高分子结晶的特点
- 格式:docx
- 大小:43.41 KB
- 文档页数:2
高分子物理教学中“结晶”概念的讲解高分子物理是一门研究高分子化合物的物理性质的学科,它通过研究高分子物质的结构、形态、动力学等方面,来深入了解高分子材料的性质和特性。
在高分子物理教学中,“结晶”概念是重要的一环,下面将从结晶的定义、产生机理、结晶速率与温度的关系以及高分子材料的晶体学等方面展开具体讲解。
首先说到结晶的定义,结晶是指高分子材料形成经典晶体的过程。
当高分子材料分子间的相互作用力已经超过了它们热运动所带来的热能,高分子材料会进入有序排列的状态,形成晶格结构。
高分子晶体可以看成不规则的、类似于几何体的平面毡球,其在的视角应始终保持正平视图,且其空间结构是有序的,表现出X射线衍射图案中的对称性,一般采用点群和空间群的符号来描述。
其次是结晶的产生机理。
高分子材料的结晶过程是一个动静态平衡的过程。
高分子分子在流动条件下呈链状展开的结构,但当高分子分子间的距离小到一定程度时,它们之间的链的空间位置相对固定,形成了一种有序排列的结构,也就是一定形态规则的晶体结构。
加入一些摩擦、外界因素的干扰,可以促进高分子有序排列的形成,形成不同形态的结晶。
同时,高分子材料在冷却过程中也会产生结晶。
一般情况下,随着温度的降低,高分子材料中分子的平均热能降低,使有序结构出现的自由能减少,从而促进结晶的形成。
再来看一下结晶速率与温度的关系。
在高分子物理实验中发现,结晶速率与温度有关联,温度越高,结晶速率就越快。
这是因为高分子分子在高温下具有较大的热运动能量,能够脱离有序排列结构,使结晶难以形成;而在低温条件下,高分子的分子热运动减弱,分子的有序结构应变化较小,从而有助于结晶的加速。
最后是高分子材料的晶体学问题。
高分子材料的晶体学分析是高分子物理中的一个重要领域。
晶体学主要解决了三个问题:一是晶体结构的解析分析,即确定每个分子的精确定位;二是晶体之间的相互作用问题,即利用X射线衍射技术和化学方法来确定精确的空间结构;三是晶体中分子的对称问题,即晶体对称性的问题。
高分子结晶形态1. 概述高分子结晶形态是指高分子材料在固态下的晶体结构和形态特征。
高分子材料具有多种结晶形态,包括无定形态、部分结晶态和完全结晶态。
高分子结晶形态对材料的物理性质和应用性能有着重要的影响,因此对高分子结晶形态的研究具有重要的科学意义和应用价值。
2. 高分子结晶机理高分子的结晶是由于分子间的相互作用力的存在而形成的。
高分子分子链的局部有序排列形成晶体结构,而分子链之间的无序排列则形成无定形态。
高分子结晶的主要机理包括链段的折叠和交叉,分子链的扭曲和屈曲以及分子链之间的相互作用力等。
3. 高分子结晶行为高分子材料的结晶行为可以通过热分析技术进行研究,如差示扫描量热法(DSC)、热重分析法(TGA)等。
这些技术可以通过测量材料的热性能变化来确定结晶温度、结晶度和结晶速率等参数,从而了解高分子材料的结晶行为。
3.1 结晶温度高分子材料的结晶温度是指材料从无定形态转变为结晶态的温度范围。
结晶温度取决于分子链的结晶能力以及外界条件,如温度、压力和结晶助剂等。
高分子材料的结晶温度通常通过DSC技术来测定。
3.2 结晶度高分子材料的结晶度是指材料中结晶部分的比例。
结晶度可以通过测量材料的熔点和热焓来确定。
高分子材料的结晶度与其结晶速率和结晶温度等因素密切相关。
3.3 结晶速率高分子材料的结晶速率是指材料从无定形态转变为结晶态的速度。
结晶速率受到多种因素的影响,包括温度、结晶助剂、分子链的结晶能力等。
高分子材料的结晶速率可以通过DSC技术和透射电子显微镜(TEM)等技术来研究。
4. 高分子结晶形态的影响因素高分子结晶形态的形成受到多种因素的影响,主要包括分子结构、分子量、结晶助剂和加工条件等。
4.1 分子结构高分子材料的分子结构对其结晶形态有着重要的影响。
分子结构中的键长、键角和键的取向等参数会影响分子链的折叠和交叉,从而影响结晶形态的形成。
4.2 分子量高分子材料的分子量对其结晶形态也有着重要的影响。
一、高分子结晶结构的主要特点与形态特征怎样?影响因素主要有哪些?主要研究方法有哪些?其在高分子结晶研究中的应用怎样?答:1. 结构与形态高分子之所以能够形成结晶,需要两个条件:(1)高分子链的构象要处于能量最低的状态;(2)链与链之间要平行排列而且能紧密堆砌。
高分子结晶不同于低分子物质的结晶。
高分子材料中几乎没有完整的晶体结构(如晶体不整齐、结晶不完全等),这主要与构成材料的高分子链的聚集形态有关。
高分子链之间的相互作用力包括范德华力、氢键和化学键,起主要作用的是范德华力。
由于聚集态结构不同,通常高分子材料表现出三种结构特点:非晶态、晶态(如球晶和单晶等)和取向结构。
其形态特征如下:1)晶区与非晶区共存。
由于高分子为长链结构,链上的原子通过共价键相连接,因此结晶时链段是不能充分自由运动的,必定妨碍其作规整的堆积和排列。
通常高分子材料都是以分子链的一小段有序排列形成晶区的,高分子链中折叠部分不规则排列的链段及连接相邻片晶之间的过渡区域中的链段则组成高分子晶态中的非晶区。
2)晶区部分与非晶区部分没有明显的界线每个高分子可以同时贯穿几个晶区和非晶区,而在晶区和非晶区两相间的交替部分有着局部有序的过渡状态,即使晶区也存在许多缺陷。
例如,对于缨状微束模型,晶区和非晶区相互穿插,同时存在,在晶区中,分子链互相平行排列形成规整的结构,但晶区尺寸很小,一根分子链可以同时穿过几个晶区和非晶区,晶区在通常情况下是无规取向的;而在非晶区中,分子链的堆砌是完全无序的。
2. 影响因素1)链的对称性高分子链的结构对称性越高,越容易结晶。
如聚乙烯分子,主链上全部是碳原子,没有杂原子,也没有手性碳原子,碳原子上是清一色的氢原子,对称性好,最容易结晶,最高结晶度可达95%。
但是将聚乙烯氯化后,由于分子链对称性受到破坏,便失去了原有的结晶能力。
2)链的规整性对于主链含有手性中心的聚合物,如果手性中心的构型完全是无规的,使高分子链的对称性和规整性都被破坏,这样的高分子一般不能结晶。
聚乙二醇结晶形态聚乙二醇(Polyethylene Glycol,简称PEG)是一种常用的高分子化合物,由于其独特的结晶形态,被广泛应用于医药、化工、食品等领域。
本文将从不同角度,描述聚乙二醇结晶形态的特点和应用。
一、聚乙二醇的结晶形态聚乙二醇的结晶形态与其分子量密切相关。
低分子量的PEG呈油状液体,而高分子量的PEG则呈白色固体。
而PEG的结晶形态主要有两种:无定形态和晶态。
无定形态的PEG是指没有明显结晶形态的PEG固体,呈无规则的颗粒状或粉末状。
这种PEG通常具有较强的溶解性和吸湿性,因此在制备溶液或乳液时具有较好的溶解性能,常用于制备药物或化妆品中。
晶态的PEG是指具有明显结晶形态的PEG固体,呈规则的晶体结构。
晶态PEG具有较好的热稳定性和机械性能,常用于制备塑料、纤维等材料。
根据PEG的晶体结构,可以将其分为单斜晶体和正交晶体两种。
1. 温度对结晶形态的影响:PEG的结晶形态随温度的变化而变化。
在较低的温度下,PEG呈现出无定形态,而在较高的温度下,PEG 呈现出晶态。
这是因为温度的升高会使PEG分子间的相互吸引力增强,从而促进结晶的发生。
2. 分子量对结晶形态的影响:随着PEG分子量的增加,其结晶形态从无定形态向晶态转变。
这是因为高分子量的PEG分子链较长,分子间的相互作用力增强,有利于结晶的发生。
3. 溶剂对结晶形态的影响:溶剂可以显著影响PEG的结晶形态。
一般来说,溶剂的极性越强,对PEG的溶解度越高,促进无定形态的形成;而溶剂的极性越弱,对PEG的溶解度越低,有利于晶态的形成。
三、聚乙二醇结晶形态的应用1. 药物制剂:PEG常用于制备药物的载体或缓释剂。
由于其良好的溶解性和吸湿性,可以用于制备口服溶液、注射液等剂型,提高药物的溶解度和生物利用度。
此外,PEG还可以用于制备药物的缓释剂,延长药物的释放时间,提高药效持续性。
2. 化妆品:PEG在化妆品中常用作乳化剂、稳定剂和保湿剂。
高分子结晶有哪些特点?
解: ( 1 )高分子晶体属于分子晶体。
已知小分子有分子晶体、原子晶体和离子晶体,而高分子仅有分子晶体,且仅是分子链的一部分形成的晶体。
(2) 高分子晶体的熔点Tm 定义为晶体全部熔化的温度。
Tm 虽是一级相转变点,但却是一个范围称为熔限,一般为Tm 士( 3~5 °C),而小分子的Tm 是一个确定的值,Tm 一般在士0.1 °C范围内。
高分子的与结晶温度有关。
(3) 高分子链细而长(长径比= 500~2000) ,如此严重的几何尺寸的不对称性,使得高分子链结晶得到的晶体只能属于较低级晶系(对称性较差的晶系),如单斜与正交晶系(大约各占30 %)。
至今还没有得到最高级的立方晶系(立方晶系是七大晶系中对称性最好的晶系)。
(4) 高分子的结晶是通过链段的协同运动排入晶格的。
由于链段运动有强烈的温度、时间依赖性,所以高分子结晶也具有很强的对温度、时间的依赖性。
如把结晶性高分子熔体骤冷可得到非晶或结晶度很低的晶体;慢冷却,甚至进行热处理(即在最适宜的结晶温度上保温一段时间),得到的则是高结晶度的大晶粒聚集体。
高分子结晶对温度的依赖性表现为结晶有一定的温度范围( Tg- Tm ) ,且在这个温度范围内,存在一个结晶速度最快的温度。
同时,高分子结晶速率常数K 对温度特别敏感,温度变化1 °C,K 相差2~3 个数量级。
(5) 有结晶度的概念。
当结晶性高聚物达到结晶温度时,即处于Tg- Tm 时,开始结晶。
由于高分子结构的复杂性,使得聚合物的结晶要比小分子晶体有更多的缺陷(如非晶区空间、交联、支化、杂质......),所以结晶总是很不完善,是一种晶区与非晶区共存的体系,结晶聚合物实际上是“部分结晶聚合物”。
按照折叠链的结晶理论,我们如果假设结晶聚合物中只包括完全结晶区和无定形区两个部分,则可定义为晶区部分所占的百分数为聚合物的结晶度,常用质量分数来表示(5) 高聚物的结晶过程分一次结晶(主结晶)和二次结晶(次级结晶)。
由于高分子的相对分子质量大,体系黏度大,分子运动迟缓,因此由完全无序到三维有序必定要经过很长时间,一些暂时没有结晶的分子链在聚合物储存或使用的过
程中还会结晶。
有人以球晶为例,在球晶相互间没碰撞截顶之前为一次结晶(主结晶),之后的再结晶是二次结晶(次结晶),二次结晶的微观机制是由结晶缺陷所致。
Avrami 方程在结晶后期与实验的偏离及等温结晶曲线上出现两个台阶,都表明二次结晶的客观存在。
在日常生活中,尼龙袜子越穿越小也与二次结晶有关。