第五章聚类分析
- 格式:ppt
- 大小:2.38 MB
- 文档页数:84
1聚类分析内涵1.1聚类分析定义聚类分析(Cluste.Analysis)是一组将研究对象分为相对同质的群组(clusters)的统计分析技术.也叫分类分析(classificatio.analysis)或数值分类(numerica.taxonomy), 它是研究(样品或指标)分类问题的一种多元统计方法, 所谓类, 通俗地说, 就是指相似元素的集合。
聚类分析有关变量类型:定类变量,定量(离散和连续)变量聚类分析的原则是同一类中的个体有较大的相似性, 不同类中的个体差异很大。
1.2聚类分析分类聚类分析的功能是建立一种分类方法, 它将一批样品或变量, 按照它们在性质上的亲疏、相似程度进行分类.聚类分析的内容十分丰富, 按其聚类的方法可分为以下几种:(1)系统聚类法: 开始每个对象自成一类, 然后每次将最相似的两类合并, 合并后重新计算新类与其他类的距离或相近性测度. 这一过程一直继续直到所有对象归为一类为止. 并类的过程可用一张谱系聚类图描述.(2)调优法(动态聚类法): 首先对n个对象初步分类, 然后根据分类的损失函数尽可能小的原则对其进行调整, 直到分类合理为止.(3)最优分割法(有序样品聚类法): 开始将所有样品看成一类, 然后根据某种最优准则将它们分割为二类、三类, 一直分割到所需的K类为止. 这种方法适用于有序样品的分类问题, 也称为有序样品的聚类法.(4)模糊聚类法: 利用模糊集理论来处理分类问题, 它对经济领域中具有模糊特征的两态数据或多态数据具有明显的分类效果.(5)图论聚类法: 利用图论中最小支撑树的概念来处理分类问题, 创造了独具风格的方法.(6)聚类预报法:利用聚类方法处理预报问题, 在多元统计分析中, 可用来作预报的方法很多, 如回归分析和判别分析. 但对一些异常数据, 如气象中的灾害性天气的预报, 使用回归分析或判别分析处理的效果都不好, 而聚类预报弥补了这一不足, 这是一个值得重视的方法。
第五章聚类剖析5.1鉴别剖析和聚类剖析有何差别?答:即依据必定的鉴别准则,判断一个样本归属于哪一类。
详细而言,设有n 个样本,对每个样本测得p 项指标(变量)的数据,已知每个样本属于k 个类型(或整体)中的某一类,经过找出一个最优的区分,使得不一样类其余样本尽可能地域别开,并鉴别该样本属于哪个整体。
聚类剖析是剖析怎样对样品(或变量)进行量化分类的问题。
在聚类以前,我们其实不知道整体,而是经过一次次的聚类,使邻近的样品(或变量)聚合形成整体。
平常来讲,鉴别剖析是在已知有多少类及是什么类的状况下进行分类,而聚类剖析是在不知道类的状况下进行分类。
5.2试述系统聚类的基本思想。
答:系统聚类的基本思想是:距离邻近的样品(或变量)先聚成类,距离相远的后聚成类,过程向来进行下去,每个样品(或变量)总能聚到适合的类中。
5.3对样品和变量进行聚类剖析时,所结构的统计量分别是什么?简要说明为何这样结构?答:对样品进行聚类剖析时,用距离来测定样品之间的相像程度。
由于我们把n 个样本看作 p 维空间的 n 个点。
点之间的距离即可代表样品间的相像度。
常用的距离为pq)1/ q(一)闵可夫斯基距离: d ij (q) ( X ik X jkk 1q取不一样值,分为( 1)绝对距离(( 2)欧氏距离(q 1)q 2 )( 3)切比雪夫距离( q) (二)马氏距离(三)兰氏距离对变量的相像性, 我们更多地要认识变量的变化趋向或变化方向, 所以用有关性进行权衡。
将变量看作 p 维空间的向量,一般用(一)夹角余弦(二)有关系数5.4 在进行系统聚类时,不一样类间距离计算方法有何差别?选择距离公式应按照哪些原则?答: 设 d ij 表示样品 X i 与 X j 之间距离,用 D ij 表示类 G i 与 G j 之间的距离。
( 1) . 最短距离法( 2)最长距离法( 3)中间距离法D kr 21D kp21D kq 2D pq 22 2此中(4)重心法(5)类均匀法(6)可变类均匀法D kr2 (1 )( np D kp2nq D kq2 )D pq2 n r? <1n r此中 ?是可变的且( 7)可变法D kr21(D kp2 D kq2 )D pq2 此中 ?是可变的且 ? <12(8)离差平方和法往常选择距离公式应注意按照以下的基根源则:(1)要考虑所选择的距离公式在实质应用中有明确的意义。
第五讲聚类分析聚类分析是一种无监督学习方法,旨在将样本数据划分为具有相似特征的若干个簇。
它通过测量样本之间的相似性和距离来确定簇的划分,并试图让同一簇内的样本点相似度较高,而不同簇之间的样本点相似度较低。
聚类分析在数据挖掘、模式识别、生物信息学等领域有着广泛的应用,它可以帮助我们发现隐藏在数据中的模式和规律。
在实际应用中,聚类分析主要包含以下几个步骤:1.选择合适的距离度量方法:距离度量方法是聚类分析的关键,它决定了如何计算样本之间的相似性或距离。
常用的距离度量方法包括欧氏距离、曼哈顿距离、切比雪夫距离等。
2.选择合适的聚类算法:聚类算法的选择要根据具体的问题和数据特点来确定。
常见的聚类算法有K-means算法、层次聚类算法、DBSCAN算法等。
3.初始化聚类中心:对于K-means算法等需要指定聚类中心的方法,需要初始化聚类中心。
初始化可以随机选择样本作为聚类中心,也可以根据领域知识或算法特点选择合适的样本。
4.计算样本之间的相似度或距离:根据选择的距离度量方法,计算样本之间的相似度或距离。
相似度越高或距离越小的样本越有可能属于同一个簇。
5.按照相似度或距离将样本划分为不同的簇:根据计算得到的相似度或距离,将样本划分为不同的簇。
常用的划分方法有硬聚类和软聚类两种。
硬聚类将样本严格地分到不同的簇中,而软聚类允许样本同时属于不同的簇,并给出属于每个簇的概率。
6.更新聚类中心:在K-means等迭代聚类算法中,需要不断迭代更新聚类中心,以找到最优划分。
更新聚类中心的方法有多种,常用的方法是将每个簇内的样本的均值作为新的聚类中心。
7.评估聚类结果:通过评估聚类结果的好坏,可以判断聚类算法的性能。
常用的评估指标有轮廓系数、Dunn指数、DB指数等。
聚类分析的目标是让同一簇内的样本点尽量相似,而不同簇之间的样本点尽量不相似。
因此,聚类分析常常可以帮助我们发现数据中的分组结构,挖掘出数据的内在规律。
聚类分析在市场细分、社交网络分析、基因表达数据分析等领域都有广泛的应用。
聚类分析原理及步骤
一,聚类分析概述
聚类分析是一种常用的数据挖掘方法,它将具有相似特征的样本归为
一类,根据彼此间的相似性(相似度)将样本准确地分组为多个类簇,其中
每个类簇都具有一定的相似性。
聚类分析是半监督学习(semi-supervised learning)的一种,半监督学习的核心思想是使用未标记的数据,即在训
练样本中搜集的数据,以及有限的标记数据,来学习模型。
聚类分析是实际应用中最为常用的数据挖掘算法之一,因为它可以根
据历史或当前的数据状况,帮助组织做出决策,如商业分析,市场分析,
决策支持,客户分类,医学诊断,质量控制等等,都可以使用它。
二,聚类分析原理
聚类分析的本质是用其中一种相似性度量方法将客户的属性连接起来,从而将客户分组,划分出几个客户类型,这样就可以进行客户分类、客户
细分、客户关系管理等,更好地实现客户管理。
聚类分析的原理是建立在相似性和距离等度量概念之上:通过对比一
组数据中不同对象之间的距离或相似性,从而将它们分成不同的类簇,类
簇之间的距离越近,则它们之间的相似性越大;类簇之间的距离越远,则
它们之间的相似性越小。
聚类分析的原理分为两类,一类是基于距离的聚类。
聚类分析步骤以教材第五章习题8的数据为例,演示并说明聚类分析的详细步骤:原始数据的输入:丈件(D 霸甸〔口锻国(蜀散惭直I 转快(D 分折(幻圈解〔⑤ 密坏賤序〔史Mt加内容(Q)SUM 帮肋S暗事?* ™ S?鮒*ffl ft韶亟蔚粤箱「专.选项操作:1. 打开SPSS的“分析”-“分类”-“系统聚类”,打开“系统聚类”对话框。
把“食品”、“衣着”等6变量输入待分析变量框;把“地区”输入“标注个案”;“分群”选中“个案”;“输出”选中“统计量”和“图”。
(如下图)相关说明:(1) 系统聚类法是最常用的方法,其他的方法较少使用。
(2) “标注个案”里输入“地区”,在输出结果的距离方阵和聚类树状图里会显示出“北京”、“天津”等,否则SPSS自动用“ 1”、“2”等代替。
(3) “分群”选中“个案”,也就是对北京等16个样本进行分类,而不是对食品等6个变量分类。
(4) 必须选中“输出”中的“统计量”和“图”。
在该例中会输出16个地区的欧氏距离方阵和聚类树状图。
密Ife鸟駝£臭* I必炮区H-qI 1E曲前 -------------输出v熨计養y岡2. 设置分析的统计量打开最右上角的“统计量”对话框,选中“合并进程表”和“相似性矩阵” “聚类成员”选中“无”。
然后点击“继续”。
打开第二个“绘制”对话框,必须选中“树状图”,其他的默认即可打开第三个对话框“方法”:聚类方法选中“最邻近元素”;“度量标准” 选中“区间”的“欧氏距离”;“转换值”选中“标准化”的“ Z 得分”,并且是“按照变量”。
+区町(LD : E uclidean 肚屈7" T计徹D ; 卡方度豪▼二鼻細^?TEuclicteeri■|i |g |打开第四个对话框“保存”,“聚类成员”选默认的“无”即可 三•分析结果的解读:按照SPSS 俞出结果的先后顺序逐个介绍:1. 欧氏距离矩阵:是16个地区两两之间欧氏距离大小的方阵, 该方阵是应用各 种聚类方法进行聚类的基础。
第五章 聚类分析5.1 判别分析和聚类分析有何区别?答:即根据一定的判别准则,判定一个样本归属于哪一类。
具体而言,设有n 个样本,对每个样本测得p 项指标(变量)的数据,已知每个样本属于k 个类别(或总体)中的某一类,通过找出一个最优的划分,使得不同类别的样本尽可能地区别开,并判别该样本属于哪个总体。
聚类分析是分析如何对样品(或变量)进行量化分类的问题。
在聚类之前,我们并不知道总体,而是通过一次次的聚类,使相近的样品(或变量)聚合形成总体。
通俗来讲,判别分析是在已知有多少类及是什么类的情况下进行分类,而聚类分析是在不知道类的情况下进行分类。
5.2 试述系统聚类的基本思想。
答:系统聚类的基本思想是:距离相近的样品(或变量)先聚成类,距离相远的后聚成类,过程一直进行下去,每个样品(或变量)总能聚到合适的类中。
5.3 对样品和变量进行聚类分析时, 所构造的统计量分别是什么?简要说明为什么这样构造?答:对样品进行聚类分析时,用距离来测定样品之间的相似程度。
因为我们把n 个样本看作p 维空间的n 个点。
点之间的距离即可代表样品间的相似度。
常用的距离为 (一)闵可夫斯基距离:1/1()()pq qij ik jk k d q X X ==-∑q 取不同值,分为 (1)绝对距离(1q =)1(1)pij ik jk k d X X ==-∑(2)欧氏距离(2q =)21/21(2)()pij ik jk k d X X ==-∑(3)切比雪夫距离(q =∞)1()max ij ik jkk pd X X ≤≤∞=-(二)马氏距离(三)兰氏距离对变量的相似性,我们更多地要了解变量的变化趋势或变化方向,因此用相关性进行衡量。
21()()()ij i j i j d M -'=--X X ΣX X 11()p ik jkij k ik jk X X d L p X X =-=+∑将变量看作p 维空间的向量,一般用(一)夹角余弦(二)相关系数5.4 在进行系统聚类时,不同类间距离计算方法有何区别?选择距离公式应遵循哪些原则?答: 设d ij 表示样品X i 与X j 之间距离,用D ij 表示类G i 与G j 之间的距离。