[(812222222212=+++++++=σ T )56.1,99.1(1=σ⑼ 1σ中的最大偏差分量为99.111=σ,即99.1max 1=σ。
⑽ 因为s θσ>max 1,且2K c =。
所以把聚合分裂成两个子集,5.0=K ,则:T r )0,1(1=,故新的聚合中心分别为:T Z )75.2,38.4(1=+,T Z )75.2,38.2(1=-为方便起见,+1Z 和-1Z 改写为1Z 和2Z ,令1+=c c ,21=+=J J ,返回到⑵。
第一章:多元统计分析研究的容(5点)1、简化数据结构(主成分分析)2、分类与判别(聚类分析、判别分析)3、变量间的相互关系(典型相关分析、多元回归分析)4、多维数据的统计推断5、多元统计分析的理论基础第二三章:二、多维随机变量的数字特征1、随机向量的数字特征随机向量X 均值向量:随机向量X 与Y 的协方差矩阵: 当X=Y 时Cov (X ,Y )=D (X );当Cov (X ,Y )=0 ,称X ,Y 不相关。
随机向量X 与Y 的相关系数矩阵:2、均值向量协方差矩阵的性质(1).设X ,Y 为随机向量,A ,B 为常数矩阵E (AX )=AE (X );E (AXB )=AE (X )B;D(AX)=AD(X)A ’;Cov(AX,BY)=ACov(X,Y)B ’;)',...,,(),,,(2121P p EX EX EX EX μμμ='= )')((),cov(EY Y EX X E Y X --=q p ij r Y X ⨯=)(),(ρ(2).若X ,Y 独立,则Cov(X,Y)=0,反之不成立.(3).X 的协方差阵D(X)是对称非负定矩阵。
例2.见黑板三、多元正态分布的参数估计2、多元正态分布的性质(1).若 ,则E(X)= ,D(X)= .特别地,当 为对角阵时, 相互独立。
(2).若 ,A为sxp 阶常数矩阵,d 为s 阶向量,AX+d ~ . 即正态分布的线性函数仍是正态分布. (3).多元正态分布的边缘分布是正态分布,反之不成立.(4).多元正态分布的不相关与独立等价.例3.见黑板.三、多元正态分布的参数估计(1)“ 为来自p 元总体X 的(简单)样本”的理解---独立同截面. (2)多元分布样本的数字特征---常见多元统计量样本均值向量 =样本离差阵S= 样本协方差阵V= S ;样本相关阵R(3) ,V分别是 和 的最大似然估计; (4)估计的性质 是 的无偏估计; ,V分别是 和 的有效和一致估计; ; S~ , 与S相互独立; 第五章 聚类分析:一、什么是聚类分析 :聚类分析是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。
2.ISODATA聚类算法ISODATA算法:Iterative Self-Organizing Data Analysis Technigues Algorithm,迭代自组织的数据分析算法。
ISODATA算法特点:可以通过类的自动合并(两类合一)与分裂(一类分为二),得到较合理的类型数目c。
具体算法步骤:⑴给定控制参数K:预期的聚类中心数目。
nθ:每一聚类中最少的样本数目,如果少于此数就不能作为一个独立的聚类。
sθ:一个聚类域中样本距离分布的标准差(阈值)。
cθ:两个聚类中心之间的最小距离,如果小于此数,两个聚类合并。
L:每次迭代允许合并的最大聚类对数目。
I:允许的最多迭代次数。
给定n个混合样本,令1=J(迭代次数),预选c个起始聚合中心,) (J Zj ,cj,...,2,1=。
⑵计算每个样本与聚合中心距离:))(,(JZxDjk。
若:},...,2,1)),(,({min))(,(,...,2,1nkJZxDJZxDjkcjjk===,则:ikwx∈。
把全部样本划分到c个聚合中去,且jn表示各子集j X中的样本数目。
⑶判断:若njnθ<,cj,...,2,1=则舍去子集j X,1-=cc,返回②。
⑷计算修改聚合中心:∑==jnkjkjjxnJZ1)(1)(,cj,...,2,1=。
⑸计算类内距离平均值jD:∑==jn k j j k jj J Z x D n D 1)())(,(1,c j ,...,2,1= ⑹ 计算类内总平均距离(全部样本对其相应聚类中心的总平均距离):∑=⋅=cj j j D n n D 11 ⑺ 判别分裂、合并及迭代运算等步骤。
(a )如迭代运算次数已达I 次,即最后一次迭代,置0=c θ,跳到⑾,运算结束。
(b )如2K c ≤,即聚类中心的数目等于或不到规定值的一半,则转⑻,将已有的聚类分裂。
(c )如迭代运算的次数是偶数,或K c 2≥,则不进行分裂,跳到⑾,若不符合上述两个条件,则进入⑻,进行分裂处理。
聚类分析步骤以教材第五章习题8的数据为例,演示并说明聚类分析的详细步骤:原始数据的输入:丈件(D 霸甸〔口锻国(蜀散惭直I 转快(D 分折(幻圈解〔⑤ 密坏賤序〔史Mt加内容(Q)SUM 帮肋S暗事?* ™ S?鮒*ffl ft韶亟蔚粤箱「专.选项操作:1. 打开SPSS的“分析”-“分类”-“系统聚类”,打开“系统聚类”对话框。
把“食品”、“衣着”等6变量输入待分析变量框;把“地区”输入“标注个案”;“分群”选中“个案”;“输出”选中“统计量”和“图”。
(如下图)相关说明:(1) 系统聚类法是最常用的方法,其他的方法较少使用。
(2) “标注个案”里输入“地区”,在输出结果的距离方阵和聚类树状图里会显示出“北京”、“天津”等,否则SPSS自动用“ 1”、“2”等代替。
(3) “分群”选中“个案”,也就是对北京等16个样本进行分类,而不是对食品等6个变量分类。
(4) 必须选中“输出”中的“统计量”和“图”。
在该例中会输出16个地区的欧氏距离方阵和聚类树状图。
密Ife鸟駝£臭* I必炮区H-qI 1E曲前 -------------输出v熨计養y岡2. 设置分析的统计量打开最右上角的“统计量”对话框,选中“合并进程表”和“相似性矩阵” “聚类成员”选中“无”。
然后点击“继续”。
打开第二个“绘制”对话框,必须选中“树状图”,其他的默认即可打开第三个对话框“方法”:聚类方法选中“最邻近元素”;“度量标准” 选中“区间”的“欧氏距离”;“转换值”选中“标准化”的“ Z 得分”,并且是“按照变量”。
+区町(LD : E uclidean 肚屈7" T计徹D ; 卡方度豪▼二鼻細^?TEuclicteeri■|i |g |打开第四个对话框“保存”,“聚类成员”选默认的“无”即可 三•分析结果的解读:按照SPSS 俞出结果的先后顺序逐个介绍:1. 欧氏距离矩阵:是16个地区两两之间欧氏距离大小的方阵, 该方阵是应用各 种聚类方法进行聚类的基础。
第五章 聚类分析5.1 判别分析和聚类分析有何区别?答:即根据一定的判别准则,判定一个样本归属于哪一类。
具体而言,设有n 个样本,对每个样本测得p 项指标(变量)的数据,已知每个样本属于k 个类别(或总体)中的某一类,通过找出一个最优的划分,使得不同类别的样本尽可能地区别开,并判别该样本属于哪个总体。
聚类分析是分析如何对样品(或变量)进行量化分类的问题。
在聚类之前,我们并不知道总体,而是通过一次次的聚类,使相近的样品(或变量)聚合形成总体。
通俗来讲,判别分析是在已知有多少类及是什么类的情况下进行分类,而聚类分析是在不知道类的情况下进行分类。
5.2 试述系统聚类的基本思想。
答:系统聚类的基本思想是:距离相近的样品(或变量)先聚成类,距离相远的后聚成类,过程一直进行下去,每个样品(或变量)总能聚到合适的类中。
5.3 对样品和变量进行聚类分析时, 所构造的统计量分别是什么?简要说明为什么这样构造?答:对样品进行聚类分析时,用距离来测定样品之间的相似程度。
因为我们把n 个样本看作p 维空间的n 个点。
点之间的距离即可代表样品间的相似度。
常用的距离为 (一)闵可夫斯基距离:1/1()()pq qij ik jk k d q X X ==-∑q 取不同值,分为 (1)绝对距离(1q =)1(1)pij ik jk k d X X ==-∑(2)欧氏距离(2q =)21/21(2)()pij ik jk k d X X ==-∑(3)切比雪夫距离(q =∞)1()max ij ik jkk pd X X ≤≤∞=-(二)马氏距离(三)兰氏距离对变量的相似性,我们更多地要了解变量的变化趋势或变化方向,因此用相关性进行衡量。
21()()()ij i j i j d M -'=--X X ΣX X 11()p ik jkij k ik jk X X d L p X X =-=+∑将变量看作p 维空间的向量,一般用(一)夹角余弦(二)相关系数5.4 在进行系统聚类时,不同类间距离计算方法有何区别?选择距离公式应遵循哪些原则?答: 设d ij 表示样品X i 与X j 之间距离,用D ij 表示类G i 与G j 之间的距离。
多元数据分析练习题第二章多元正态的参数估计一. 判断题(1)若∑∑=),,(~),,,(21μp T p N X X X X 是对角矩阵,则p X X X ,,,21 相互独立。
( )(2)多元正态分布的任何边缘分布为正态分布,反之也成立。
( )(3)对任意的随机向量T p X X X X ),,,(21 =来说,其协方差矩阵∑是对称矩阵,并且总是半正定的。
( )(4)对标准化的随机向量来说,它的协方差矩阵与原来变量的相关系数阵相同。
( ) (5)若),,(~),,,(21∑=μp T p N X X X X S X ,分别为样本均值和样本协差阵,则S nX 1,分别为∑,μ的无偏估计。
( ) 二.计算题1. 假设随机向量TX X X X ),,(321=的协方差矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=∑9232443416,试求相关系数矩阵R 。
⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----=131413112141211R 2. 假设随机向量Tx x x ),(21=的协方差矩阵为⎥⎦⎤⎢⎣⎡=∑20119,令212211,2x x y x x y -=+=,试求T y y y ),(21=的协方差矩阵。
⎥⎦⎤⎢⎣⎡--=∑2733603.假设⎥⎦⎤⎢⎣⎡---=∑5.005.05.015.0),,(~3A N X μ,其中T)1,2,1(-=μ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=∑411121112,试求Ax y =的分布。
)2224,02(2⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-N 三.证明题1.设)()2()1(,,,n X X X 是来自),(∑μp N 的随机样本,X 为样本均值。
试证明:μ=)(X E ,∑=nX D 1)(。
2.设)()2()1(,,,n X X X 是来自),(∑μp N 的随机样本,S n 11-为样本协差阵。
试证明:∑=-)11(S n E 。
3.证明:若p 维正态随机向量),,,(21'=p X X X X 的协差阵为对角矩阵,则X 的各分量是相互独立的随机变量。