用移项法解一元一次方程
- 格式:ppt
- 大小:1.99 MB
- 文档页数:23
移项解一元一次方程一元一次方程是形如ax+b=0的方程,其中a和b是已知的实数常数,x是未知数。
解一元一次方程的基本步骤如下:1. 将方程的常数项移到等式的另一边,使方程变为ax=-b。
2. 如果a不等于零,那么可通过两边同除以a得到x=-b/a。
这是方程的唯一解。
3. 如果a等于零且b等于零,那么方程为0=0,此时任意实数都是解。
4. 如果a等于零且b不等于零,那么方程为0=b,此时没有解,方程无解。
解方程实际上是寻找使等式成立的未知数x的值。
对于一元一次方程来说,其解的唯一性是这类方程的特殊性质。
解一元一次方程的方法其实是代数中的基本操作,但在实际问题中,方程往往具有更具体的含义,解方程则对应于解决实际问题的数学建模过程。
例如,一个问题可能是要求解两个数之和等于10的问题。
可以设其中一个数为x,那么另一个数就是10-x。
于是就可以得到方程x+(10-x)=10。
将方程化简为x=5,即得到解x=5。
这样就找到了使得两个数之和等于10的解。
解一元一次方程的相关应用非常广泛。
在日常生活中,我们可以利用一元一次方程解答关于价格、时间、速度等的问题。
在科学研究中,利用一元一次方程可以推导出物理定律和数学关系。
在经济学中,一元一次方程也常用于分析供需关系和市场均衡。
需要注意的是,解一元一次方程只是数学中的一种技巧和方法,准确地描述和解决实际问题还需要结合具体的语境和背景知识。
在实际应用中,解方程往往需要结合其他数学知识和技巧,如代数运算、方程组的解法等。
解一元一次方程是基础中的基础,是学习和掌握其他高级数学知识的关键。
通过解方程的训练,可以提高思维逻辑能力、数学建模能力和问题解决能力。
解方程也培养了我们的耐心和毅力,在推理和计算过程中要保持细心和准确。
因此,学习解一元一次方程对于数学教育和个人发展都具有重要意义。
数学解方程的方法数学解方程是数学中一项重要的技能,它在各个领域都有广泛的应用。
解方程的过程就是找到使等式成立的未知数的值。
在解方程时,需要运用不同的方法和技巧,以便得到正确的答案。
本文将介绍几种常见的数学解方程的方法。
一、一元一次方程的解法一元一次方程是形如ax + b = 0的方程,其中a和b为已知数,x为未知数。
解一元一次方程的方法有两种:移项法和倍增法。
1. 移项法:根据方程,将b移到等号另一侧,得到ax = -b。
然后,通过除以a的方式,可得到x = -b/a的解。
这是最常用的解一元一次方程的方法。
2. 倍增法:通过将方程两边同时乘以相同的数,化简方程以消除系数。
例如,对于方程2x - 3 = 5,我们可以将方程两边同时乘以2,得到4x - 6 = 10。
然后,通过移项法或合并同类项的方式,我们可以解出x的值。
二、二元一次方程的解法二元一次方程是形如ax + by = c的方程,其中a、b和c为已知数,x和y为未知数。
解二元一次方程的方法有三种:替换法、消元法和相加法。
1. 替换法:通过将一个未知数用另一个未知数的表达式替换,将方程转化为只包含一个未知数的方程。
例如,对于方程2x + 3y = 10和3x - 2y = 7,我们可以通过将第一个方程中的2x用3y的表达式替换,得到6y + 3y= 10。
然后,我们可以通过解一元一次方程的方法求解y的值,再将y的值代入原方程,解出x的值。
2. 消元法:通过将两个方程相加或相减,使其中一个未知数的系数相消,从而得到只包含一个未知数的方程。
例如,对于方程2x + 3y = 10和3x - 2y = 7,我们可以通过将第一个方程乘以2,第二个方程乘以3,然后相减,得到13y = 13。
从而可以解出y的值,再将y的值代入原方程,解出x的值。
3. 相加法:通过将两个方程的系数乘以适当的倍数,使得其中一个未知数的系数相等,然后将两个方程相加,消去这个未知数,从而得到只包含另一个未知数的方程。
移项法解方程练习题移项法是解一元一次方程的常用方法之一。
它的基本思想是通过移项,将带有未知数的项移动到方程的一侧,从而得到方程的解。
本文将介绍移项法解方程的基本思路,并提供一些练习题供读者练习。
一、解一元一次方程的基本思路解一元一次方程的基本思路是将方程中的未知数系数项和常数项进行移项,使得方程的形式化简为ax=b,其中a为未知数的系数,b为常数。
具体步骤如下:1. 根据方程的形式,确定未知数的系数和常数项。
例如对于方程3x+4=7,将3x和4分别作为未知数系数项和常数项。
2. 将常数项移动到方程的右侧。
在本例中,将4移动到右侧得到3x=7-4。
3. 化简方程,得到未知数的系数项和常数项之差。
在本例中,化简得到3x=3。
4. 消去未知数的系数。
在本例中,通过除以3的操作,消去3的系数,得到x=1。
5. 检验解的正确性。
将解x=1代入原方程,验证等式是否成立。
在本例中,将1代入方程3x+4=7,得到3*1+4=7,等式成立,验证解的正确性。
二、移项法解方程练习题以下是一些移项法解方程的练习题,供读者练习。
1. 2x+5=112. 3y-7=103. 4z+9=254. -3a+6=95. 2b-3=76. 5c-8=177. x+3=5x-28. 2y-1=3y+49. z-6=2z+310. 4a+5=2a-3解答如下:1. 2x=11-5,化简得2x=6,消去2的系数得到x=3。
2. 3y=10+7,化简得3y=17,消去3的系数得到y=17/3。
3. 4z=25-9,化简得4z=16,消去4的系数得到z=4。
4. -3a=9-6,化简得-3a=3,消去-3的系数得到a=1。
5. 2b=7+3,化简得2b=10,消去2的系数得到b=5。
6. 5c=17+8,化简得5c=25,消去5的系数得到c=5。
7. x+2=4x-2,化简得3x=4,消去3的系数得到x=4/3。
8. -y-1=4y+4,化简得5y=-5,消去5的系数得到y=-1。
第三章一元一次方程3.2 解一元一次方程(一)——合并同类项与移项第2课时用移项的方法解一元一次方程教学目标1.找相等关系列一元一次方程;2.用移项解一元一次方程;3.体会解方程中的化归思想,会移项、合并解ax+b=cx+d型方程,进一步认识如何用方程解决实际问题。
重点:1.找相等关系列一元一次方程;2.用移项、合并同类项等解一元一次方程.难点:找相等关系列方程,正确地移项解一元一次方程.使用要求:1.自学P89-91中的内容。
2.独立完成学案,然后小组交流、展示.一、导学1.解下列方程:(1)x+3x-2x=4 (2)3x-4x=-25-202.阅读课本89页上的问题2,分析:(1)设这个班有x名学生,每人分3本,共分出____本,加上剩余的20本,这批书共_______本.(2)每人分4本,需要___本,减去缺的25本,这批书共________本.(3)这批书的总数有几种表示法?它们之间有什么关系?本题哪个相等关系可作为列方程的依据呢?(1)思考:方程3x+20=4x-25的两边都含有x的项(3x与4x)和不含字母的常数项(20与-25),怎样才能使它向x=a(常数)的形式转化呢?(2)利用等式的性质1,得3x-4x=-25-20上面方程的变形,相当于把原方程左边的20变为____移到右边,把右边的4x变为____移到左边.把某项从等式一边移到另一边时有什么变化?(3)什么叫做移项?移项的根据是什么?二、合作探究1.(1)解方程3x+7=32-2x (2)7x+1.37=15x-0.23解:(1)移项,得_____________________合并同类项,得_____________________系数化为1,得____________________.(温馨提示:移项要变号)2.用汽车若干辆装运货物一批,每辆汽车装3.5吨货物,这批货物就有2吨不能运走;每辆汽车装4吨货物,那么装完这批货物后,还可以装其他货物1吨,问汽车有多少辆?货物有多少吨?3.课本91页,练习三、小组小结四、作业:习题3.2第3、7、9题.3.2 解一元一次方程(一)——合并同类项与移项第1课时用合并同类项的方法解一元一次方程教学目标:1.经历运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型.2.学会合并同类项,会解“ax+bx=c”类型的一元一次方程.3.能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程.教学重点:建立方程解决实际问题,会解“ax+bx=c”类型的一元一次方程.教学难点:分析实际问题中的已知量和未知量,找出相等关系,列出方程.教学过程:一、设置情境,提出问题(出示背景资料)约公元820年,中亚细亚的数学家阿尔-花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》.“对消”与“还原”是什么意思呢?通过下面几节课的学习讨论,相信同学们一定能回答这个问题.出示课本P86问题1:某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍.前年这个学校购买了多少台计算机?二、探索分析,解决问题引导学生回忆:实际问题一元一次方程设问1:如何列方程?分哪些步骤?师生讨论分析:(1)设未知数:前年这个学校购买计算机x台;(2)找相等关系:前年购买量+去年购买量+今年购买量=140台.(3)列方程:x+2x+4x=140.设问2:怎样解这个方程?如何将这个方程转化为“x=a”的形式?学生观察、思考:根据分配律,可以把含x的项合并,即x+2x+4x=(1+2+4)x=7x老师板演解方程过程:略.为帮助有困难的学生理解,可以在上述过程中标上箭头和框图.设问3:在以上解方程的过程中“合并”起了什么作用?每一步的根据是什么?学生讨论回答,师生共同整理:“合并”是一种恒等变形,它使方程变得简单,更接近“x=a”的形式.三、拓广探索,比较分析学生思考回答:若设去年购买计算机x台,得方程+x+2x=140.若设今年购买计算机x台,得方程++x=140.课本P87例2.问题:①每相邻两个数之间有什么关系?②用x表示其中任意一个数,那么与x相邻的两个数怎样表示?③根据题意列方程解答.四、综合应用,巩固提高1.课本P88练习第1,2题.2.一个黑白足球的表面一共有32个皮块,其中有若干块黑色五边形和白色六边形,黑、白皮块的数目之比为3:5,问黑色皮块有多少?(学生思考、讨论出多种解法,师生共同讲评.)3.有一列数按一定规律排成-1,2,-4,8,-16,32,……,其中某三个相邻数的和是-960.求这三个数.五、课时小结1.你今天学习的解方程有哪些步骤,每一步的依据是什么?2.今天讨论的问题中的相等关系有何共同特点?学生思考后回答、整理:解方程的步骤及依据分别是:合并和系数化为1;总量=各部分量的和.。