数量关系讲义
- 格式:pdf
- 大小:1.20 MB
- 文档页数:16
万方公务员成功的摇篮万方公务员培训中心考前辅导内部资料科目:行测主讲教师:杜明银数量关系部分目录上篇数学运算第零章常用方法第一节带入排除思想 (4)第二节数字特性思想 (6)第一章计算问题模块第一节凑整法 (9)第二节裂项法 (9)第三节整体消去法 (10)第四节尾数法 (10)第五节估算法 (10)第六节乘方尾数法 (10)第二章初等数学模块第一节多位数问题 (11)第二节余数相关问题 (11)第三章比例问题模块第一节工程问题 (12)第二节浓度问题 (12)第四章行程问题模块第一节平均速度问题 (13)第二节相遇追及问题 (13)第三节钟面问题 (14)第五章几何问题模块第一节面积相关问题 (14)第二节表面积问题 (15)第三节体积问题 (15)第六章计数问题模块第一节枚举法 (16)第二节排列问题 (16)第三节容斥问题 (17)第四节抽屉原理问题 (18)第五节过河问题 (19)第七章杂题模块第一节年龄问题 (19)第二节牛吃草问题 (19)2010真题演练 (20)2011真题演练 (21)下篇数字推理第一章知识储备 (24)第二章基础数列 (25)第三章多级数列 (26)第四章多重数列 (28)第五章幂次数列 (29)第六章递推数列 (30)2010国考真题演练 (32)2010国考真题演练详解 (33)2011国考真题演练详解 (34)讲义答案 (36)上篇数学运算第零章常用方法数学运算。
每道题给出一道算术式子,或者表达数量关系的一段文字,要求应试者熟练运用加、减、乘、除等基本运算法则,利用基本的数学知识,准确、迅速地计算出结果。
第一节直接代入法直接代入法:是指将题目的选项直接代入题干当中判断选项正误的方法。
这是处理“客观单选题”非常行之有效的方法,广泛应用到各种题型当中。
核心提示:“直接代入法”在同余问题、不定方程问题、多位数问题等诸多典型问题当中都可以发挥巨大的作用。
【例1】一个小于80 的自然数与3的和是5的倍数,与3 的差是6 的倍数,这个自然数最大是多少?【国2004B-43】A.32B.47C.57D.72【例2】一个五位数,左边三位数是右边两位数的5倍,如果把右边的两位数移到前面,则所得新的五位数要比原来的五位数的2倍还多75,则原五位数是多少?【国2006一类-44】A.12525 B.13527 C.17535 D.22545【例3】装某种产品的盒子有大、小两种,大盒每盒能装11 个,小盒每盒能装8 个,要把89 个产品装入盒内,要求每个盒子都恰好装满,需要大、小盒子各多少个?【北京社招2007-17】A.3,7B.4,6C.5,4D.6,3【例4】两个运输队,第一队有320 人,第二队有280 人,现因任务变动,要求第二队的人数是第一队人数的2 倍,需从第一队抽调多少人到第二队?【广州2005-14】A.80 人B.100 人C.120 人D.140人【例5】某零件加工厂按照工人完成的合格零件和不合格零件支付工资,工人每做出一个合格零件能得到工资10元,每做一个不合格零件将被扣除 5 元,已知某人一天共做了12 个零件,得工资90 元,那么他在这一天做了多少个不合格零件?【国2008-54】A.2B.3C.4D.6【例6】一名外国游客到北京旅游,他要么上午出去游玩,下午在旅馆休息,要么上午休息,下午出去游玩,而下雨天他只能一天都呆在屋里。
数学运算第一章数学运算解题思想第一节代入排除思想【例1】甲、乙、丙、丁四个数的和是43,甲数的2倍加8,乙数的3倍,丙数的4倍,丁数的5倍减4,都相等。
问这四个数各是多少?()A.14,12,8,9B. 16,12,9,6C.11,10,8,14D. 14,12,9,8【例2】有一个两位数,如果把数码1加写在它的前面,那么可得到一个三位数,如果把1加写在它的后面,那么也可以得到一个三位数,而且这两个三位数相差414,则原来的两位数为()A.35B.43C.52D.57【例3】某校的学生总数是一个三位数,平均每个班35人,统计员提供的学生总数比实际总人数少270人。
原来,他在记录时粗心地将该三位数的百位与十位数字对调了。
该学校学生总数最多是多少人()A.748B.630C.525D.360【例4】装某种产品的盒子有大、小两种,大盒每盒能装11个,小盒每盒能装8个,要把89个产品装入盒内,要求每个盒子都恰好装满,需要大、小盒子各多少个?A.3,7B.4,6C.5,4D.6,3【例5】某单位招待所有若干间房间,现要安排一支考察队的队员住宿,若每间住3人,则有2人无房可住;若每间住4人,则有一间房间不空也不满,则该招待所的房间最多有()。
A.5间B.4间C.6间D.3间【例5】去年,甲的年龄是乙的年龄的5倍。
明年,甲的年龄是乙的年龄的4倍。
问甲、乙二人今年的年龄分别是多少岁?()A.31岁,7岁 B.32岁,8岁 C.30岁,6岁 D.29岁,5岁第二节数字特性思想【例1】两个数的差是2345,两数相除的商是8,求这两个数之和?()A. 2353B. 2896C. 3015D. 3456(可以被9整除)【例2】某次测验有50道判断题,每做对一题得3分,不做或做错一题倒扣1分,某学生共得82分,问答对题数和答错题数(包括不做)相差多少?A. 33B. 39C. 17D. 16【例3】一个班级租车出去游玩,租车费用平均每人40元,如果增加7个人,平均每人35 元,求这个班级一共花了()元。
数量关系数量关系包括两种题型:•(一)数字推理•(二)数学运算第一节数字推理【四大重点内容】•基础数列类型:数字推理题当中最简单最基础的数列,是所有数列题的“基石”。
•基本计算速度:两位数以内的加减乘除的计算速度,是做题速度与精度的保障。
•基本数字敏感:包括“单数字发散”和“多数字联系”,是迅速解题的关键。
•六大基本题型:六种基本的题型,以及辨别各题型的基本逻辑思维体系。
基本数列•自然数列1、2、3、4、……•奇数列1、3、5、7……•偶数列2、4、6、8……•质数列2、3、5、7、11、13、……•等差数列2、5、8、11、14、……•等比数列3、9、27、81、……•平方数列1、22、32、…… n2、……•立方数列1、23、33、…… n3、……•摆动数列1、-1、1、-1、1、……或2、4、2、4、2、……•交错数列1、-2、3、-4、5、……基本概念•牢记基本概念:奇偶数、质数、自然数、整数、正负数、有理数、实数等等。
•质数:只有1和它本身“两个”约数的自然数叫做质数。
如2、3、5、7、11、13……•合数:除了1和它本身还有其它约数的自然数叫做合数。
如4、6、8、9、10、12……注意:1既不是质数,也不是合数。
200以内质数表(特别留意划线部分)•2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97、101、103、107、109、113、127、131、137、139、149、151、157、163、167、173、179、181、191、193、197、199合数的分解•整除判定:能被2整除的数,其末一位数字是2的倍数;能被5整除的数,其末一位数字是5的倍数;能被4整除的数,其末两位数字是4的倍数;能被8整除的数,其末三位数字是8的倍数;能被3整除的数,各位数字之和是3的倍数;能被9整除的数,各位数字之和是9的倍数.经典分解:91=7×13 119=7×17 133=7×19 111=3×37117=9×13 153=9×17 171=9×19 147=7×21143=11×13 187=11×17 209=11×19 161=7×23常用幂次数•平方数如1——30•立方数如1——10重点:六大基本题型之一多级数列多级数列:相邻两项通过某种运算(一般是减法或除法),得到的结果形成一定的规律。
cctalk刘文超数量关系讲义
摘要:
一、课程简介
- 课程名称:CCTalk 刘文超数量关系讲义
- 课程内容:数量关系
- 适合人群:备考公务员、事业单位、银行、选调生、村官等考试的学员
二、课程目标
- 帮助学员掌握数量关系的基本解题方法
- 提高学员在考试中解决数量关系问题的效率和准确率
三、课程特色
- 讲师刘文超具有丰富的教学经验,擅长用生动形象的例子解释抽象的概念
- 课程内容详实,涵盖数量关系的各种题型和解题技巧
- 课程设置有答疑环节,学员可以在课程中提出自己的疑问,讲师会进行解答
四、课程内容
- 数量关系基本概念和公式
- 数量关系题型及解题技巧
1.数字推理
2.数列问题
3.比例问题
4.平均数问题
5.几何问题
6.其他问题
- 课程实战训练及答疑
正文:
CCTalk 刘文超数量关系讲义是一门针对备考公务员、事业单位、银行、选调生、村官等考试的学员开设的课程。
课程内容涵盖数量关系的基本概念和公式,以及各种题型和解题技巧。
通过学习本课程,学员可以掌握数量关系的基本解题方法,提高在考试中解决数量关系问题的效率和准确率。
课程由经验丰富的讲师刘文超主讲,他擅长用生动形象的例子解释抽象的概念,让学员更容易理解和掌握。
课程设置有答疑环节,学员可以在课程中提出自己的疑问,讲师会进行解答,帮助学员更好地消化和吸收课程内容。
课程内容详实,包括数字推理、数列问题、比例问题、平均数问题、几何问题等题型,以及比例问题、其他问题等。
课程还设有实战训练环节,让学员通过实际题目演练,更好地掌握课程内容。