地基基础处理案例
- 格式:ppt
- 大小:7.17 MB
- 文档页数:154
与土有关的典型工程案例一、与土或土体有关的强度问题1.加拿大特朗斯康谷仓加拿大特朗斯康谷仓,由于地基强度破坏发生整体滑动,是建筑物失稳的典型例子。
(1)概况加拿大特朗斯康谷仓平面呈矩形,长59.44 m,宽23.47 m。
高31.0m。
容积36368 m3。
谷仓为圆筒仓,每排13个圆筒仓,共5排65个圆筒仓组成。
谷仓的基础为钢筋混凝土筏基,厚61cm,基础埋深3.66m。
谷仓于1911年开始施工,1913年秋完工。
谷仓自重20000t,相当于装满谷物后满载总重量的42 5% 。
1913年9月起往谷仓装谷物,仔细地装载,使谷物均匀分布、10月当谷仓装了31822m3谷物时,发现1小时内垂直沉降达30.5cm。
结构物向西倾斜,并在24小时间谷仓倾倒,倾斜度离垂线达26o53ˊ。
谷仓西端下沉7.32m,东端上抬加拿大谷仓地基滑动而倾倒端下沉7 32m,东端上抬1.52m。
1913年10月18日谷仓倾倒后,上部钢筋混凝土筒仓艰如盘石,仅有极少的表面裂缝。
(2)事故原因1913年春事故发生的预兆:当冬季大雪融化,附近由石碴组成高为9 14m的铁路路堤面的粘土下沉1m左右迫使路堤两边的地面成波浪形。
处理这事故,通过打几百根长为18.3m的木桩,穿过石碴,形成一个台面,用以铺设铁轨。
谷仓的地基土事先未进行调查研究。
根据邻近结构物基槽开挖试验结果,计算承载力为352kPa,应用到这个仓库。
谷仓的场地位于冰川湖的盆地中,地基中存在冰河沉积的粘土层,厚12.2m.粘土层上面是更近代沉积层,厚3.0m。
粘土层下面为固结良好的冰川下冰碛层,厚3.0 m.。
这层土支承了这地区很多更重的结构物。
1952年从不扰动的粘土试样测得:粘土层的平均含水量随深度而增加从40%到约60%;无侧限抗压强度qu从118.4kPa减少至70.0kPa平均为100.0kPa;平均液限wl =105%,塑限wp=35%,塑性指数Ip=70。
试验表明这层粘土是高胶体高塑性的。
一、地基与基础分部1、<土石方工程>案例1:将原设计的打桩-开挖-回填碎石优化为开挖-换填-打桩1.案例背景某项目拟建场区原有地貌形态属滨海浅滩,后经人工改造形成的虾池养殖区,长期海洋养殖,池内淤泥层厚而软稀,现场进行了土方回填作为拟建场地。
工程基础设计做法为预应力方桩,根据现场情况及桩基设计,如何确保软土地基沉桩质量,是现场需要解决的重大难题。
原设计方案为在回填土上后直接进行沉桩施工,沉桩完成后进行桩间土开挖,超挖50cm后回填碎石土作为基础的褥垫层。
2.案例策划如果按照原设计方案组织施工,现场将面临以下问题:原来的场区回填只是满足了运输车辆的通行,而桩基作业时打桩机械需要的地基承载力远高于普通运输车辆,而且沉桩作业时桩机局部对基底有很强的冲击作用,如果直接在回填土上打桩,很可能无法确保安全施工;而且沉桩后再行挖土,挖掘机和运输车辆行走会对桩体产生侧向推力,而本工程回填土厚度约2m,回填土下方有厚达8m的淤泥层,工程桩上部都位于淤泥层,无法承受水平荷载,如果按此方案施工,桩身质量恐受影响。
3.案例实施项目部将上述情况向建设单位进行汇报,并提出先进行土方开挖,并对设计基底标高进行超挖后回填2m级配砂石(回填标高考虑一定的桩基隆起效应,避免打桩后再开挖),经过碾压密实后进行桩基施工。
有关领导听取建议后,组织勘察、设计和参建单位的相关专家召开多次现场会议,经过现场试验和会议论证,最终采纳了对已回填场地进行开挖换填后进行桩基施工的方案。
4.案例效果施工现场如果发生安全事故就是最大的成本,该方案将原设计的打桩-开挖-基底回填碎石优化为开挖-换填-打桩,而且将原设计的50cm碎石回填调整为2m 换填,确保了桩基施工安全、减少了我方施工难度同时还扩大了我方施工的工程量和施工效益。
该做法扩大回填工程量约13万立方(虚方),增加产值约600万。
5.心得体会无论建设方还是施工方,安全都是第一要保障的要素,在确保安全的基础上才能采取相应的做法和施工措施。
第1篇一、工程概况某住宅小区位于我国中部地区,占地面积约10万平方米,总建筑面积约15万平方米,包含住宅楼、商业楼、地下车库等配套设施。
本次施工方案针对的是该住宅小区地下车库的基础工程。
二、施工组织设计1. 施工部署(1)施工顺序:按照先地下后地上、先主体后附属、先结构后装修的原则进行施工。
(2)施工阶段划分:基础施工、主体施工、装饰装修施工、设备安装施工、室外工程等。
(3)施工队伍组织:成立项目经理部,下设工程技术部、质量安全管理部、物资设备部、财务部等职能部门,确保施工顺利进行。
2. 施工进度计划根据工程规模和施工方案,制定详细的施工进度计划,确保工程按期完成。
三、施工工艺1. 土方开挖(1)采用机械开挖,人工配合。
(2)开挖顺序:自上而下分层开挖,每层厚度不超过1.5m。
(3)开挖过程中,注意边坡稳定性,防止坍塌。
2. 地基处理(1)地基处理方法:根据地质勘察报告,采用换填、压实、预压等处理方法。
(2)换填材料:选用符合设计要求的砂石、碎石等材料。
(3)压实度要求:满足设计要求,确保地基承载力。
3. 桩基施工(1)桩基类型:根据地质条件,选用预应力混凝土桩、钢管桩等。
(2)桩基施工方法:采用钻孔灌注桩、预制桩等方法。
(3)桩基质量控制:严格控制桩长、桩径、桩位、桩身质量等。
4. 地下室结构施工(1)地下室结构形式:钢筋混凝土框架结构。
(2)施工顺序:先施工柱、梁、板,再施工墙体。
(3)模板支设:采用钢模板,确保模板支撑体系稳定。
(4)混凝土浇筑:采用泵送混凝土,确保混凝土质量。
5. 防水施工(1)防水材料:选用优质防水材料,如SBS防水卷材、聚氨酯防水涂料等。
(2)防水施工:按设计要求进行防水施工,确保地下室防水效果。
四、施工质量控制1. 质量目标确保工程质量达到国家相关标准,达到设计要求。
2. 质量控制措施(1)严格执行国家有关工程质量标准、规范和规程。
(2)加强施工过程中的质量控制,确保每道工序质量。
地基处理案例
地基处理是建筑工程中的一个重要环节,其目的是为了提高地基的承载力、减小沉降量、增加地基的稳定性和耐久性。
以下是一些地基处理的案例:
1.湿陷性黄土地基处理:当湿陷性黄土地基的压缩变形、湿陷变形或强度不能满足设计要求时,需要采取相应的措施。
这些措施可能包括结构措施,如减小建筑物的不均匀沉降,以及工程措施,如使用桩基础穿透全部湿陷性土层。
2.深厚杂填土场地处理:以北京市朝阳区某项目为例,该地点的杂填土中含有大量的建筑垃圾和生活垃圾,基底以下的最大厚度超过22 m。
为了处理这种情况,需要进行地基加固,例如采用桩基础、地下连续墙等方法。
3.冲填土暗浜处理:浙江省金华市某宿舍楼的建筑位置在冲填土的暗浜范围内。
经过勘察发现,场地内有一个池塘,塘底的淤泥未被挖除,冲填龄期达到45年以上。
为了处理这种情况,可以采用桩基础、地下连续墙等方法。
4.深基坑变形加固治理:某国际广场基坑工程位于长沙市劳动路与体育中心大道交汇的西北角。
基坑西侧分布有5栋6层~8层建筑,基坑北侧分布有2栋6层建筑。
为了确保基坑的稳定性,采用了多种加固方法,如灌注桩、地下连续墙等。
5.大屯慧忠北里居住区C区三塔地基处理:这是一个高层住宅楼
项目的地基处理案例。
原设计采用钢筋混凝土灌注桩基础,但经过研究后,决定改为CFG桩复合地基。
这一决策是基于工程地质条件和设计要求,以确保建筑物的稳定性和耐久性。
总的来说,地基处理是一个复杂的过程,需要根据具体的地质条件、工程需求和设计要求来选择合适的处理方法。
地基质量事故处理案例概述地基质量事故是指在土地开发、基础施工或建筑物使用期间,由于地基质量不合格或施工过程中出现问题而引发的意外事件。
这些事故可能导致严重的人员伤亡、财产损失和环境破坏。
本文将以几个真实的地基质量事故案例为例,介绍它们的处理过程和教训。
案例一:地铁工程地基沉降事故案例描述该案发生在一座正在建设中的地铁工程项目中。
在施工过程中,地铁工程的地基出现了严重的沉降,导致相邻建筑物的倾斜和破坏。
事故发生后,施工方立即停工并启动救援和处理工作。
处理过程1.安全评估:施工方首先对事故现场进行安全评估,确保没有人员受到进一步的威胁。
随后,他们与当地政府和专业机构合作进行详细的地质勘察和结构评估。
2.事故调查:施工方成立了一个专门的调查团队,对事故原因进行了全面调查。
他们发现,在设计和施工过程中,地质勘测不够完善,导致施工在不稳定的地基上进行。
此外,施工方在施工过程中没有充分考虑地基的承载能力,使用了不合适的施工方法和材料。
3.救援和修复:施工方立即开始救援工作,并与受影响的建筑物业主进行沟通。
他们采取了加固措施,确保建筑物的稳定性,并逐步修复地基问题。
4.法律责任:受影响的业主提起民事诉讼,要求施工方承担损失。
最后,施工方与业主达成和解协议,并对受影响的建筑物进行了全面修复和补偿。
教训和启示1.地基质量是地下工程的关键,应进行充分的地质勘测和结构评估,确保施工在稳定的地基上进行。
2.施工过程中,应密切关注地基的沉降和承载能力,及时采取补偿措施,防止地基沉降进一步发展。
3.在地基质量事故发生时,及时停工并启动救援工作,确保人员安全。
4.与受影响的业主保持沟通,及时采取措施修复受损建筑物,减轻损失,并与业主达成和解协议,避免进一步纠纷。
案例二:土地开挖导致地面塌陷事故案例描述该案发生在一个正在进行土地开挖的工地上。
在土地开挖的过程中,突然发生了地面塌陷,导致一辆施工车辆被埋,一名工人被困。
事故发生后,施工方和救援队伍立即展开了抢救工作。
第1篇一、项目概况项目地点:某城市项目规模:住宅楼总建筑面积约10万平方米,共包括8栋住宅楼,其中高层住宅6栋,多层住宅2栋。
工程结构:框架-剪力墙结构。
地质条件:场地土层主要为粉土、砂土和淤泥质土,地下水位较浅。
二、施工方案1. 施工准备(1)组织施工队伍,明确施工责任,进行技术交底。
(2)编制施工组织设计,明确施工顺序、施工工艺和施工方法。
(3)对施工人员进行安全教育和培训,提高施工人员的安全意识和技能。
(4)进行材料、设备的采购和验收,确保材料、设备质量符合要求。
2. 施工方法(1)土方开挖:采用机械开挖,开挖深度约为1.5米,挖至设计标高后进行边坡修整。
(2)基础垫层:铺设100mm厚C15混凝土垫层,表面平整,坡度符合设计要求。
(3)基础施工:①基础垫层铺设完毕后,进行钢筋绑扎,钢筋规格及间距符合设计要求。
②模板安装:采用钢模板,模板搭设稳固,接缝严密,防止漏浆。
③混凝土浇筑:采用商品混凝土,浇筑过程中进行振捣,确保混凝土密实。
④混凝土养护:浇筑完成后,及时进行养护,保持混凝土强度。
3. 施工质量控制(1)原材料质量控制:对进场材料进行检验,确保材料质量符合设计要求。
(2)施工过程控制:严格按照施工工艺进行施工,确保施工质量。
(3)隐蔽工程验收:在施工过程中,对隐蔽工程进行验收,确保工程质量。
4. 施工安全措施(1)施工现场设置安全警示标志,加强安全教育培训。
(2)施工人员必须佩戴安全帽、安全带等防护用品。
(3)施工机械操作人员必须持证上岗,确保机械操作安全。
(4)施工现场设置消防设施,定期进行消防演练。
三、施工进度计划根据工程规模和施工条件,制定以下施工进度计划:1. 土方开挖:20天2. 基础垫层:10天3. 钢筋绑扎:15天4. 模板安装:10天5. 混凝土浇筑:15天6. 混凝土养护:15天总计:85天四、总结本案例针对某城市住宅项目基础工程施工方案进行了详细阐述,包括施工准备、施工方法、施工质量控制、施工安全措施和施工进度计划等方面。
目录案例一 (2)案例二 (2)案例三 (3)案例四 (3)地基基础事故分析与处理案例案例一2005年5月10日早上,浙江萧甬铁路余姚西至驿亭区间,由于地方一砖瓦厂取土,造成铁路地基土体移位,路堤发生整体下沉事故,导致铁路中断行车,杭州至宁波间途经该处的旅客列车受到影响。
事故原因:为一砖瓦厂取土,造成铁路地基土体移位,路堤发生整体下沉。
地方相关部门说,事故地段地处软土地基,地质情况比较复杂,事故原因有待进一步调查确定。
处理措施:萧甬铁路有限责任公司负责指挥现场抢修工作的陈姓工程师勘察现场后,立即制定了抢修方案:做好地基处理——先修因移位而塌陷的公路,再通过公路运石方,把下陷后悬空的铁路填平,同时稳固拱起来的流泥土,保证土层不再流动。
案例二北京百盛大厦二期工程,基坑深15米,采用桩锚支护,钢筋混泥土灌注桩直径为800mm,桩顶标高-3.0m,桩顶设一道钢筋混泥土圈梁,圈梁上做3m高的挡土砖墙,并加钢筋混泥土结构柱。
在圈梁下2m处设置一层锚杆,用钢腰梁将锚杆固定,其实锚杆长20m,角度15度到18度,锚筋为钢绞线。
该场地地质情况从上到下依次为:杂填土,粉质粘土,粘质粉土,粉细砂,中粗砂,石层等。
地下水分为上层滞水和承压水两种。
基坑开挖完毕后,进行底版施工。
一夜大雨过后,基坑西南角30余根支护桩折断坍塌,圈梁拉断,锚杆失效拔出,砖护墙倒塌,大量土方涌入基坑,西侧基坑周围地面也出现大小不等的裂缝。
事故原因:1.锚杆设计的角度偏小,锚固段大部分位于粘性土层中,使得锚固力较小,后经验算,发现锚杆的安全储备不足。
2.持续的大雨使地基土的含水量剧增,粘性土体的内摩擦角和粘聚力大大降低,导致支护桩的主动土压力增加。
同时沿地裂缝(甚至于空洞)渗入土体中的雨水,使锚杆锚固端的摩阻力大大降低,锚固力减小。
3.基坑西南角挡土墙后滞留着一个老方洞,大量的雨水从此窜入,对该处的支护桩产生较大的侧压力,并且冲刷锚杆,使锚杆失效。
冻土地基施工的成功案例一、引言冻土地基是一种特殊的地质条件,其施工难度较大,需要采取特殊的施工方法和技术。
冻土地基施工的成功案例可以提供宝贵的经验和技术参考,有助于推动冻土地基施工技术的进步和发展。
本文将介绍一个冻土地基施工的成功案例,从案例背景、解决方案、实施过程与成效等方面进行详细阐述。
二、案例背景该冻土地基施工项目位于我国北方地区,是一座大型工业设施的基础工程。
该地区气候寒冷,冻土分布广泛,地基土层多为冰川沉积物和冰水沉积物,具有较高的含水量和较低的强度。
因此,该项目的地基施工难度较大,需要采取特殊的施工方法和技术措施。
三、解决方案为了解决该冻土地基施工项目的问题,采用了以下解决方案:1.冻土置换:采用砂石、矿渣等材料置换部分冻土层,以降低含水量和提高强度。
同时,在置换过程中,需要控制置换材料的级配和压实度,以确保地基的稳定性和承载力。
2.保温措施:为了防止冻土融化对地基的影响,在地基周围采用保温材料进行保温处理。
保温材料可以选择聚苯乙烯泡沫板等材料,通过合理设置保温层的厚度和密度,以保持地基的温度稳定。
3.排水措施:在地基周围设置排水沟和排水管,将地基中的水分排出,以降低含水量和提高强度。
排水沟和排水管的设置需要根据实际情况进行设计,以确保排水效果良好。
4.监测与观测:在地基施工过程中和施工完成后,需要进行监测和观测。
监测内容包括地基沉降、位移、裂缝等;观测内容包括气温、地温、湿度等。
通过监测和观测数据的分析,及时发现和处理问题,确保地基的稳定性和安全性。
四、实施过程与成效在实施过程中,严格按照设计方案和施工计划进行施工。
在地基施工过程中,加强了监测和观测工作,及时发现和处理问题。
同时,采用了先进的施工设备和技术措施,提高了施工效率和质量。
最终,该冻土地基施工项目顺利完成,达到了预期的效果。
该项目的成功实施取得了以下成效:1.地基稳定性提高:通过采用冻土置换、保温措施和排水措施等解决方案,提高了地基的承载力和稳定性,保证了建筑物的安全性和稳定性。