地基基础事故分析与处理案例分析
- 格式:doc
- 大小:21.50 KB
- 文档页数:4
地基质量事故处理案例概述地基质量事故是指在土地开发、基础施工或建筑物使用期间,由于地基质量不合格或施工过程中出现问题而引发的意外事件。
这些事故可能导致严重的人员伤亡、财产损失和环境破坏。
本文将以几个真实的地基质量事故案例为例,介绍它们的处理过程和教训。
案例一:地铁工程地基沉降事故案例描述该案发生在一座正在建设中的地铁工程项目中。
在施工过程中,地铁工程的地基出现了严重的沉降,导致相邻建筑物的倾斜和破坏。
事故发生后,施工方立即停工并启动救援和处理工作。
处理过程1.安全评估:施工方首先对事故现场进行安全评估,确保没有人员受到进一步的威胁。
随后,他们与当地政府和专业机构合作进行详细的地质勘察和结构评估。
2.事故调查:施工方成立了一个专门的调查团队,对事故原因进行了全面调查。
他们发现,在设计和施工过程中,地质勘测不够完善,导致施工在不稳定的地基上进行。
此外,施工方在施工过程中没有充分考虑地基的承载能力,使用了不合适的施工方法和材料。
3.救援和修复:施工方立即开始救援工作,并与受影响的建筑物业主进行沟通。
他们采取了加固措施,确保建筑物的稳定性,并逐步修复地基问题。
4.法律责任:受影响的业主提起民事诉讼,要求施工方承担损失。
最后,施工方与业主达成和解协议,并对受影响的建筑物进行了全面修复和补偿。
教训和启示1.地基质量是地下工程的关键,应进行充分的地质勘测和结构评估,确保施工在稳定的地基上进行。
2.施工过程中,应密切关注地基的沉降和承载能力,及时采取补偿措施,防止地基沉降进一步发展。
3.在地基质量事故发生时,及时停工并启动救援工作,确保人员安全。
4.与受影响的业主保持沟通,及时采取措施修复受损建筑物,减轻损失,并与业主达成和解协议,避免进一步纠纷。
案例二:土地开挖导致地面塌陷事故案例描述该案发生在一个正在进行土地开挖的工地上。
在土地开挖的过程中,突然发生了地面塌陷,导致一辆施工车辆被埋,一名工人被困。
事故发生后,施工方和救援队伍立即展开了抢救工作。
施工现场施工质量事故的案例分析与教训一、引言施工现场施工质量事故是指在建筑工程施工过程中发生的由于施工质量问题导致的意外事件。
这些事故不仅会给施工工人的生命安全带来威胁,还会给工程质量和进度造成严重影响,给相关方带来经济损失。
因此,通过案例分析和总结教训,能够有效地提高施工现场的施工质量,降低事故的发生率。
二、案例分析1. 案例一:建筑工地高处坠落事故在某建筑工地上,一名工人在高处作业时失足坠落,导致严重受伤。
经过调查,发现该事故的原因是施工现场没有搭建安全的脚手架和安全网,同时工人也没有配备防坠落设备,并且未经过相关的安全培训。
2. 案例二:地基基础施工事故在某地基基础施工过程中,因为施工人员对土壤力学性质不了解,导致在施工中使用了错误的基础设计方案。
结果在工程验收时发现地基出现明显的沉降和变形,需要重新进行地基处理,并产生了较大的经济损失。
三、案例教训1. 加强安全管理施工现场施工质量事故的主要原因之一是安全管理不到位。
应严格落实安全规章制度,搭建安全保护措施,明确各岗位职责,确保施工现场的安全。
2. 提高工人技能案例一的事故中,发现工人缺乏安全培训,也没有配备防坠落设备。
因此,加强工人的技能培训和教育,提高他们的安全意识和操作技能,是防止类似事故发生的重要手段。
3. 强化质量监控案例二的事故是由于对土壤力学性质了解不足导致的,说明工程质量监控不到位。
加强对施工现场环境和材料的监测,确保施工的合理性和质量,对预防施工质量事故具有重要意义。
四、教训总结与启示通过对施工现场施工质量事故的案例分析,我们能够总结出以下教训与启示:1. 安全第一,加强安全管理措施,确保施工现场的人身安全。
2. 提高工人技能培训,加强对施工技术和操作规范的培训教育,提高工人安全意识。
3. 加强质量监控,对施工材料和工程环境进行监测和检测,确保施工的合理性和质量。
4. 学习案例中的经验教训,不断完善施工质量管理体系,减少类似事故的发生。
地基基础事故分析与处理案例分析
1、工程概述
北京百盛大厦二期工程,基坑深15米,采用桩锚支护,钢筋混泥土灌注桩直径为800mm,桩顶标高-3.0m,桩顶设一道钢筋混泥土圈梁,圈梁上做3m高的挡土砖墙,并加钢筋混泥土结构柱。
在圈梁下2m处设置一层锚杆,用钢腰梁将锚杆固定,其实锚杆长20m,角度15度到18度,锚筋为钢绞线。
该场地地质情况从上到下依次为:杂填土,粉质粘土,粘质粉土,粉细砂,中粗砂,石层等。
地下水分为上层滞水和承压水两种。
基坑开挖完毕后,进行底版施工。
一夜的大雨,基坑西南角30余根支护桩折断坍塌,圈梁拉断,锚杆失效拔出,砖护墙倒塌,大量土方涌入基坑。
西侧基坑周围地面也出现大小不等的裂缝。
2、事故分析
2.1锚杆设计的角度偏小,锚固段大部分位于粘性土层中,使得锚固力较小,后经验算,发现锚杆的安全储备不足。
2.2持续的大雨使地基土的含水量剧增,粘性土体的内摩擦角和粘聚力大大降低,导致支护桩的主动土压力增加。
同时沿地裂缝(甚至于空洞)渗入土体中的雨水,使锚杆锚固端的摩阻力大大降低,锚固力减小。
2.3基坑西南角挡土墙后滞留着一个老方洞,大量的雨水从此窜入,对该处的支护桩产生较大的侧压力,并且冲刷锚杆,使锚杆
失效。
3、事故处理
事故发生后,施工单位对西侧桩后出现裂缝的地段紧急用工字钢斜撑支护的圈梁,阻止其继续变形。
西南角塌方地带,从上到下进行人工清理,一边清理边用土钉墙进行加固。
地基基础工程事故分析及处理摘要:古语有云:万丈高楼平地起,地基时建筑工程的基础部分,故而祁重要性不言而喻。
此外,随着中国经济及城市建设的发展,高层建筑和市政工程大量涌现,对基础方面的要求也就越来越高。
同样随之而来的地基事故问题也越来越多,地基基础工程事故发生可能是因勘测、设计、构造、制造、安装与使用等因素相互作用引起的。
在这些因素中,可能会有某些因素引起突发事故。
也可能是消耗性逐渐发生的事故,从安全上讲,突发事故是危险的。
所以,研究并探讨地基基础工程事故发生的原因,更具有普遍性。
地方性和经验性,对它的分析后得到的经验教训,更是建筑工程技术人员需要不断积累的知识财富。
总而言之,对地基基础工程事故的分析和采取有效的处理措施,是一个应该提上日程的重要课题。
关键词:地基基础事故事故分析处理方法防治前言:随着中国经济及城市建设的发展,高层建筑和市政工程大量涌现。
有限的城市地面空间已不能满足人们日益增长的工作和生活的需要,于是人们开始向高空和地下寻求发展空间。
近20年,尤其是近10年来,基坑工程数量急剧增加,技术上也有了长足的进步。
上世纪70年代末以前,中国国内只在少数大型工程项目中有开挖深度在10m以上的基坑工程,而且处在较少或没有相邻建筑或地下结构物的地区。
多数高层建筑都有1到3层的地下室,基坑开挖深度通常为6到15米。
进入21世纪后则出现了更多的超高层建筑和大型的地下工程。
而现在各类地下工程诸如越江隧道、地下商场、地下民防等已随处可见。
事实上,人类土木工程的频繁活动促进了基坑工程的发展。
这些工程的共同特点是都要进行大规模地下开挖,必然导致大量的基坑工程产生。
基坑工程是一个古老而具有划时代特点的综合性的岩土工程课题, 放坡开挖和简易木桩围护可以追溯到远古时代,既涉及土力学中典型的强度和变形问题,又涉及到土体与支护结构的相互作用问题。
为了保证建筑物的稳定性,建筑基础都必须满足地下埋深嵌固的要求。
建筑高度越高,其埋置深度也就越深,对基坑工程的要求越来越高,随之出现的问题也越来越多,这给建筑施工、特别是城市中心区的建筑施工带来了很大的困难。
第二章 地基与基础工程事故分析与处理第一节 地基工程质量事故分析与处理一、建(构)筑物对地基的要求1.地基承载力或稳定性问题地基承载力或稳定性问题是指地基在建(构)筑物荷载(包括静、动荷载的各种组合)作用下能否保持稳定。
若地基承载力不能满足要求,在建(构)筑物荷载作用下,地基将会产生局部或整体剪切破坏,影响建(构)筑物的安全与正常使用,甚至造成建(构)筑物的破坏。
天然地基承载力的高低主要与土的抗剪强度有关,也与基础形式、大小和埋深有关。
边坡稳定也属于这类问题。
2.沉降、水平位移及不均匀沉降问题在建(构)筑物的荷载(包括静、动荷载的各种组合)作用下,地基将产生沉降、水平位移以及不均匀沉降。
若地基变形(沉降、水平位移、不均匀沉降)超过允许值,将会影响建(构)筑物的安全与正常使用,严重的将造成建(构)筑物破坏。
其中不均匀沉降超过允许值造成的工程事故比例最高,特别在深厚软粘土地区。
天然地基变形大小主要与荷载大小和土的变形特性有关(见图2-1),也与基础型式有关。
3.渗透问题渗透问题主要分两类:一类是堤坝蓄水构筑物地基渗流量超过其允许值时,其后果是造成较大水量损失,甚至蓄水失败;另一类是地基中水力比降超过其允许值时,地基土会因潜蚀和管涌产生破坏,严重的将导致建(构)筑物破坏。
天然地基渗透问题主要与地基中水力比降和土的渗透性有关。
二、建筑工程地基事故类别及特征建筑物事故的发生,不少与地基问题有关。
而地基工程事故的主要原因是由于勘察、设计、施工不当或环境和使用情况改变而引起的。
其最终反映是产生过量的变形或不均匀变形,从而使上部结构出现裂缝,倾斜,削弱和破坏了结构的整体性、并影响到建筑物的正常使用。
严重者,地基失稳,导致建筑物倒塌。
地基事故可分为天然的地基事故和人工地基事故两大类。
无论是天然地基上事故还是人工地基上事故,按其性质都可概括为地基强度和变形两大问题。
地基变形问题引起的地基事故常发生软土、湿陷性黄土、膨胀土、季节性冻土等地区。
第1篇一、事故背景某市地铁工程是一项重要的城市交通基础设施项目,于2018年开始施工。
工程分为多个标段,其中标段A的基础施工由某基础工程公司负责。
在施工过程中,于2019年5月发生了一起基础施工事故。
二、事故经过2019年5月,某基础工程公司在标段A进行地铁车站基础施工。
该车站采用明挖法施工,基础为钢筋混凝土结构。
在基础施工过程中,由于施工人员操作不当,导致基础钢筋笼发生倾斜,造成基础钢筋笼与模板间隙过大,导致混凝土浇筑过程中出现大量漏浆现象。
事故发生后,项目部立即组织人员进行抢险,但由于事故原因复杂,抢险工作进展缓慢。
经过调查,发现事故原因如下:1. 施工人员未严格按照设计图纸和施工规范进行操作,导致基础钢筋笼安装过程中出现偏差。
2. 施工现场管理混乱,施工人员安全意识不强,未采取有效措施确保施工安全。
3. 施工单位对施工人员培训不到位,导致施工人员操作技能水平低下。
三、事故处理及原因分析1. 事故处理事故发生后,项目部立即采取以下措施:(1)立即停止事故部位施工,进行全面检查,确保其他部位施工安全。
(2)对事故原因进行调查,查明责任,对相关责任人进行严肃处理。
(3)加强施工现场管理,严格落实安全生产责任制。
2. 原因分析(1)施工人员操作不当:施工人员未严格按照设计图纸和施工规范进行操作,导致基础钢筋笼安装过程中出现偏差。
(2)施工现场管理混乱:施工现场管理混乱,施工人员安全意识不强,未采取有效措施确保施工安全。
(3)施工单位对施工人员培训不到位:施工单位对施工人员培训不到位,导致施工人员操作技能水平低下。
四、事故教训及预防措施1. 事故教训(1)加强施工现场管理,严格落实安全生产责任制。
(2)提高施工人员的安全意识和操作技能,确保施工安全。
(3)加强对施工项目的监督检查,及时发现和纠正施工过程中的安全隐患。
2. 预防措施(1)加强施工现场安全管理,严格执行操作规程。
(2)加强施工人员培训,提高其安全意识和操作技能。
常见地基与基础工程缺陷事故案例分析摘要:本文结合实际工程案例,分析常见地基与基础工程事故发生的原因,并提出相应的处理措施。
关键词:地基基础;缺陷事故;案例分析地基与基础工程属于地下隐蔽工程,其位于地面以下,存在着储多的不安全因素,建筑工程竣工之后,难以全面了解其状况,在建筑物使用期间出现的事故苗头又很难察觉,一旦发生事故则难以补救,甚至造成灾难性的后果。
地基与基础工程事故发生的原因很多,可能是因勘察、设计、施工及使用功能变更等因素相互作用引起的。
在这些因素中,某些因素会引起突发事故,而另一些因素则可能由于消耗性逐渐发生而导致事故,从安全上讲,突发事故是危险的。
困此,对地基与基础工程事故进行分析并采取有效的防止措施,是一个值得重视的课题。
同时,研究并探讨地基与基础工程事故发生的原因,探究其所具有的普遍性、地方性和经验性,从中吸取经验教训,是建筑工程技术人员不断积累知识财富的途径。
1.桩基础工程质量造成的缺陷事故当场地土质很差,不能作为天然地基,或上部荷载太大,无法采用天然地基,或要严格控制不同部位的沉降时,常用桩基础解决这些问题。
若考虑桩穿越软弱土层时能加固天然地基,则桩构成人工地基(如灰土、砂石等挤土桩);若考虑通过桩将上部结构荷载传给坚硬土层,则桩成为深基础;所以桩在地基土中的工作机制是非常复杂的,特别是采用机械成孔灌注桩施工时,往往由于无法直接洞察桩孔的成孔及混凝土浇捣过程而导致质量事故的发生。
事故实例:某21层商住两用综合楼采用泥浆护壁机械冲孔灌注桩。
主楼部分65根,直径为Φ1000 mm;辅楼部分23根,直径为Φ800 mm。
设计单桩竖向承载力特征值分别为5820kN和3800kN,设计桩长最深36m,要求进入较完整石灰岩层不少于lm。
桩顶混凝土应浇筑至设计桩顶标高以上0.5-0.8m。
施工采用CZ-30 型冲孔灌注桩桩机,正循环泥浆护壁冲孔,接导管水下浇筑混凝土成桩。
该场地土层自上而下为:填土:未经压实的亚黏土,厚3-6m;淤泥:软流塑状,高压缩性,厚2-4m;淤泥质土:软塑,高压缩性,厚4-6m;可塑性黏土及少量砂层:厚3-5m;⑤破碎石灰岩:岩体破碎、孔洞较多,厚2-9 m;溶洞:填充物主要为黄色可塑性粘土,厚0.8-5m;较完整石灰岩:厚6-8 m。
地基基础工程事故分析一、前言在建筑结构的建造的使用过程中,由于地基和基础工程的质量问题,使建筑物墙体和楼盖开裂影响使用的,有碍观瞻并使人有不安全感觉的,更有甚者使建筑物倒塌的事故,近几年有上升的趋势,根据统计资料显示,其中地基和基础工程的质量问题,占总事故的确21%。
在建筑结构的设计和施工过程中,人们普遍认为最难驾驭的并不是上部结构,而是该工程的地基和基础工程的问题,建筑物的上部结构尽管千变万最化,复杂万分,但是在电子计算机得普遍应用,今天,它们基本上都是在设计和施工中可以被预知和掌握。
而对于建筑群所在场地的地下土层分布则不然,一般地说,人们只能在设计前通过几个钻孔的土样的试验得知其少数信息,也只能在施工后,槽底的钎探结果了解其表层信息,至于更深层更全面的情况却不能全面的掌握,往往凭经验加以处理,这就产生误差,甚至错误造成对建筑物建成后的损坏,而且,地基基础都是地下隐蔽工程,建筑工程竣工后,难以检查,使用期间出现事故的苗头也不易察觉,一旦发生事故难以补救,甚至造成灾难性的后果。
地基基础工程事故发生可能是因勘测、设计、构造、制造、安装与使用等因素相互作用引起的。
而这些因素中。
某些因素引起突发事故。
另一些因素可能导致消耗性逐渐发生的事故,从安全上讲,突发事故是危险的。
所以,研究并探讨地基基础工程事故发生的原因,更具有普遍性。
地方性和经验性,对它的分析后得到的经验教训,更是建筑工程技术人员需要不断积累的知识财富。
并对地基基础工程事故采取有效的防止措施,是一个值得重视的课题。
二、地基与基础的工程事故的原因及防治方法(一)因工程地质勘查中的错误而产生的事故工程勘察报告要全面反映建筑场地工程地质和水文地质情况,预防地基与基础的工程事故,首先对场地工程地质和水文地质条件全面正确的了解,要做到这一点关键要搞好工程勘查工作,要根据建筑物场地的特点,建筑物情况合理确定工程勘察目的和任务,勘查工作是设计的重要称序,决不能忽视而不做,也不能随便做而不考虑是否适用。
地基基础质量事故分析与处理案例
案例1
1 工程概述
北京百盛大厦二期工程,基坑深15米,采用桩锚支护,钢筋混泥土灌注桩直径为800mm,桩顶标高—3.0m,桩顶设一道钢筋混泥土圈梁,圈梁上做3m高的挡土砖墙,并加钢筋混泥土结构柱。
在圈梁下2m处设置一层锚杆,用钢腰梁将锚杆固定,其实锚杆长20m,角度15度到18度,锚筋为钢绞线。
该场地地质情况从上到下依次为:杂填土,粉质粘土,粘质粉土,粉细砂,中粗砂,石层等。
地下水分为上层滞水和承压水两种。
基坑开挖完毕后,进行底版施工。
一夜的大雨,基坑西南角30余根支护桩折断坍塌,圈梁拉断,锚杆失效拔出,砖护墙倒塌,大量土方涌入基坑。
西侧基坑周围地面也出现大小不等的裂缝。
2 事故分析
锚杆设计的角度偏小,锚固段大部分位于粘性土层中,使得锚固力较小,后经验算,发现锚杆的安全储备不足。
持续的大雨使地基土的含水量剧增,粘性土体的内摩擦角和粘聚力大大降低,导致支护桩的主动土压力增加。
同时沿地裂缝(甚至于空洞)渗入土体中的雨水,使锚杆锚固端的摩阻力大大降低,锚固力减小。
基坑西南角挡土墙后滞留着一个老方洞,大量的雨水从此窜入,对该处的支护桩产生较大的侧压力,并且冲刷锚杆,使锚杆失效。
3 事故处理
事故发生后,施工单位对西侧桩后出现裂缝的地段紧急用工字钢斜撑支护的圈梁,阻止其继续变形。
西南角塌方地带,从上到下进行人工清理,一边清理边用土钉墙进行加固。
案例2
1 工程概况
某渔委商住楼为322层钢筋混凝土框筒结构大楼,一层地下室,总面积23150平方米。
基坑最深出(电梯井)-6.35M
该大楼位于珠海市香洲区主干道凤凰路与乐园路交叉口,西北两面临街,南面与市粮食局5层办公楼相距3~4M,东面为渔民住宅,距离大海200M。
地质情况大致为:地表下第一层为填土,厚2M;第而层为海砂沉积层,厚7M;第三层为密实中粗砂,厚10M;第四层为黏土,厚6M;-25以下为起伏岩层。
地下水与海水相通,水位为-2.0M,砂层渗透系数为K=~51.3m/d。
2 基坑设计与施工
基坑采用直径480MM的振动灌注桩支护,桩长9M,桩距800MM,当支护桩施工至粮食局办公楼附近时,大楼的伸缩缝扩大,外装修马赛克局部被振落,因此在粮食局办公楼前作5排直径为500MM的深层搅拌桩兼作基坑支护体与止水帷幕,其余区段在震动灌注桩外侧作3排深层搅拌桩*(桩长11~13M,相互搭接50~100MM),以形成止水帷幕。
基坑的支护桩和止水桩施工完毕后,开始机械开挖,当局部挖至-4M时,基坑内涌水涌砂,坑外土体下陷,危及附近建筑物及城市干道的安全,无法继续施工,只好回填基坑,等待处理。
3 事故分析
止水桩施工质量差是造成基坑涌水涌砂的主要原因。
基坑开挖后发现,深层搅拌止水桩垂直度偏差过大,一些桩根本没有相互搭接,桩间形成缝隙、甚至为空洞。
坑内降水时,地下水在坑内外压差作用下,穿透层层桩间空隙进入基坑,造成基坑外围水土流失,地面塌陷,威胁临近的建筑物和道路。
另外,深层搅拌桩相互搭接仅50MM,在桩长13M的范围内,很难保证相临的完全咬合。
从以上分析可见,由于深层搅拌桩相互搭接量过小,施工设备的垂直度掌握不好,致使相临体不能完全弥合成为一个完整的防水体,所以即使基坑周边作了多排(3~5排)搅拌,也没有解决好止水的问题,造成不必要的经济损失。
4 事故处理
采用压力注浆堵塞桩间较小的缝隙,用棉絮包海带堵塞桩间小洞。
用砂白为堰堵砂,导管引水,局部用灌注混凝土的方法堵塞桩间大洞。
在搅拌桩和灌注桩桩顶做一到钢筋混凝土圈梁,增加支护结构整体性。
在基坑外围挖宽0.8M、深2.0M的渗水槽至海砂层,槽内填碎石,在基坑降水的同时,向渗水槽回灌,控制基坑外围地下水位。
通过采取以上综合处理措施,基坑内涌砂涌水现象消失,基坑外地面沉陷得以控制,确保了相临建筑物和道路的安全。
案例3
1 工程概况
温州某工程位于市心十字路口,基坑平面呈“L”形,开挖深度5.75M。
该工程地面以下为流塑状淤泥土,厚达25M以上。
支护结构采用悬臂式钻孔浇桩,桩径600,桩长15M,间距1000,桩顶作300高钢筋混凝土圈梁。
该工程土方从中间向两端开挖,土方挖至1/3时,靠近马路一侧的支护桩整体倾斜,最大桩顶位移达750MM,压顶圈梁多处断裂,人行道大面积塌陷,靠近支护桩的14根工程桩(Φ800的钻孔灌注桩)也随之断裂内移,造成较大的经济损失。
2 事故分析
设计参数选择不当。
设计计算时选用固结排水剪强度指标,这对于没有任何降排水措施的淤泥土质土,该参数的选择显然偏大,从而使得支护结构设计的安全储备过小,甚至于危险。
一般对淤泥土中支护结构计算宜选用直剪或不排水三轴试验所提供的强度指标,如勘察单位没提供该数数据,对应固结排水剪的张度指标进行修正。
由于淤泥图渗透性较差,故设计时没考虑止水措施,且间距过大(桩间净距400MM)。
尽管淤泥土的渗透性很小,但流塑状的淤泥土在渗透水压的作用下,极易造成“流土”现象。
从本工程支护桩外人行道大面积下陷的现象分析,土方开挖过程中产生大量流土(坑底隆起)。
工程桩的断裂主要是由于土体的滑坡所造成。
施工单位考虑带原支护桩设计采用悬臂结构不安全,在土方开挖到一半深度时用现有的型钢作临时支撑,但支撑长细比过大(截面尺寸400MM×400MM,长17M),造成支撑受压后失稳,没有起到相应的作用。
3 事故处理
该工程采取以下措施进行补救:
将底板分三块施工,留两条垂直工缝,施工缝处设计钢板止水带,已开挖部分先清理后浇筑板底,然后再开挖另外两块土方,避免坑底土体暴露时间过长。
对于后开挖的部分,在-2.5M处设钢筋混凝土圈梁一道,然后每隔6M左右设一道型
钢支撑,并设连系杆控制长强比,防止失稳,两端部设钢筋混凝土角撑。
南边及东边均有旧建筑,距离约有8M,为防止桩间挤土面危害旧房,在围护桩外打2排Φ600水泥搅拌桩用于汁水挡土,水泥掺量13%,并掺加2%的石膏快凝。
对于断裂的工程桩,采用沉井作围护下挖至断裂处,清理上部断桩后用高一等级混凝土接至设计标高,并在施工时随时注意观察坑底有无涌土或隆起现象。
经过以上措施,该地下室工程得以顺得实施。