第7讲 信道中的噪声、信道容量
- 格式:ppt
- 大小:414.50 KB
- 文档页数:11
(完整)信道容量的计算编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)信道容量的计算)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)信道容量的计算的全部内容。
§4.2信道容量的计算这里,我们介绍一般离散信道的信道容量计算方法,根据信道容量的定义,就是在固定信道的条件下,对所有可能的输入概率分布)(x P 求平均互信息的极大值。
前面已知()Y X I ;是输入概率分布的上凸函数,所以极大值一定存在。
而);(Y X I 是r 个变量)}(),(),({21r x p x p x p 的多元函数。
并且满足1)(1=∑=ri i x p 。
所以可用拉格朗日乘子法来计算这个条件极值。
引入一个函数:∑-=ii x p Y X I )();(λφ解方程组0)(])();([)(=∑∂-∂∂∂i ii i x p x p Y X I x p λφ1)(=∑iix p (4.2。
1)可以先解出达到极值的概率分布和拉格朗日乘子λ的值,然后在解出信道容量C .因为 )()(log)()();(11i i i i i ri sj i y p x y Q x y Q x p Y X I ∑∑===而)()()(1i i ri i i x y Q x p y p ∑==,所以e e y p y p i i i i i x y Q i x p i x p log log ))(ln ()(log )()()(==∂∂∂∂。
解(4.2。
1)式有0log )()()()()()(log )(111=--∑∑∑===λe y p x y Q x y Q x p y p x y Q x y Q ii i ii r i s j i i i i sj i i (对r i ,,2,1 =都成立) 又因为)()()(1j k k rk k y p x y Q x p =∑=ri x y Q sj i j,,2,1,1)(1==∑=所以(4.2.1)式方程组可以转化为 ),,2,1(log )()(log)(1r i e y p x y Q x y Q j i j sj i j =+=∑=λ1)(1=∑=ri i x p假设使得平均互信息);(Y X I 达到极值的输入概率分布},,{21r p p p 这样有 e y p x y Q x y Q x p j i j i j ri sj i log )()(log)()(11+=∑∑==λ从而上式左边即为信道容量,得 e C log +=λ 现在令)()(log)();(1j i j sj i j i y p x y Q x y Q Y x I ∑==式中,);(Y x I i 是输出端接收到Y 后获得关于i x X =的信息量,即是信源符号i x X =对输出端Y 平均提供的互信息。
噪声对信道容量影响的理论分析一、噪声对信道容量影响的理论基础噪声是通信系统中不可避免的现象,它对信号的传输质量有着显著的影响。
信道容量,作为衡量信道传输信息能力的一个重要指标,受到噪声的直接影响。
在信道容量的理论分析中,我们首先需要了解信号与噪声的基本特性以及它们如何相互作用。
1.1 信号与噪声的基本概念在通信系统中,信号是携带信息的电磁波,而噪声则是非预期的信号,它可能来源于多种因素,如电子设备的内部噪声、外部环境的干扰等。
信号与噪声的叠加,会导致接收端信号质量的降低,从而影响信息的准确传输。
1.2 信道容量的定义信道容量是指在特定的信道条件下,能够无误传输信息的最大速率。
它由香农在1948年提出,并通过香农公式来定量描述。
香农公式表明,信道容量与信道的带宽、信号功率和噪声功率有关。
1.3 噪声对信道容量的影响机制噪声的存在会降低信号与噪声比(SNR),从而影响信道容量。
在高噪声环境下,为了保持一定的误码率,必须降低信息的传输速率,这直接限制了信道的容量。
二、噪声的分类及其对信道容量的影响噪声可以根据其来源和特性进行分类,不同类型的噪声对信道容量的影响也不尽相同。
2.1 热噪声热噪声,也称为约翰逊-奈奎斯特噪声,是由电子设备内部的热运动引起的。
它在频域上呈现均匀分布,对所有频率的信号都有影响。
热噪声的存在会限制信号的有效带宽,进而影响信道容量。
2.2 外部干扰噪声外部干扰噪声包括电磁干扰、射频干扰等,它们可能来源于其他电子设备或自然现象。
这类噪声通常具有非均匀分布的特性,对特定频率的信号影响更大。
在分析信道容量时,需要考虑这些噪声对信号传输的特定影响。
2.3 脉冲噪声脉冲噪声是由突发性事件引起的,如电源波动、设备故障等。
它在时间上表现为短暂的高能量脉冲,对信号的瞬时影响较大。
脉冲噪声可能导致信号的瞬时失真,影响信号的可靠性。
2.4 噪声对信道容量的具体影响不同类型的噪声对信道容量的影响可以通过信噪比(SNR)来量化。
信道容量是信道的一个参数,反映了信道所能传输的最大信息量,其大小与信源无关。
对不同的输入概率分布,互信息一定存在最大值。
我们将这个最大值定义为信道的容量。
一但转移概率矩阵确定以后,信道容量也完全确定了。
尽管信道容量的定义涉及到输入概率分布,但信道容量的数值与输入概率分布无关。
我们将不同的输入概率分布称为试验信源,对不同的试验信源,互信息也不同。
其中必有一个试验信源使互信息达到最大。
这个最大值就是信道容量。
信道容量有时也表示为单位时间内可传输的二进制位的位数(称信道的数据传输速率,位速率),以位/秒(b/s)形式予以表示,简记为bps。
通信的目的是为了获得信息,为度量信息的多少(信息量),我们用到了熵这个概念。
在信号通过信道传输的过程中,我们涉及到了两个熵,发射端处信源熵——即发端信源的不确定度,接收端处在接收信号条件下的发端信源熵——即在接收信号条件下发端信源的不确定度。
接收到了信号,不确定度小了,我们也就在一定程度上消除了发端信源的不确定性,也就是在一定程度上获得了发端信源的信息,这部分信息的获取是通过信道传输信号带来的。
如果在通信的过程中熵不能够减小(不确定度减小)的话,也就没有通信的必要了。
最理想的情况就是在接收信号条件下信源熵变为0(不确定度完全消失),这时,发端信息完全得到。
通信信道,发端X,收端Y。
从信息传输的角度看,通过信道传输了I(X;Y)=H(X)-H(X|Y) ,( 接收Y前后对于X的不确定度的变化)。
I该值与两个概率有关,p(x),p(y|x),特定信道转移概率一定,那么在所有p(x) 分布中,max I(X;Y)就是该信道的信道容量C(互信息的上凸性)。
入与输出的互信息量的最大值,这一最大取值由输入信号的概率分布决定。
[3]X代表已传送信号的随机变量空间,Y代表已收到信号的随机变量空间。
代表已知X的情况下Y的条件机率。
我们先把通道的统计特性当作已知,p Y | X(y | x)就是通道的统计特性。
信道容量是信道的一个参数,反映了信道所能传输的最大信息量,其大小与信源无关。
对不同的输入概率分布,互信息一定存在最大值。
我们将这个最大值定义为信道的容量。
一但转移概率矩阵确定以后,信道容量也完全确定了。
尽管信道容量的定义涉及到输入概率分布,但信道容量的数值与输入概率分布无关。
我们将不同的输入概率分布称为试验信源,对不同的试验信源,互信息也不同。
其中必有一个试验信源使互信息达到最大。
这个最大值就是信道容量。
信道容量有时也表示为单位时间内可传输的二进制位的位数(称信道的数据传输速率,位速率),以位/秒(b/s)形式予以表示,简记为bps。
通信的目的是为了获得信息,为度量信息的多少(信息量),我们用到了熵这个概念。
在信号通过信道传输的过程中,我们涉及到了两个熵,发射端处信源熵——即发端信源的不确定度,接收端处在接收信号条件下的发端信源熵——即在接收信号条件下发端信源的不确定度。
接收到了信号,不确定度小了,我们也就在一定程度上消除了发端信源的不确定性,也就是在一定程度上获得了发端信源的信息,这部分信息的获取是通过信道传输信号带来的。
如果在通信的过程中熵不能够减小(不确定度减小)的话,也就没有通信的必要了。
最理想的情况就是在接收信号条件下信源熵变为0(不确定度完全消失),这时,发端信息完全得到。
通信信道,发端X,收端Y。
从信息传输的角度看,通过信道传输了I(X;Y)=H(X)-H(X|Y) ,( 接收Y前后对于X的不确定度的变化)。
I该值与两个概率有关,p(x),p(y|x),特定信道转移概率一定,那么在所有p(x) 分布中,max I(X;Y)就是该信道的信道容量C(互信息的上凸性)。
入与输出的互信息量的最大值,这一最大取值由输入信号的概率分布决定。
[3]X代表已传送信号的随机变量空间,Y代表已收到信号的随机变量空间。
代表已知X的情况下Y的条件机率。
我们先把通道的统计特性当作已知,p Y | X(y | x)就是通道的统计特性。
信道带宽模拟信道:模拟信道的带宽W=f2-f1其中f1是信道能够通过的最低频率,f2是信道能够通过的最高频率,两者都是由信道的物理特性决定的。
当组成信道的电路制成了,信道的带宽就决定了。
为了是信号的传输的失真小些,信道要有足够的带宽。
数字信道:数字信道是一种离散信道,它只能传送离散值的数字信号,信道的带宽决定了信道中能不失真的传输脉序列的最高速率。
一个数字脉冲称为一个码元,我们用码元速率表示单位时间内信号波形的变换次数,即单位时间内通过信道传输的码元个数。
若信号码元宽度为T秒,则码元速率B=1/T。
码元速率的单位叫波特(Baud),所以码元速率也叫波特率。
早在1924年,贝尔实验室的研究员亨利·尼奎斯特就推导出了有限带宽无噪声信道的极限波特率,称为尼奎斯特定理。
若信道带宽为W,则尼奎斯特定理指出最大码元速率为B=2W(Baud)尼奎斯特定理指定的信道容量也叫尼奎斯特极限,这是由信道的物理特性决定的。
超过尼奎斯特极限传送脉冲信号是不可能的,所以要进一步提高波特率必须改善信道带宽。
码元携带的信息量由码元取的离散值个数决定。
若码元取两个离散值,则一个码元携带1比特(bit)信息。
若码元可取四种离散值,则一个码元携带2比特信息。
总之一个码元携带的信息量n(bit)与码元的种类数N有如下关系:n=log2N单位时间内在信道上传送的信息量(比特数)称为数据速率。
在一定的波特率下提高速率的途径是用一个码元表示更多的比特数。
如果把两比特编码为一个码元,则数据速率可成倍提高。
我们有公式:R=B log2N=2W log2N(b/s)其中R表示数据速率,单位是每秒比特,简写为bps或b/s数据速率和波特率是两个不同的概念。
仅当码元取两个离散值时两者才相等。
对于普通电话线路,带宽为3000HZ,最高波特率为6000Baud。
而最高数据速率可随编码方式的不同而取不同的值。
这些都是在无噪声的理想情况下的极限值。
第5章 信道及信道容量教学内容包括:信道模型及信道分类、单符号离散信道、多符号离散信道、多用户信道及连续信道5.1信道模型及信道分类教学内容:1、一般信道的数学模型2、信道的分类3、信道容量的定义1、 一般信道的数学模型影响信道传输的因素:噪声、干扰。
噪声、干扰:非函数表述、随机性、统计依赖。
信道的全部特性:输入信号、输出信号,以及它们之间的依赖关系。
信道的一般数学模型:2、 信道的分类输出随机信号输入、输出随机变量个数输入和输出的个数信道上有无干扰有无记忆特性3、信道容量的定义衡量一个信息传递系统的好坏,有两个主要指标:图5.1.1 一般信道的数学模型离散信道、连续信道、半离散或半连续信道 单符号信道和多符号信道 有干扰信道和无干扰信道有记忆信道和无记忆信道单用户信道和多用户信道 速度指标质量指标速度指标:信息(传输)率R ,即信道中平均每个符号传递的信息量;质量指标:平均差错率e P ,即对信道输出符号进行译码的平均错误概率;目标:速度快、错误少,即R 尽量大而e P 尽量小。
信道容量:信息率R 能大到什么程度; )/()()/()();(X Y H Y H Y X H X H Y X I R -=-==若信道平均传送一个符号所需时间为t 秒,则);(1Y X I t R t =(bit/s )称t R 为信息(传输)速率。
分析:对于给定的信道,总存在一个信源(其概率分布为*)(X P ),会使信道的信息率R 达到最大。
();(Y X I 是输入概率)(X P 的上凸函数,这意味着);(Y X I 关于)(X P 存在最大值)每个给定的信道都存在一个最大的信息率,这个最大的信息率定义为该信道的信道容量,记为C ,即);(max max Y X I R C XXP P ==bit/符号 (5.1.3)信道容量也可以定义为信道的最大的信息速率,记为t C⎭⎬⎫⎩⎨⎧==);(1max max Y X I t R C XX P t P t (bit /s ) (5.1.4) 解释:(1)信道容量C 是信道信息率R 的上限,定量描述了信道(信息的)最大通过能力; (2)使得给定信道的);(Y X I 达到最大值(即信道容量C )的输入分布,称为最佳输入(概率)分布,记为*)(X P ;(3)信道的);(Y X I 与输入概率分布)(X P 和转移概率分布)/(X Y P 两者有关,但信道容量C 是信道的固有参数,只与信道转移概率)/(X Y P 有关。