数学建模实验 ——曲线拟合与回归分析
- 格式:docx
- 大小:45.81 KB
- 文档页数:2
曲线拟合与回归分析1、有10个同类企业的生产性固定资产年平均价值和工业总产值资料如下:(1)说明两变量之间的相关方向;(2)建立直线回归方程;(3)计算估计标准误差;(4)估计生产性固定资产(自变量)为1100万元时的总资产(因变量)的可能值。
解:由表格易知:工业总产值是随着生产性固定资产价值的增长而增长的,而知之间存在正向相关性。
用spss回归有:(2)、可知:若用y表示工业总产值(万元),用x表示生产性固定资产,二者可用如下的表达式近似表示:=x.0+y.567395896(3)、用spss回归知标准误差为80.216(万元)。
(4)、当固定资产为1100时,总产值可能是(0.896*1100+395.567-80.216~0.896*1100+395.567+80.216)即(1301.0~146.4)这个范围内的某个值。
另外,用MATLAP也可以得到相同的结果:程序如下所示:function [b,bint,r,rint,stats] = regression1x = [318 910 200 409 415 502 314 1210 1022 1225];y = [524 1019 638 815 913 928 605 1516 1219 1624];X = [ones(size(x))', x'];[b,bint,r,rint,stats] = regress(y',X,0.05);display(b);display(stats);x1 = [300:10:1250];y1 = b(1) + b(2)*x1;figure;plot(x,y,'ro',x1,y1,'g-');industry = ones(6,1);construction = ones(6,1);industry(1) =1022;construction(1) = 1219;for i = 1:5industry(i+1) =industry(i) * 1.045;construction(i+1) = b(1) + b(2)* construction(i+1);enddisplay(industry);display( construction);end运行结果如下所示:b =395.56700.8958stats =1.0e+004 *0.0001 0.0071 0.0000 1.6035industry =1.0e+003 *1.02201.06801.11601.16631.21881.2736construction =1.0e+003 *1.2190 0.3965 0.3965 0.3965 0.3965 0.3965200400600800100012001400生产性固定资产价值(万元)工业总价值(万元)2、设某公司下属10个门市部有关资料如下:(1)、确定适宜的 回归模型; (2)、计算有关指标,判断这三种经济现象之间的紧密程度。
曲线拟合摘要根究已有数据研究y关于x的关系,对于不同的要求得到不同的结果。
问题一中目标为使的各个观察值同按直线关系所预期的值的偏差平方和为最小,利用MATLAB中tlsqcurvefi函数在最小二乘法原理下拟合出所求直线。
问题二目标为使绝对偏差总和为最小,使用MATLAB中的fminsearch函数,在题目约束条件内求的最优答案,以此方法同样求得问题三中最大偏差为最小时的直线。
问题四拟合的曲线为二阶多项式,方法同前三问类似。
问题五为求得最佳的曲线,将之前的一次曲线换成多次曲线进行拟合得到新的结果。
经试验发现高阶多项式的阶数越高拟和效果最好。
)关键词:函数拟合最小二乘法线性规划|<¥一、问题的重述已知一个量y 依赖于另一个量x ,现收集有数据如下:(1)求拟合以上数据的直线a bx y +=。
目标为使y 的各个观察值同按直线关系所预期的值的偏差平方和为最小。
(2)求拟合以上数据的直线a bx y +=,目标为使y 的各个观察值同按直线关系所预期的值的绝对偏差总和为最小。
(3)求拟合以上数据的直线,目标为使y 的各个观察值同按直线关系所预期的值的最大偏差为最小。
(4)求拟合以上数据的曲线a bx cx y ++=2,实现(1)(2)(3)三种目标。
}(5)试一试其它的曲线,可否找出最好的?二、问题的分析对于问题一,利用MATLAB 中的最小二乘法对数据进行拟合得到直线,目标为使各个观察值同按直线关系所预期的值的偏差平方和为最小。
对于问题二、三、四均利用MATLAB 中的fminsearch 函数,在题目要求的约束条件下找到最佳答案。
对于问题五,改变多项式最高次次数,拟合后计算残差,和二次多项式比较,再增加次数后拟合,和原多项式比较残差,进而找到最好的曲线。
~三、基本假设1.表中数据真实可信,每个点都具有意义。
四、模型的建立与求解1.问题一 :对给定数据点(){}),,1,0(,m i Y X i i =,在取定的函数类Φ 中,求()Φ∈x p ,使误差的平方和2E 最小,()[]22∑-=i i Y X p E 。
曲线拟合与回归分析
1、有10个同类企业的生产性固定资产年平均价值和工业总产值资料如下:
(1)说明两变量之间的相关方向;
(2)建立直线回归方程;
(3)计算估计标准误差;
(4)估计生产性固定资产(自变量)为1100万元时的总资产
(因变量)的可能值。
解:
(1)工业总产值是随着生产性固定资产价值的增长而增长的,存
在正向相关性。
用spss回归
(2)spss回归可知:若用y表示工业总产值(万元),用x表示生产性固定资产,二者可用如下的表达式近似表示:
.0+
y
=x
896
.
395
567
(3)spss回归知标准误差为80.216(万元)。
(4)当固定资产为1100时,总产值为:
(0.896*1100+395.567-80.216~0.896*1100+395.567+80.216)
即(1301.0~146.4)这个范围内的某个值。
MATLAB程序如下所示:
function [b,bint,r,rint,stats] = regression1
x = [318 910 200 409 415 502 314 1210 1022 1225];
y = [524 1019 638 815 913 928 605 1516 1219 1624];
X = [ones(size(x))', x'];
[b,bint,r,rint,stats] = regress(y',X,0.05);
display(b);
display(stats);
x1 = [300:10:1250];
y1 = b(1) + b(2)*x1;
figure;plot(x,y,'ro',x1,y1,'g-');
生产性固定资产价值(万元)
工业总价值(万元)
industry = ones(6,1); construction = ones(6,1); industry(1) =1022; construction(1) = 1219; for i = 1:5
industry(i+1) =industry(i) * 1.045;
construction(i+1) = b(1) + b(2)* construction(i+1); end
display(industry); display( construction); end
运行结果:b = 395.5670 0.8958 stats = 1.0e+004 *
0.0001 0.0071 0.0000 1.6035 industry = 1.0e+003 * 1.0220 1.0680 1.1160 1.1663 1.2188 1.2736 construction = 1.0e+003 * 1.2190 0.3965 0.3965 0.3965 0.3965 0.3965。