数学建模实验 ――曲线拟合与回归分析
- 格式:doc
- 大小:56.50 KB
- 文档页数:4
曲线拟合与回归分析1、有 10个同类企业的生产性固定资产年平均价值和工业总产值资料如下:(1说明两变量之间的相关方向;(2建立直线回归方程;(3计算估计标准误差;(4估计生产性固定资产(自变量为 1100万元时的总资产(因变量的可能值。
解:(1工业总产值是随着生产性固定资产价值的增长而增长的,存在正向相关性。
用 spss 回归(2 spss 回归可知:若用 y 表示工业总产值(万元,用 x 表示生产性固定资产,二者可用如下的表达式近似表示:567.395896. 0+=xy(3 spss 回归知标准误差为 80.216(万元。
(4当固定资产为 1100时,总产值为:(0.896*1100+395.567-80.216~0.896*1100+395.567+80.216 即(1301.0~146.4这个范围内的某个值。
MATLAB 程序如下所示:function [b,bint,r,rint,stats] = regression1x = [318 910 200 409 415 502 314 1210 1022 1225];y = [524 1019 638 815 913 928 605 1516 1219 1624];X = [ones(size(x', x'];[b,bint,r,rint,stats] = regress(y',X,0.05;display(b;display(stats;x1 = [300:10:1250];y1 = b(1 + b(2*x1;figure;plot(x,y,'ro',x1,y1,'g-';生产性固定资产价值 (万元工业总价值 (万元industry = ones(6,1; construction = ones(6,1; industry(1 =1022; construction(1 = 1219; for i = 1:5industry(i+1 =industry(i * 1.045;construction(i+1 = b(1 + b(2* construction(i+1; enddisplay(industry; display( construction; end运行结果:b = 395.5670 0.8958 stats = 1.0e+004 *0.0001 0.0071 0.0000 1.6035 industry = 1.0e+003 * 1.0220 1.0680 1.1160 1.16631.2188 1.2736 construction = 1.0e+003 * 1.2190 0.3965 0.3965 0.3965 0.3965 0.3965。
在曲线拟合APP中是如何进行线性回归分析的线性回归是一种统计学方法,用来建立自变量和因变量之间的线性关系。
它假设自变量和因变量之间存在一个线性关系,即因变量是自变量的线性组合。
线性回归的目标是通过拟合模型,从数据中推测出自变量和因变量之间的关系,并预测新数据样本的因变量。
在线性回归中,自变量和因变量之间的关系可以用一个简单的公式来表示:y=a+b某其中,y是因变量,某是自变量,a是截距,b是斜率。
当我们拟合数据时,我们需要找到最佳的截距和斜率,使得模型的拟合效果最优。
我们可以使用梯度下降等算法来拟合线性回归模型,并计算出截距和斜率的最优值。
一旦我们得到了最佳的截距和斜率,我们就可以使用这个模型来预测新的数据样本了。
下面是线性回归的主要步骤:收集数据:首先,需要收集一个包含自变量和因变量的数据集。
确定回归模型:然后,需要选择一个适当的线性回归模型来拟合数据。
这通常涉及确定适当的模型假设、选择自变量等。
拟合回归模型:一旦确定了回归模型和自变量,就可以使用最小二乘法等方法来拟合回归模型,以使预测误差最小化。
评估模型:在拟合回归模型后,需要评估其拟合程度。
这可以通过计算拟合优度、检查残差图、Q-Q图和其他统计量来实现。
使用模型:最后,可以使用已拟合的回归模型来进行预测。
此时,给定自变量值,可以通过回归方程直接计算因变量的估计值。
需要注意的是,回归分析并不是一定要采用线性回归模型。
实际上,有许多其他类型的回归分析可以使用,如多元回归、非线性回归、广义线性回归等。
具体选择哪种回归分析方法,取决于数据的性质和研究问题的特征。
摘要冬青是一种寄生在大树上部树枝的药科植物。
本文主要研究每株大树上冬青的数量与大树年龄之间的关系。
本文主要是运用两种方法,一是线性化模型求解,二是非线性模型求解。
1.线性化求解,由于题目中的数据对参数是非线性的,因此要通过两边取对数的方法转化为线性模型,即εln ln ln ++=bx a y模型中的因变量y ln 对新的参数A 、B 是线性的。
运用MATLAB 进行线性拟合因而得到A 、B 的值,从而得到a 、b 的值从而得到回归方程x b e a yˆˆˆ= 2.非线性模型求解,题目中的数据对参数是非线性的,因此可以用非线性回归的方法直接估计模型中的参数。
模型的求解可以用MATLAB 统计工具箱中的命令进行,使用格式为:[beta,R,J]=nlinfit(x,Y,'f1',beta0)Nlinfit 函数可以对给出的数据进行非线性回归,确定出参数的值,从而得到回归方程x b e a yˆˆˆ= 关键词: 线性回归 非线性回归 nlinfit一.问题重述冬青是一种寄生在大树上部树枝的药科植物,它喜欢寄生在年轻的大树上,以模型Y=εbx ae ,ln ε~N(0,2σ)拟合数据,试求曲线回归方程()x b a yˆex p ˆˆ=。
二.基本假设1.每株大树的生长环境是一样;2.影响大树上冬青寄生的株数的环境因素也是一样。
三.符号说明四.问题分析由数据绘制出散点图如下:以大树的年龄x 为自变量、以每株大树上冬青寄生的株数y 为因变量,利用MATLAB 统计工具箱的plot 命令画出散点图如图1,使用程序见附录程序1图1 散点图下面可以用εbx ae y =拟合数据。
其中ε为随机误差。
这个模型是非线性的,因此要通过两边取对数将其变成线性的,即bx a y ++=εln ln ln 。
可以将其看成是一元线性方程:εln ln ++=Bx A y 。
则y ln 对x 是线性的。
输出b 为a ln 和b 的估计值,bint 为b 的置信区间,stats 为回归模型的检验统计量,分别为回归方程的决定系数2R ,统计量值F ,概率值p 。
曲线拟合与回归分析
1、有 10个同类企业的生产性固定资产年平均价值和工业总产值资料如下:
(1说明两变量之间的相关方向;
(2建立直线回归方程;
(3计算估计标准误差;
(4估计生产性固定资产(自变量为 1100万元时的总资产
(因变量的可能值。
解:
(1工业总产值是随着生产性固定资产价值的增长而增长的,存
在正向相关性。
用 spss 回归
(2 spss 回归可知:若用 y 表示工业总产值(万元,用 x 表示生产性固定资产,二者可用如下的表达式近似表示:
567
.
395
896
. 0+
=x
y
(3 spss 回归知标准误差为 80.216(万元。
(4当固定资产为 1100时,总产值为:
(0.896*1100+395.567-80.216~0.896*1100+395.567+80.216 即(1301.0~146.4这个范围内的某个值。
MATLAB 程序如下所示:
function [b,bint,r,rint,stats] = regression1
x = [318 910 200 409 415 502 314 1210 1022 1225];
y = [524 1019 638 815 913 928 605 1516 1219 1624];
X = [ones(size(x', x'];
[b,bint,r,rint,stats] = regress(y',X,0.05;
display(b;
display(stats;
x1 = [300:10:1250];
y1 = b(1 + b(2*x1;
figure;plot(x,y,'ro',x1,y1,'g-';
生产性固定资产价值 (万元
工业总价值 (万元
industry = ones(6,1; construction = ones(6,1; industry(1 =1022; construction(1 = 1219; for i = 1:5
industry(i+1 =industry(i * 1.045;
construction(i+1 = b(1 + b(2* construction(i+1; end
display(industry; display( construction; end
运行结果:b = 395.5670 0.8958 stats = 1.0e+004 *
0.0001 0.0071 0.0000 1.6035 industry = 1.0e+003 * 1.0220 1.0680 1.1160 1.1663
1.2188 1.2736 construction = 1.0e+003 * 1.2190 0.3965 0.3965 0.3965 0.3965 0.3965。