盈建科筏板基础设计计算实例
- 格式:docx
- 大小:12.28 KB
- 文档页数:2
梁板式筏形基础课程设计计算书一、 荷载计算1. 假定不考虑风载与地震作用。
不考虑地下水对基底的上浮力。
2. 基础承受的荷载根据建筑结构每平方米的重量估算。
(1)建筑每平米重量=10.8 kN/㎡ (2)建筑面积计算:地上主体结构:(7.8.2×7.8.0+0.8)×(3×7.8.2.0+0.8)+(3×7.8.0+0.8)×2=97.8.20.7.84㎡ 97.8.20.7.84㎡×11=107.87.8.27.8.2.04㎡ 局部突出屋面的电梯机房,层高3.0m>2.2m , 建筑面积为a×b=7.8.2.0×7.8.0=42.00㎡总建筑面积=107.87.8.27.8.2.04+42.00=107.8.219.04㎡ (3)基础承受荷载=10.8×107.8.219.04=1137.8.288.80kN二、 基础尺寸初步估算1. 基础底板面积确定:用荷载标准值,全反力(包括筏基底板自重),根据地下一层层高及建筑面积,设筏板厚0.7.8m ,基础埋深d=3.9+1.4-0.45=4.85 m ,基础板(7.8.2×7.8.0+0.8)×(3×7.8.2.0+0.8)+(3×7.8.0+0.8)×2=97.8.20.7.84㎡ 2. 基础梁尺寸确定:计算梁高:mm l h 1000666==≥计算梁宽:⎥⎦⎤⎢⎣⎡∈h h b 21,31,h 为梁高。
梁宽取7.800mm ,梁高取1200mm 。
如图1所示:图1 梁截面尺寸示意图(尺寸单位:mm )3.地基承载力特征值的修正对于0.80.850.750.85L e =<=<,I 的粘性土,查承载力修正系数表得:0.3, 1.6b d ηη==,则:2/48.341)5.085.4(186.1)36(183.0200)5.0()3(m kN d b f f m d b ak a =-⨯⨯+-⨯⨯+=-+-+=γηγη4.验算地基承载力 上部荷载总和为:∑=kN Fk80.113788筏基底板自重为:kN G k 00.14310256.000.954=⨯⨯= 基底反力平均值:=k p =+∑AG Fkk970.6414310.0013788.801+=134.282/kN m 2/48.341m kN f a =<所以地基承载力满足要求。
*--------------------------------------------------------------------------------** yjk-F 筏板受剪计算书* *--------------------------------------------------------------------------------**--------------------------------------------------------------------------------** 依据规范: 建筑地基基础设计规范(GB50007-2011)第8.4.10条* * 受剪验算公式: Vs <= 0.7 * βhs * ft * bw * h0 ** Vs 剪力设计值(kN),取受剪面的平均剪力* * βhs 受剪切承载力截面高度影响系数,按8.2.9条确定* * ft 混凝土轴心抗拉强度设计值(MPa) * * bw 受剪面的单位长度(m),取1.0m * * h0 筏板的截面有效高度(mm) * * 依据混凝土结构设计规范11.1.6条规定,地震组合下斜截面受剪承载力除以0.85 * *--------------------------------------------------------------------------------*荷载效应基本组合时,受剪面上的平均剪力:*------------------------*组合号剪力设计值(23) 78.9(24) 83.9(25) 67.9(26) 33.5(27) 67.3(28) 107.4(29) 79.0(30) 77.8(31) 57.3(32) 103.8(33) 75.8(34) 75.2(35) 40.2(36) 117.7(37) 74.0(38) 75.3(39) 32.2(40) 119.5(41) 74.0(42) 25.6(43) 75.2(44) 125.8(45) 75.3(46) 109.7(47) 73.9(48) 41.8受剪验算:*------------------*Comb (36)Vs 117.7βhp 1.00ft 1.43bw 1.0h0 600R/S 5.11验算结果满足附: 荷载组合表编号类型组合项*------------------------------------------------------------------------------*(1 ) 准永久组合 1.0恒+0.5活(2 ) 标准组合 1.0恒+1.0活(3 ) 标准组合 1.0恒+1.0风x(4 ) 标准组合 1.0恒+1.0风y(5 ) 标准组合 1.0恒-1.0风x(6 ) 标准组合 1.0恒-1.0风y(7 ) 标准组合 1.0恒+1.0活+0.6风x(8 ) 标准组合 1.0恒+1.0活-0.6风x(9 ) 标准组合 1.0恒+1.0活+0.6风y(10) 标准组合 1.0恒+1.0活-0.6风y(11) 标准组合 1.0恒+0.7活+1.0风x(12) 标准组合 1.0恒+0.7活-1.0风x(13) 标准组合 1.0恒+0.7活+1.0风y(14) 标准组合 1.0恒+0.7活-1.0风y(15) 标准组合 1.0恒+0.5活+1.0震x+0.38竖震(16) 标准组合 1.0恒+0.5活-1.0震x+0.38竖震(17) 标准组合 1.0恒+0.5活+1.0震y+0.38竖震(18) 标准组合 1.0恒+0.5活-1.0震y+0.38竖震(19) 标准组合 1.0恒+0.5活+0.2风x+1.0震x+0.38竖震(20) 标准组合 1.0恒+0.5活+0.2风y+1.0震y+0.38竖震(21) 标准组合 1.0恒+0.5活-0.2风x-1.0震x+0.38竖震(22) 标准组合 1.0恒+0.5活-0.2风y-1.0震y+0.38竖震(23) 基本组合 1.2恒+1.4活(24) 基本组合 1.35恒+0.98活(25) 基本组合 1.2恒+1.4风x(26) 基本组合 1.2恒+1.4风y(27) 基本组合 1.2恒-1.4风x(28) 基本组合 1.2恒-1.4风y(29) 基本组合 1.2恒+1.4活+0.84风x(30) 基本组合 1.2恒+1.4活-0.84风x(31) 基本组合 1.2恒+1.4活+0.84风y(32) 基本组合 1.2恒+1.4活-0.84风y(33) 基本组合 1.2恒+0.98活+1.4风x(34) 基本组合 1.2恒+0.98活-1.4风x(35) 基本组合 1.2恒+0.98活+1.4风y(36) 基本组合 1.2恒+0.98活-1.4风y(37) 基本组合 1.2恒+0.6活+1.3震x+0.5竖震(38) 基本组合 1.2恒+0.6活-1.3震x+0.5竖震(39) 基本组合 1.2恒+0.6活+1.3震y+0.5竖震(40) 基本组合 1.2恒+0.6活-1.3震y+0.5竖震(41) 基本组合 1.2恒+0.6活+0.28风x+1.3震x+0.5竖震(42) 基本组合 1.2恒+0.6活+0.28风y+1.3震y+0.5竖震(43) 基本组合 1.2恒+0.6活-0.28风x-1.3震x+0.5竖震(44) 基本组合 1.2恒+0.6活-0.28风y-1.3震y+0.5竖震(45) 基本组合 1.2恒+0.6活+0.28风x-1.3震x+0.5竖震(46) 基本组合 1.2恒+0.6活+0.28风y-1.3震y+0.5竖震(47) 基本组合 1.2恒+0.6活-0.28风x+1.3震x+0.5竖震(48) 基本组合 1.2恒+0.6活-0.28风y+1.3震y+0.5竖震。
a l 2 1b 2 筏板基础及侧壁计算书一、基本数据:根据 xx 省 xx 护国房地产开发有限公司护国广场岩土工程勘察报告,本工程以③层圆 砾层为持力层,地基承载力特征值为 220KP a 。
基础形式为筏板基础,混凝土强度等级为 C 40 , f c = 19.1N / mm 2 ;受力钢筋均采用HRB 400 级,f y =360 N / mm 2;根据地质 报告,地下水位取 − 1.700m 。
二、地基承载力修正及验算:f a = f ak + ηb γ (b − 3) + ηd γ m (d − 0.5) = 220 + 0.3 × 8 × (6 − 3) + 1.5 × 8 × (5.65 − 0.5) = 289.0kN / m 2上部荷载作用下地基净反力(由地下室模型竖向导荷得)f = 61.6kN / m 2 < f = 289.0kN / m 2地基承载力满足要求。
三、地下室侧壁配筋计算:(1)双向板:l y 5.175 ① l x = 8.400m , l y = 5.175m , = x 8.4 = 0.62E 土 = rhK a = 8.0 × 5.175 × tan 2 45o = 41.4KN / m E 水 = rh = 10.0 × 3.475 = 34.75KN / mE 合 = 1.27E 土 + 1.27E 水 = 52.6 + 44.1 = 96.7KN / m查静力计算手册,得:M x max = 0.0072ql 2= 0.0072 × 96.7 × 5.1752 2= 18.6KN ·m M y max = 0.0209ql '= 0.0209 × 96.7 × 5.175 2= 54.1KN ·m 2Mx max' = −0.0354ql 2= 0.0354 × 96.7 × 5.1752= −91.7KN ·mM y= −0.0566ql = −0.0566 × 96.7 × 5.175 = −146.6KN ·m配筋计算:取弯矩最大处进行计算。
典型用户工程应用案例四有限元计算模型及问题分析案例案例1 筏板布置偏心多大——导致配筋过大案例K:\基础经典案例集\38965-筏板布置明显偏执导致配筋大模型特点上部结构主楼下筏板基础、裙房部分独立基础+防水板问题是:基础Y向上铁计算结果配筋太大原因分析增大基础系数、考虑上部结构刚度,配筋减少非常有限。
观察三维变形图,见下图:明显筏板外侧下称明显,导致变形差过大、Y向配筋过大。
可以从模型布置特点看出原因,是由于筏板布置一侧未挑出,效果是荷载明显偏置。
见下图:荷载明显偏置,即使是采用倒楼盖计算模型,配筋也是比较大,见下图:解决办法——调整模型布置,筏板对称增加外挑调整模型布置,筏板对称增加外挑(比如增加3米)考虑上部结构刚度,首先上部计算要勾选【生成传给基础的刚度】,比如考虑3层。
见下图:基础参数设置:考虑上部刚度、基床系数按4万,见下图:三维位移图基底压力图配筋结果——最大3000多案例1 中部墙下区域板顶配筋较大而板底为构造配筋模型概况高层住宅,从标准层看出两电梯井筒体位于两端头,见下图:基础采用0.95米后平筏基础,见下图问题——中部三道墙下底部配筋全构造分析采用弹性地基梁板法,基床系数设置为30000。
由于两端筒体部分荷载相对较大,而中部三道墙下的荷载相对较小,形成下图所示的变形特征:上部荷载-较大上部荷载-较大上部荷载-小变形位置示意可以通过【沉降】【三维位移】查看筏板的实际变形,如下图:所以由于中部相对两端形成向上的位移,导致中部筏板区域为板顶受拉,而板底基本是构造配筋。
从这个案例可以看出,不能一概而论地以倒楼盖计算模型假定的变形和受力特点去理解采用弹性地基梁板法的基础,不能一概而论地认为柱墙下就是板底受拉为主、柱墙下板底配筋一定大于板顶。
采用倒楼盖计算模型时,将不能真实反映这种上部荷载不均匀对基础的影响。
比如该工程,采用倒楼盖时的三维变形图如下:采用倒楼盖计算模型时,中部墙下会出现较大的底部配筋,其配筋等值线图见下图:结论及处理:1)不能直接套用倒楼盖思维来理解基础受力和变形特点;2)应该考虑上部结构刚度,这样才可以体现柱墙对筏板的支撑支座效应;五建模案例案例1 梁式承台——用承台建模还是梁下布桩35649 工程概况原基础方案问题是:分析承台建模的缺点网格划分困难、计算不过或者计算精度不高。
盈建科筏板抗浮计算
盈建科筏板抗浮计算需要考虑以下因素:
1.筏板面积:筏板面积越大,抗浮能力越强。
2.筏板重量:筏板重量越大,抗浮能力越强。
3.筏板材料:不同材料的筏板抗浮能力不同,一般认为混凝土的抗浮能力最强。
4.筏板与水的接触面积:筏板与水的接触面积越小,抗浮能力越强。
综合考虑以上因素,盈建科可以通过以下公式计算筏板的抗浮能力:抗浮力=F/ρgA。
其中:
F:浮力,单位为牛顿。
ρ:水的密度,单位为千克/立方米。
g:重力加速度,单位为米/秒²。
A:筏板的面积,单位为平方米。
例如,假设盈建科的混凝土筏板面积为100平方米,重量为2吨,水的密度为1千克/立方米,重力加速度为9.8米/秒²,则计算结果为:抗浮力=20000/(1000*9.8*100)=20.4牛顿/平方米。
可以看出,该混凝土筏板的抗浮能力为20.4牛顿/平方米,如果需要更强的抗浮能力,可以选择增大筏板面积或使用更重的材料。
典型用户工程应用案例四有限元计算模型及问题分析案例案例1 筏板布置偏心多大——导致配筋过大案例K:\基础经典案例集\38965-筏板布置明显偏执导致配筋大模型特点上部结构主楼下筏板基础、裙房部分独立基础+防水板问题是:基础Y向上铁计算结果配筋太大原因分析增大基础系数、考虑上部结构刚度,配筋减少非常有限。
观察三维变形图,见下图:明显筏板外侧下称明显,导致变形差过大、Y向配筋过大。
可以从模型布置特点看出原因,是由于筏板布置一侧未挑出,效果是荷载明显偏置。
见下图:荷载明显偏置,即使是采用倒楼盖计算模型,配筋也是比较大,见下图:解决办法——调整模型布置,筏板对称增加外挑调整模型布置,筏板对称增加外挑(比如增加3米)考虑上部结构刚度,首先上部计算要勾选【生成传给基础的刚度】,比如考虑3层。
见下图:基础参数设置:考虑上部刚度、基床系数按4万,见下图:三维位移图基底压力图配筋结果——最大3000多案例1 中部墙下区域板顶配筋较大而板底为构造配筋模型概况高层住宅,从标准层看出两电梯井筒体位于两端头,见下图:基础采用0.95米后平筏基础,见下图问题——中部三道墙下底部配筋全构造分析采用弹性地基梁板法,基床系数设置为30000。
由于两端筒体部分荷载相对较大,而中部三道墙下的荷载相对较小,形成下图所示的变形特征:上部荷载-较大上部荷载-较大上部荷载-小变形位置示意可以通过【沉降】【三维位移】查看筏板的实际变形,如下图:所以由于中部相对两端形成向上的位移,导致中部筏板区域为板顶受拉,而板底基本是构造配筋。
从这个案例可以看出,不能一概而论地以倒楼盖计算模型假定的变形和受力特点去理解采用弹性地基梁板法的基础,不能一概而论地认为柱墙下就是板底受拉为主、柱墙下板底配筋一定大于板顶。
采用倒楼盖计算模型时,将不能真实反映这种上部荷载不均匀对基础的影响。
比如该工程,采用倒楼盖时的三维变形图如下:采用倒楼盖计算模型时,中部墙下会出现较大的底部配筋,其配筋等值线图见下图:结论及处理:1)不能直接套用倒楼盖思维来理解基础受力和变形特点;2)应该考虑上部结构刚度,这样才可以体现柱墙对筏板的支撑支座效应;五建模案例案例1 梁式承台——用承台建模还是梁下布桩35649 工程概况原基础方案问题是:分析承台建模的缺点网格划分困难、计算不过或者计算精度不高。
筏板基础的计算1.1、 基础的确定1.1.1、 基础偏心计算:对(0,0)角点F 1y =16438.8kN , F 2y =20962.3kN , F 3y =21717.3kN , F 4y =26656.6kN , F 5y =20993.1kN , G=6977.8kNX 2=5m , X 3=11.5m , X 4=17.5m , X 5=23.5m , X 6=2.5m ,F 2y X 2 F 3y X 3 F 4y X 4 F 5y X 5 Gx 6升 e x=11.71F ixG F 1x =17826.7kN ,F 2x =22434.7kN , F 3x =21958.8kN , F 4x =25720.4kN , F 5x =18827.5kN , G=6977.8kN , y 2=7.5m , y 3=13.5m , y 4=20.1m , y 5=26.1m , y 5=13.05m1.1.2、 基础类型采用梁式筏板基础。
1.1.3、 基础深度根据地质勘探报告,基础埋深为 4.7m 。
1.1.4、 地基承载力修正f ak + d o (d 外 0.5) b (b 3)200 1.6 11.4 (5.3 0.5) 0.3 9.2 3 295.8 kPa基础基地净反力为 N106768.1 P j A 141.9kN /m28.5 26.4 1.2、基础板厚验算取板厚为h=550mm h 0 550 40 510mm ,最不利跨板的跨度为7.5mX6.5m1.2.1、基础底板受冲切承载力验算hp 1 , f t 1.43MPau m (7.5 0.55 0.51) 2(6.5 0.6 0.51) 2 23.66m A j =(6.5-0.6-0.51 X 2) X (7-0.55-0.51 X 2)=26.5m 20.7 hp f t U m h 。
=0.7 X 1.0 X 1430X 23.66 X 0.51=12078.7kNe y F 2x y 2F 3x y 3 F 4x y 4 F 5x y 5 F ixG Gy s =13.75P nNG 」 rd “6768" 20 28.5 26.4 5.25 侯行 28.5 26.4 9.2 1.05 19.5 3.1 156.4kN /m f a 295.8KPaF L P j A j =141.9 X 26.5=3760.35kN 0.7 hp f t u m h 0=12078.1kN因此底板满足受冲切要求1.2.2、基础底板受剪承载力验算V S 0.7 hs f t (l n2 2h o )h o hS 1, l n2 7.5 0.55 =6.95m0.7 hs f t (l n2 2h °)h 0=0.7 X 1.0 X 1430X( 7.0-2 X 0.51 )X 0.51=3052.8kN A s 1(1.05 5.88) 2.415 8.37 vmV S P j A s =141.9 X 8.37=1187.7kN 0.7 hs f t (l n2 2h °)h ° =3296.1kN 因此底板受剪承载力也满足要求。
筏板基础设计要点及计算示例
一、筏板基础设计要点
1、材料和结构:根据建筑物的使用性质,湿法筏板基础可选用钢筋混凝土组合桩作为结构材料,其中混凝土的强度等级由长期使用要求来确定。
结构厚度、网络布置等应符合国家标准的要求。
2、环境条件:筏板基础的承载力受多种因素影响,如地质、水位、温度等。
因此,对于不同环境条件,应通过地质勘查、湿度测定、电阻率测定等手段,建立筏板基础的环境参数,以确保建筑物的安全使用。
3、设计及施工:筏板基础的施工应按照国家标准给出的要求进行,结构设计应满足工程实际要求,结构的厚度、网络布置等要求应符合国家标准。
施工前,应进行现场施工前设计,并根据现场施工条件,采取必要的施工措施,以保证施工的质量,确保建筑物的安全使用。
二、计算示例:
1、确定筏板基础中心距:
根据规范要求,筏板基础中心距应不小于基础宽度1/4、也就是说,对于一个宽为2m的筏板基础,其中心距不应小于500mm。
2、确定抗拔承载力:
根据国家规范要求,组合桩的抗拔承载力可以建立如下的计算公式:Q=AφKs-Bp(φ-P)
其中,A和B是规定的系数。
筏板基础设计1.1筏形基础的截面尺寸及构造1.1.1筏形基础的构造1、筏形基础的混凝土强度等级不应低于C30,当有地下室时应采用防水混凝土 防水混凝土的抗渗等级应根据地下水的最大水头与防水混凝土厚度的比值,按现行《地下工程防水技术规范》选用,但不应小于0.6Mpa 。
2、采用筏形基础的地下室,地下室钢筋混凝土外墙厚度不应小于250mm 内墙厚度不应小于200mm 墙体内应设双面钢筋,竖向和水平钢筋的直径不应小于12mm 间距不应大于300mm 。
3、本设计采用肋梁式筏板基础,这种基础能减小基础单位面积上的压力,提高基础的整体刚度减小不均匀沉降,筏板厚度9×50=450mm 所以取500mm >300mm 厚,纵横向肋梁取相同高度和宽度取b h =1200mm b b =800mm 肋梁两端伸出边柱轴线的距离为1000mm 。
4、地基承载力特征值的计算:根据以知条件得2400kN/m ak f =,根据地基土需考虑基础宽度和深度的修正 即b η=3.0 ;d η=4.4。
5、基础埋深抗震设防地区天然土质地基上的箱形和筏形基础,基础埋深不宜小于建筑物高度的1/15。
室内外高差为0.6m ,筏形基础埋深H 1=(39.2+0.6)/15=2.67m 。
包头冻深-1.6m所以,取基础埋深-3.3m 。
持力层为圆砾层 所以地基承载力特征值为:(3)(0.5)a ak b d m f f b d ηγηγ=+-+-式中的γ—持力层以下土的重度 取γ=183kN/mm γ—埋深范围内土的加权平均重度m γ=(13.5×1.0+19×1.62+18×0.68)/3.3=17.132kN/m(3)(0.5)a ak b d m f f b d ηγηγ=+-+-=400+3.0×18×(6-3)+4.4×17.3×(3.3-0.5)=614.36KN/㎡混凝土强度等级采用C30 c f =14.32N/mm t f =1.432N/mm 底板钢筋HRB 235y f =y f '=3602N/mm 基础梁钢筋:纵筋选用HRB400 y f =3602N/mm箍筋选用HRB335 y f =3002N/mm1. 2基础底面积的确定在竖向荷载作用下,如将xoy 坐标系原点置于筏基底板形心处,则基底反力可按下式计算:(,)i yii xx y xyN e N GN e P d x y AI I γ+=+±±∑∑∑。
筏板基础摘要:本文总结了筏板基础的适用条件,剪力墙面荷载按162/kNm时,最终传给地基的力,平、筏板板厚的取值、梁筏板不同厚度时,满足抗冲切的极限净反力、平筏板不同板厚和不同地基净反力时能抵抗的极限柱下轴力设计值、地梁的高度,宽度确定方法及经验值、地梁的内力计算方法和经验配筋、筏板的内力和配筋计算方法、经验配筋、pkpm进行筏板基础设计的具体操作过程、介绍了梁元法和板元法的一些具体操作。
本文章总结于:刘铮“建筑结构设计快速入门”、朱炳寅“建筑结构设计问答与分析”、“建筑地基基础设计方法及实例分析”、郁彦“高层建筑结构概念设计”、杨星“pkpm结构软件从入门到精通”、钢结构论坛、文献以及网上别人经验总结。
共11。
2011-11-20---12-281.适用条件:一般用于高层,且地基承载力必须很大;当多层房屋,比如框架,地基承载能力很低时,也可以用伐板基础;筏基,其整体性好,能很好的抵抗地基不均匀沉降。
2.荷载:剪力墙结构每层每平方162/kNm计算,假设一个30层的高层,地下1层,则传给地基4962/kNm,假设用伐板基础,伐板厚1100mm,则筏板自重的面荷载为:25*1.1=27.52/kNm,则传给基础总的面荷载为:496+27.5=5242/kNm,可以用这个大概估计下地基承载力大概要多大,并且地基资料给出地基承载力特征值已经包括了挖开土的重量。
按规范,天然地基的最小埋深取上部高度的1/15,所以一般高层的埋深为:7m左右,经深度修正后的地基承载力做多也就增加一个30kpa 的样子。
设计时,一般可以不修正,留作安全余量。
3.板厚:3.1.规范:箱筏规范:梁板式筏基板厚:当12层时,h1/14L短且400mm;L短为最大双向板格的短边净跨,假设8m*8m的双向板,则最小厚度为570mm。
应届生求职季宝典开启你的职场征途简历撰写笔试真题面试攻略专业技能指导公务员专区当12层时,h1/20L短且300mm;L短为最大双向板格的短边净跨,假设8m*8m的双向板,则最小厚度为400mm。
高层建筑地基基础课程设计学年学期:2014~2015学年第2学期院别:土木工程学院专业:勘查技术与工程专业方向:岩土工程班级:勘查1201学生:学号:指导教师:***《高层建筑地基基础课程设计》成绩评定表班级姓名学号目录一、工程概况几工程地质条件 (5)1.1柱位图 (5)1.2土层信息 (5)1.3上部荷载 (6)二、基础选型 (6)三、设计尺寸与地基承载力验算 (6)3.1基础底面积尺寸的确定 (6)3.2地基承载力验算 (7)四、沉降验算 (9)五、筏板基础厚度的确定 (11)5.1抗冲切承载力验算 (11)5.2抗剪承载力验算 (12)5.3局部受压承载力计算 (13)六、筏板、基础梁内力计算 (15)6.1基础底板内力计算 (15)6.2基础梁内力计算 (17)6.2.1边缘横梁(JL1)计算 (17)6.2.2中间横梁(JL2)计算 (19)6.2.3边梁纵梁(JL3)计算 (20)6.2.4中间纵梁(JL4)计算 (22)七、梁板配筋计算 (24)7.1底板配筋 (24)7.1.1板顶部配筋(取跨中最大弯矩) (25)7.1.2板底部(取支座最大弯矩) (26)7.2基础梁配筋 (27)八、粱截面配筋图 (34)九、心得体会 (36)十、参考文献 (36)一、工程概况几工程地质条件某办公楼建在地震设防六度地区,上部为框架结构8层,每层高 3.6m。
地下一层,不设内隔墙,地下室地板至一楼室内地面竖向距离4.5m。
地下室外墙厚300mm。
柱截面400×400,柱网及轴线如图所示。
室内外高差0.4m。
不考虑冻土。
上部结构及基础混凝土均采用C40。
1.1柱位图1.2土层信息1.3上部荷载二、基础选型根据提供的土层信息,可知建筑物所在位置的地基土多为粘土和粉质粘土,且地下水位较高,属于软土地基,且考虑到建筑的柱间距较大并设置了地下室等因素,综合考虑决定采用梁式筏板基础,梁式筏板基础其优点在于较平板式具有低耗材、刚度大,在本次设计中决定采用双向肋梁板式筏形基础。
筏板基础分为平板式筏基和梁板式筏基,平板式筏基支持局部加厚筏板类型;梁板式筏基支持肋梁上平及下平两种形式,下面就筏基的分析计算做详细阐述。
(1)地基承载力验算地基承载力验算方法同独立柱基,参见第17.1.1节内容。
对于非矩形筏板,抵抗矩W采用积分的方法计算。
(2)基础抗冲切验算按GB50007-2002第8.4.5条至第8.4.8条相关条款的规定进行验算。
①梁板式筏基底板的抗冲切验算底板受冲切承载力按下式计算式中:F l——作用在图17.1.5-1中阴影部分面积上的地基土平均净反力设计值;βhp——受冲切承载力截面高度影响系数;u m——距基础梁边h0/2处冲切临界截面的周长;f t——混凝土轴心抗拉强度设计值。
图17.1.5-1 底板冲切计算示意②平板式筏基柱(墙)对筏板的冲切验算计算时考虑作用在冲切临界截面重心上的不平衡弯矩所产生的附加剪力,2处冲切临界截面的最大剪应力τmax应按下列公式计算。
距柱边h0/式中:F l——相应于荷载效应基本组合时的集中力设计值,对内柱取轴力设计值减去筏板冲切破坏锥体内的地基反力设计值;对边柱和角柱,取轴力设计值减去筏板冲切临界截面范围内的地基反力设计值;地基反力值应扣除底板自重;u m ——距柱边h0/2处冲切临界截面的周长;M unb——作用在冲切临界截面重心上的不平衡弯矩设计值;c AB——沿弯矩作用方向,冲切临界截面重心至冲切临界截面最大剪应力点的距离;I s——冲切临界截面对其重心的极惯性矩;βs——柱截面长边与短边的比值,当βs<2时,βs取2;当βs>4时,βs取4;c1——与弯矩作用方向一致的冲切临界截面的边长;c2——垂直于c1的冲切临界截面的边长;a s——不平衡弯矩通过冲切临界截面上的偏心剪力传递的分配系数;③平板式筏基短肢剪力墙对筏板的冲切验算短肢剪力墙对筏板的冲切计算按等效外接矩形柱来计算,计算方法完全同柱对筏板的冲切,等效外接矩形柱参见图17.1.5-2。
YJK软件考虑抗浮基础设计演示1地质资料的输入:主要作用:1)进行沉降计算,必须有地质资料;2)桩土刚度的确定,如果选择【根据地质资料反算】则必须输入地质资料;3)桩长计算必须根据地质资料;注意事项(标高关系)地质资料数据采用独立的坐标系,要通过结构物正负0对应地质资料标高建立与结构物坐标系(上部结构楼层组装表正负0确立的坐标系)的对应关系。
地质资料坐标系:注意(钻探孔水头标高与抗浮水位标高并无直接的关系,该标高主要用于沉降计算考虑土的浮容重);结构物坐标系:地下水头标高的设置:筏板底标高设置:2.沉降计算沉降参数的设定:沉降计算一种方法:单向压缩分层总和法;基底准永久荷载作用组合作用下某一深度附加应力算法:布辛耐克解(独基,条基,无桩筏基,承台桩基,桩中心距不小于6倍的桩基)和明德林解(单桩,单排桩,桩距大于6倍桩径的疏桩基础);明德林解需要考虑相邻桩基相互影响,规范默认取0.6倍桩长;注意沉降(主要指地基沉降,主要与地基附加应力及各分层弹性模量有关)与位移(主要指基础在上部荷载及地基净反力作用下的变形,主要与基床系数及桩刚度K值有关)的区别:基床系数及桩刚度K两种模型之间的关系(基本模型与沉降模型)沉降模型迭代计算基床刚度,主要用于沉降计算,各单元基床刚度各不相同;基本模型不迭代计算基床刚度,各单元基床刚度相同,主要用于地基承载力计算,基础配筋及冲切局压等计算;基床系数及桩刚度K取值:3.考虑抗浮作用的基础设计:1.荷载组合:1).标准组合2).基本组合:2.筏板布置筏板基础一般按筏板定义;当按防水板定义时,基床系数自动取0,地基压力为0,筏板基础设计按倒楼盖模型设计,不能用于整体抗浮计算,只能用于局部抗浮计算;3.桩布置桩定义,当进行地基承载力,基础冲切,沉降等计算时按抗压桩定义,由于目前软件抗浮计算采用非线性分析,抗浮计算时,同时考虑桩的抗压刚度和抗拉刚度,计算不容易收敛,基础配筋出现异常,如抗浮工况起控制作用时建议将桩定义成锚杆来设计;4.整体抗浮计算结果:5.(局部抗浮起控制作用)基础配筋结果:两种布桩方案演示:(一)柱底抗浮考虑结构自重全部平衡,筏板部位布置纯抗拔桩;(二)柱底布桩考虑抗拔兼作抗压,筏板布置纯抗拔桩;两种布桩结果比较:方案一:(柱底抗浮考虑结构自重全部平衡,筏板部位布置纯抗拔桩);整体抗浮满足设计要求;(Gk + PFk)/Nw,k =1.06,局部抗浮亦满足设计要求;桩抗拔承载力之和PFk(kN) =24300;方案二:(柱底布桩考虑抗拔兼作抗压,筏板布置纯抗拔桩);整体抗浮满足设计要求;(Gk + PFk)/Nw,k =1.12,局部抗浮亦满足设计要求;桩抗拔承载力之和PFk(kN) =31350;两种方案整体抗浮局部抗浮均满足设计要求,而方案二抗拔桩数量是方案一的1.3倍,显然方案一抗拔桩布桩方案更为经济;两种方案在荷载作用组合1.0(高水)-1.0恒载下验算结构局部抗浮,方案一单桩抗拔力更为均匀;因此方案一考虑上部结构荷载分布的抗拔桩布置方案为更合理方案;二、传统设计理念的盲区传统设计理念的盲区归纳起来有以下四个方面:1、设计中过分追求高层建筑基础利用天然地基将箱基或厚筏应用于荷载与结构刚度极度不均的超高层框筒结构天然地基,由此导致基础的整体弯矩和挠曲变形过大,差异变形超标,甚至出现基础开裂。
盈建科筏板基础设计计算实例
随着经济的发展与人们居住环境要求的不断提高,高层建筑在世界各国大量兴建,建筑体型日趋复杂,高层建筑所面临的技术问题随之变得严峻。
高层建筑对基础的强度、刚度和稳定性的要求也就更加严格,同时使沉降量和倾斜控制在允许的范围内,并保证建筑物在风荷载与地震荷载作用下具有足够的稳定性。
高层建筑筏板基础的设计实例
工程概况
某公建,地下三层连为整体,地下三和二层为六级人防物资库,平时作为车库,地下一层为超市;地上部分以抗震缝分为三部分,A 区为20层办公楼,B及C区均为2层商业区。
为适应上部住宅,下部办公及车库的特点及使用要求,本工程采用了框架一核心筒的结构形式。
本工程抗震设防烈度为8度,抗震设防类别为丙类,场地土为中硬场地土,场地类别为Ⅱ类,建筑结构安全等级为二级,地基基础设计等级为一级,地下室防水等级为一级。
框架抗震等级为二级,核心筒剪力墙抗震等级为一级。
基础选型
综合考虑地质报告、规范要求、施工难度及建筑物层数相差较大、地下室大面积开挖等具体情况,高层建筑部分采用CFG桩复合地基方案;低层部分及纯地下部分持力层土质为第四纪沉积的粉质粘土、粘质粉土⑤层,粉砂⑤2层及细砂、中砂⑥层,地基承载力标准值(fka)
为180 kPa,可满足该部分地基承载力的要求,故可采用天然地基方案。