运算放大器噪声关系1f噪声均方根(RMS)噪声与等效噪声带宽
- 格式:pdf
- 大小:81.79 KB
- 文档页数:6
运算放大器电路固有噪声的分析与测量(三):电阻噪声与计算示例在第二部分中,我们给出了将产品说明书上噪声频谱密度曲线转换为运算放大器噪声源模型的方法。
在本部分中,我们将了解如何用该模型计算简单运算放大器电路的总输出噪声。
总噪声参考输入(RTI) 包含运算放大器电压源的噪声、运算放大器电流源的噪声以及电阻噪声等。
上述噪声源相加,再乘以运算放大器的噪声增益,即可得出输出噪声。
图3.1 显示了不同噪声源及各噪声源相加再乘以噪声增益后的情况。
图 3.1:噪声源相结合噪声增益是指运算放大器电路对总噪声参考输入(RTI) 的增益。
在某些情况下,这与信号增益并不相同。
图 3.2 给出的实例显示了信号增益(1)与噪声增益(2)不同的情况。
Vn 信号源是指不同噪声源的噪声影响。
请注意,通常在工程设计中,我们会在非反向输入端将所有噪声源结合为单个的噪声源。
我们的最终目标是计算出运算放大器电路的噪声参考输出(RTO)。
图 3.2:噪声增益与信号增益。
方程式 3.1:简单运算放大器电路的噪声增益在上一篇文章中,我们了解到如何计算电压噪声输入,不过我们如何将电流噪声源转换为电压噪声源呢?一种办法就是对每个电流源进行独立的节点分析,并用叠加法将结果求和。
这时我们要注意,要用和的平方根(RSS) 对每个电流源的结果进行求和。
通过方程式 3.2 和 3.3,我们可将简单运算放大器电路的电流噪声转换为等效电压噪声源。
图 3.3 给出了有关图示。
附录 3.1 给出了该电路的整个演算过程。
方程式 3.2与3.3:将简单运算放大器的电流噪声转换为电压噪声(RTI)图 3.3:将电流噪声转换为电压噪声(等效电路)。
我们还必须考虑的另一因素是运算放大器电路中电阻器的热电压噪声。
我们可用节点分析法来独立分析电压源。
我们可用叠加法与RSS 添加法将结果相结合。
通过方程式 3.4 与3.5,我们可将所有热噪声源相结合,从而得到单个的噪声源参考输入。
多级放大器级联的噪声系数公式多级放大器是指由多个级联的放大器组成的放大电路。
在多级放大器中,每个级别的放大器都会引入一定的噪声。
噪声是电子设备中不可避免的现象,它会影响信号的质量和清晰度。
因此,对于多级放大器级联的噪声系数进行分析和计算是非常重要的。
噪声系数是衡量多级放大器噪声性能的指标之一。
它定义为输出信号与输入信号的信噪比之比。
噪声系数越小,表示多级放大器的噪声性能越好。
对于级联的放大器,每个级别的噪声系数可以通过以下公式计算:F = F1 + (F2-1)/G1 + (F3-1)/(G1*G2) + ... + (Fn-1)/(G1*G2*...*Gn-2)其中,F1、F2、F3...Fn-1分别表示每个级别的噪声系数,G1、G2、G3...Gn-2表示每个级别的增益。
以上公式可以推导得到。
首先,我们知道每个级别的噪声系数是输出噪声和输入噪声的比值。
对于第一个级别,输出噪声等于输入噪声乘以增益。
对于第二个级别,输出噪声等于输入噪声乘以第一个级别的增益再加上第二个级别自身的噪声。
以此类推,可以得到以上公式。
根据以上公式,我们可以看出,多级放大器的噪声系数是随着级数的增加而增加的。
这是因为每个级别的放大器都会引入一定的噪声,而级数越多,噪声也会累积增加。
为了降低多级放大器的噪声系数,可以采取一些措施。
首先,选择低噪声的放大器作为每个级别的放大器。
这样可以减小每个级别的噪声。
其次,可以增加级数,但是要注意级数过多可能会引入其他问题,如稳定性等。
最后,可以采用反馈技术来降低噪声系数。
反馈可以将一部分输出信号返回到输入端,从而减小噪声。
除了噪声系数,还有其他衡量多级放大器噪声性能的指标,如等效输入噪声温度和噪声功率。
等效输入噪声温度是指将多级放大器的噪声转化为等效的输入噪声温度,它可以通过以下公式计算:Teq = (T1 + (T2-290)/G1 + (T3-290)/(G1*G2) + ... + (Tn-290)/(G1*G2*...*Gn-2)) * 290其中,T1、T2、T3...Tn-1分别表示每个级别的噪声温度,G1、G2、G3...Gn-2表示每个级别的增益,290表示常温的绝对温度。
噪声系数和f的关系公式噪声系数,听上去挺高深的吧?其实呢,说白了它就是一个衡量放大器在处理信号时,加入了多少噪声的指标。
简单来说,噪声系数越高,信号中就越“杂”,也就是说你听到的东西就会越嘈杂,像是把你喜欢的歌放在一个吵得要命的市场里。
要是噪声系数低,那就像是在一个安静的图书馆里听歌,既干净又清晰。
好啦,今天我们就来聊聊噪声系数是怎么和频率f发生关系的。
你知道吗,噪声系数其实跟频率f有着千丝万缕的联系。
咋说呢?噪声系数不光是看放大器好不好,它还得看你使用的频率是多少。
就像你在不同的温度下穿衣服,外面天凉了就得穿个厚外套,天热了就轻装上阵一样。
频率高了,噪声系数也会跟着蹭蹭往上涨,频率低了,噪声系数倒是能稍微平稳些。
所以,如果你要用一个低噪声放大器来处理高频信号,那可得小心了。
这个噪声系数,像个“隐形的敌人”,不见摸不到,但却总是悄悄影响着你的信号质量。
大家可能会想,噪声系数到底和频率f之间是个什么关系呢?其实吧,这关系真不复杂,基本上是随着频率的增加,噪声系数逐渐升高。
你想,频率一高,放大器的工作压力也就大了,噪声也随之增多。
这就像你开车,跑得越快,风阻越大,声音也就越嘈杂。
所以,频率f和噪声系数的关系,可以简单记成“随着频率的增加,噪声系数越来越大”这条基本定律,虽然中间有点小波动,但大体上是这么回事。
不过话说回来,这个“增大”可不是说噪声系数会一直爆炸涨上去。
它有个特点,就是在某些频率范围内,噪声系数的增长速度会变得越来越慢。
就好比你跑步,刚开始的时候,身体会很快累,呼吸急促,等你跑一段时间后,身体适应了,反而能跑得比较稳。
这其实就像噪声系数在某些频率上,会先快速上升,然后再慢慢平稳。
要说最有意思的地方,其实是噪声系数和频率f的某些特定范围,它们的关系常常受到不同电子元件的影响。
比如说,晶体管、真空管这些东西,它们在高频段的表现就不一样。
在高频的时候,某些元件的噪声特性会明显变化,噪声系数也就跟着变得不一样。
运算放大器电路的噪声分析和设计赵俊俊【摘要】本文将运算放大器的设计原理做了一个详细的分析,并且将生活中常见的一些电路图的设计做了计算与分析.【期刊名称】《电子测试》【年(卷),期】2018(000)016【总页数】2页(P62-63)【关键词】运算放大器;电路图;噪声;设计原理【作者】赵俊俊【作者单位】第七一五研究所,浙江杭州,311101【正文语种】中文1 反相放大电路的噪声分析1.1 总输入噪声谱密度计算在传统的运算放大器中,其中噪音主要由三个等级的来表示,主要是谱密度为e。
的电压源,还有谱密度为K的电流源以及同中类型的谱密度为0的电流源,并且,在一定的特殊情况中,电路图中的电阻也会产生一些比较低的噪音。
而在这四种噪音的效果叠加的基础上,在与放大器的噪声增幅度相乘就可以算出反放大器电路图中的总噪音。
在这里反相放大电路,噪声增幅度为:散粒噪声通常定义为这个平均值变化量的均方值,记为∶电压噪声源或电流噪声源的均方值分别记为∶其中,露为波尔兹曼常数,r为绝对温度,Af 为噪声带宽。
将上述各项相加可得总输入噪声谱密度为1.2 总输出噪声计算噪声的有效值与噪声谱密度关系为∶对于运算放大器,其噪声是由白噪声和噪声叠加而成的网。
高频部分与低频部分起到作用的分别是白噪声与噪声。
2 低噪声运放放大电路的设计原则首先,我们分析输入噪声谱密度的各个组成部分对最终结果的影响,具有对称输入端和不相关噪声电流的运算放大器,为了便于计算,取R2=R3,则公式化简为放输入频谱噪声e及它的三个单独分量关于的函数曲线。
观察发现,电压噪声项e 与R无关,电流噪声项随着的增加以1.0dec/dec的速率增加,R的增加以0.5dec/dec的速率增加。
当R值足够小时,电压噪声起主要作用,R值足够大时,电流噪声起主要作用,尺值居中时,热噪声也会起作用,取决于相对于其他两相的幅度。
热噪声在A点超过电压噪声,电流噪声在日点超过电压噪声,电流噪声在C点超过热声。
等效噪声带宽的概念
等效噪声带宽是一个与系统或信号处理中的噪声相关的概念。
这个概念通常用于描述系统中噪声的总体影响,并将其表示为一个等效的频带宽度。
以下是一些关于等效噪声带宽的重要概念:
1.定义:等效噪声带宽是指在一个特定频率范围内,具有相同总功率的正弦波的宽度。
这个概念使得我们可以用一个等效的宽频带信号来表示噪声。
2.信号-噪声比:在通信系统或电子设备中,信号-噪声比是一个关键的参数。
等效噪声带宽考虑了整个频谱范围内的噪声功率,有助于更全面地理解系统中的噪声。
3.滤波器效应:在某些系统中,信号经过滤波器时可能会引入不同频率上的噪声。
等效噪声带宽有助于描述这些滤波器对噪声的影响。
4.功率密度谱:噪声通常用功率密度谱表示,描述了在不同频率上的功率分布。
等效噪声带宽对整个功率密度谱进行了综合,提供了一个对系统噪声特性的整体认识。
5.系统性能:等效噪声带宽是评估系统性能的一个关键参数。
在一些应用中,需要在特定的频带内对系统的噪声进行有效控制,等效噪声带宽可以帮助实现这个目标。
总的来说,等效噪声带宽是一个用于综合描述系统中噪声特性的有用概念,有助于工程师更好地理解和优化系统性能。
MT-048TUTORIALOp Amp Noise Relationships: 1/f Noise, RMS Noise,and Equivalent Noise Bandwidth"1/f" NOISEThe general characteristic of op amp current or voltage noise is shown in Figure 1 below.LOG fNOISE nV / √HzorμV / √Hz e n , i n k F CFigure 1: Frequency Characteristic of Op Amp NoiseAt high frequencies the noise is white (i.e., its spectral density does not vary with frequency). This is true over most of an op amp's frequency range, but at low frequencies the noise spectral density rises at 3 dB/octave, as shown in Figure 1 above. The power spectral density in this region is inversely proportional to frequency, and therefore the voltage noise spectral density is inversely proportional to the square root of the frequency. For this reason, this noise is commonly referred to as 1/f noise . Note however, that some textbooks still use the older term flicker noise .The frequency at which this noise starts to rise is known as the 1/f corner frequency (F C ) and is a figure of merit—the lower it is, the better. The 1/f corner frequencies are not necessarily the same for the voltage noise and the current noise of a particular amplifier, and a current feedback op amp may have three 1/f corners: for its voltage noise, its inverting input current noise, and its non-inverting input current noise.The general equation which describes the voltage or current noise spectral density in the 1/f region isf1F k ,i ,e Cn n =, Eq. 1where k is the level of the "white" current or voltage noise level, and F C is the 1/f corner frequency.The best low frequency low noise amplifiers have corner frequencies in the range 1 Hz to 10 Hz, while JFET devices and more general purpose op amps have values in the range to 100 Hz. Very fast amplifiers, however, may make compromises in processing to achieve high speed which result in quite poor 1/f corners of several hundred Hz or even 1 kHz to 2 kHz. This is generally unimportant in the wideband applications for which they were intended, but may affect their use at audio frequencies, particularly for equalized circuits.RMS NOISE CONSIDERATIONSAs was discussed above, noise spectral density is a function of frequency. In order to obtain the rms noise, the noise spectral density curve must be integrated over the bandwidth of interest.In the 1/f region, the rms noise in the bandwidth F L to F C is given by⎥⎦⎤⎢⎣⎡==∫L C C nw F F Cnw C L rms ,n F F ln F v df f 1F v )F ,F (v CLEq. 2where v nw is the voltage noise spectral density in the "white" region, F L is the lowest frequency of interest in the 1/f region, and F C is the 1/f corner frequency.The next region of interest is the "white" noise area which extends from F C to F H . The rms noise in this bandwidth is given byC H nw H C rms ,n F F v )F ,F (v −= Eq. 3Eq. 2 and 3 can be combined to yield the total rms noise from F L to F H :)F F (F F ln F v )F ,F (v C H L C C nw H L rms ,n −+⎥⎦⎤⎢⎣⎡= Eq. 4In many cases, the low frequency p-p noise is specified in a 0.1 Hz to 10 Hz bandwidth, measured with a 0.1 to 10 Hz bandpass filter between op amp and measuring device. The measurement is often presented as a scope photo with a time scale of 1s/div, as is shown in Figure 2 below for the OP213.20nV/div.(RTI)1s/div.Figure 2: 0.1Hz to 10 Hz Input Voltage Noise for the OP213510152025300.1110100FREQUENCY (Hz)INPUT VOLTAGE NOISE, nV / √Hz 0.1Hz to 10Hz VOLTAGE NOISEFor F L = 0.1Hz, F H = 10Hz, v nw = 10nV/√Hz, F C = 0.7Hz:V n,rms = 33nVV n,pp = 6.6 ×33nV = 218nV200nVTIME -1sec/DIV.Figure 3: Input Voltage Noise for the OP177It is possible to relate the 1/f noise measured in the 0.1 to 10 Hz bandwidth to the voltage noise spectral density. Figure 4 above shows the OP177 input voltage noise spectral density on the left-hand side of the diagram, and the 0.1 to 10 Hz peak-to-peak noise scope photo on the right-handV n,rms (F L , F H ) = v nwF C lnF C F L+ (F H –F C )side. Equation 2 can be used to calculate the total rms noise in the bandwidth 0.1 to 10 Hz by letting F L = 0.1 Hz, F H = 10 Hz, F C = 0.7 Hz, v nw = 10 nV/√Hz. The value works out to be about 33 nV rms, or 218 nV peak-to-peak (obtained by multiplying the rms value by 6.6—see the following discussion). This compares well to the value of 200 nV as measured from the scope photo.It should be noted that at higher frequencies, the term in the equation containing the natural logarithm becomes insignificant, and the expression for the rms noise becomes:L H nw L H rms ,n F F v )F ,F (V −≈. Eq. 5And, if F H >> F L ,H nw H rms ,n F v )F (V ≈. Eq. 6However, some op amps (such as the OP07 and OP27) have voltage noise characteristics that increase slightly at high frequencies. The voltage noise versus frequency curve for op amps should therefore be examined carefully for flatness when calculating high frequency noise using this approximation.At very low frequencies when operating exclusively in the 1/f region, F C >> (F H – F L ), and the expression for the rms noise reduces to:⎥⎦⎤⎢⎣⎡≈L H C nw L H rms ,n F F ln F v )F ,F (V .Eq. 7Note that there is no way of reducing this 1/f noise by filtering if operation extends to dc. Making F H = 0.1 Hz and F L = 0.001 Hz still yields an rms 1/f noise of about 18 nV rms, or 119 nV peak-to-peak. The point is that averaging results of a large number of measurements over a long period of time has practically no effect on the rms value of the 1/f noise. A method of reducing it further is to use a chopper stabilized op amp, to remove the low frequency noise.In practice, it is virtually impossible to measure noise within specific frequency limits with no contribution from outside those limits, since practical filters have finite rolloff characteristics. Fortunately, measurement error introduced by a single pole lowpass filter is readily computed. The noise in the spectrum above the single pole filter cutoff frequency, f c , extends the corner frequency to 1.57f c . Similarly, a two pole filter has an apparent corner frequency of approximately 1.2f c . The error correction factor is usually negligible for filters having more than two poles. The net bandwidth after the correction is referred to as the filter equivalent noise bandwidth (see Figure 4 below).EQUIVALENT NOISE BANDWIDTH = 1.57 ×f CFigure 4: Equivalent Noise BandwidthIt is often desirable to convert rms noise measurements into peak-to-peak. In order to do this, one must have some understanding of the statistical nature of noise. For Gaussian noise and a given value of rms noise, statistics tell us that the chance of a particular peak-to-peak value being exceeded decreases sharply as that value increases—but this probability never becomes zero. Thus, for a given rms noise, it is possible to predict the percentage of time that a given peak-to-peak value will be exceeded, but it is not possible to give a peak-to-peak value which will never be exceeded as shown in Figure 5 below.Nominal Peak-to-Peak2 ×rms3 ×rms4 ×rms5 ×rms6 ×rms6.6 ×rms**7 ×rms8 ×rms % of the Time Noise will Exceed Nominal Peak-to-Peak Value32%13%4.6%1.2%0.27%0.10%0.046%0.006%**Most often used conversion factor is 6.6 Figure 5: RMS to Peak-to-Peak RatiosPeak-to-peak noise specifications, therefore, must always be written with a time limit. A suitable one is 6.6 times the rms value, which is exceeded only 0.1% of the time.REFERENCES1.Hank Zumbahlen, Basic Linear Design, Analog Devices, 2006, ISBN: 0-915550-28-1. Also available asLinear Circuit Design Handbook, Elsevier-Newnes, 2008, ISBN-10: 0750687037, ISBN-13: 978-0750687034. Chapter 1.2.Walter G. Jung, Op Amp Applications, Analog Devices, 2002, ISBN 0-916550-26-5, Also available as OpAmp Applications Handbook, Elsevier/Newnes, 2005, ISBN 0-7506-7844-5. Chapter 1.Copyright 2009, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Tutorials.。