数量关系公式自己总结(老周数量关系班讲义)
- 格式:pdf
- 大小:655.70 KB
- 文档页数:19
数学运算第一章基本知识储备常用余数性质:1.加法封闭性:和的余数就是余数的和的余数2.减法封闭性:差的余数就是余数的差的余数3.乘法封闭性:积的余数就是余数的积得余数4.幂次封闭性:幂的余数就是余数的幂的余数第二章基本解题思路直接代入法“直接代入”的时候,如果问的是“最少、/最小。
”,那么应该从最小的数开始代入,如果问的是“最大/最多。
”那么应该从最大的数开始代入。
同样,如果问的是“第一次/下一次。
”应从最早的时刻开始代入,这样可减少一些运算量。
一、数字特性法1、大小特性2、奇偶特性3、尾数特性4、倍数特性5、因子特性6、余数特性7、幂次特性二、特值分析法思想:很多题目的结论,与一些量的具体取值无关,此时可以将其取为某个特殊值,以便于计算三、极端分析思想分析:题目若出现了“至多”、“至少”、“最多”、最少、最大、最小、最快、最慢、最高、最低等字样,通常可以可虑极端分析法,其基本思想是构造“极端”的情形。
四、构造思想构造思想:解题时直接构造出满足条件的情况,从而得到答案的思想五、枚举归纳思想有些和N有关的数学问题,需要先计算当N较小的时比较容易计算的情况,再总结归纳出一些规律,从而得到较大的数的规律。
六、逆向分析思想有些数学问题,从正面不容易入手,这时可以从他的反面进行思考。
即首先算出不满足题目要求的情形,从而计算出满足题目要求的情形。
第三章计算问题模块一、尾数法基本原理:1、加法封闭法:和的尾数就是尾数的和的尾数2、减法封闭法:差的尾数就是尾数的差的尾数3、乘法封闭法:积的尾数就是尾数的积的尾数基本解题技巧:1.各选项间的尾数不同,可考虑用尾数法2.使用多位尾数法时需注意以下两点:(1).过程和结果当中的数字如果只有一位,则需要补零,以补足两位(2).过程和结果当中的数字如果是负数,可以反复加100补成0到100之间的数二、弃9法计算时,将计算过程中数字除以9,留其余数进行计算的方法。
注意:弃9法的前提条件是选项除以9余数必须不相同三、凑整法四、估算法五、乘法分配律正向乘法分配律:(a+b)c=ac+bc逆向乘法分配律:ac+bc=(a+b)c六、整体消去法在比较复杂的计算中,将相近的数化为相同,从而作为一个整体进行抵消的方法七、分组计算法八、裂项相加法在分数运算当中运用九、比较大小法十、乘方尾数法1.底数留个位2.指数末两位除以4留余数(余数为0则看做4)注:尾数为0,1,5,6的数,乘方尾数是不变的第四章行程问题模块第一节初等行程问题基本知识点:1.基本公式:距离=速度 * 时间2.相遇追及问题中:相遇距离=(大速度+小速度)*相遇时间追及距离=(大速度-小速度)*追及时间3.环形运动问题中:环形周长=(大速度+小速度)*相向运动中的两人两次相遇的时间间隔环形周长=(大速度-小速度)*同向运动中的两人两次相遇的时间间隔4.流水行船问题中:顺流路程=顺流速度*顺流时间=(船速+水速)*顺流时间逆流路程=逆流速度*逆流时间=(船速-水速)*逆流时间5.电梯运动问题中:能看到的电梯级数=(人速+电梯速度)*沿电梯运动方向运动所需时间能看到的电梯级数=(人速-电梯速度)*逆电梯运动方向运动所需时间5.电梯问题:能看到级数=(人速+电梯速度)*顺行运动所需时间(顺)能看到级数=(人速-电梯速度)*逆行运动所需时间(逆)第二节比例型行程问题基本知识点:1.行程问题基本比例:S甲/S乙=(V甲/V乙)/(T甲/T乙)2.运动时间相等,运动距离与运动速度成正比3.运动速度相等,运动距离与运动时间成正比4.运动距离相等,运动速度与运动时间成反比第三节典型行程模型基本知识点:1.两次相遇公式:单岸型S=(3S1+S2)/2 两岸型S=3S1-S2例题:两艘渡轮在同一时刻垂直驶离 H 河的甲、乙两岸相向而行,一艘从甲岸驶向乙岸,另一艘从乙岸开往甲岸,它们在距离较近的甲岸 720 米处相遇。
第一部分:数字推理第零章第一章第二章多重数列1、多重数列:交叉或分组2、特征:长(加上位置项8项或以上)3、充分条件:2个括号,即一定是多重数列。
解法:可以交叉,也可以括号做加减4、项数为奇,不能分组,一般为交叉数列。
9项数列一般为交叉!5、项数为偶,可以分组,也可以交叉!因此只能试试才知道哪个才行得通,若交叉后奇数项没有明显规律就看偶数项,若是都没有就是分组!6、分组后,阿弥陀佛,加减乘除!7、交叉数列三步走:观察没特征,做差,递推!(特征是指直接就是等比数列或等差数列等)8、遇见根号,化同!化成都为根号或者变成没根号的!9、当一个数列里头有奇数项和偶数项,如果奇数项的规律不明显而偶数项的规律明显,则奇数项的规律依赖于偶数项。
例题:1、4、3、5、2、6、4、7、()因此1+3=4,3+2=5.……如果这样想了,结果没有看出具体的依赖关系,就采用分组。
10、以2个数推出后面只有一种可能就是这两个数是相等的。
第三章分数数列1、分组看待:分子、分母单独看,各成规律数列。
2、分式数列不能单独通过分子或分母来排除选项。
3、数列中多数是分数:按分数数列来做数列中少数是分数:往往不是分数数列。
可能是负幂次(分子为1)或除法,当然多项也能是这种情况。
4、做差没有规律就递推:前两项相加等于第三项。
5、每个分数的分子+分母都等于C,这叫猜……6、概率小的事情反复发生,说明一定有原因;概率大的事情反复发生,说明是碰巧。
7、看到一个数列其中有分数可以约分,一定要先约分。
8、一个分数单独成规律的话,先看分母。
如果没特征,先分母与分子做差。
9、广义通分:把分子或分母化为简单相同。
10、平方数列是二级等差数列,立方数列是三级等差数列。
11、分母有理化:利用平方差公式将分母当中的根号转移到分子当中来分子有理化:利用平方差公式将分子当中的根号转移到分母当中来。
12、反约分(重点):分子和分母同时扩大。
第一步:确定哪个分数要扩大?以分数线为中心,看分子或者看分母的趋势,不协调的数字需要被扩大。
小学生数学公式之数量关系计算公式_公式总结
小学数学公式是学生们学习中的重要部分,学生们应该重视数学公式,不断提高数学水平,查字典数学网为大家提供了小学生数学公式之数量关系计算公式,希望对大家有所帮助。
小学生数学公式之数量关系计算公式
数量关系计算公式方面
1.单价×数量=总价
2.单产量×数量=总产量
3.速度×时间=路程
4.工效×时间=工作总量
单位换算
(1)1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米
(2)1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米
(3)1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米
(4)1吨=1000千克1千克=1000克=1公斤=2市斤
(5)1公顷=10000平方米1亩=666.666平方米
(6)1升=1立方分米=1000毫升1毫升=1立方厘米
关于小学生数学公式之数量关系计算公式的内容就为大家整理完了,希望大家能够牢记。
小升初数学知识:数量关系计算公式查字典数学网小升初频道为各位同学整理了小升初数学知识:数量关系计算公式,供大家参考学习。
更多内容请关注查字典数学网小升初频道。
单价数量=总价 2、单产量数量=总产量速度时间=路程 4、工效时间=工作总量加数+加数=和一个加数=和+另一个加数被减数-减数=差减数=被减数-差被减数=减数+差因数因数=积一个因数=积另一个因数被除数除数=商除数=被除数商被除数=商除数长度单位:1公里=1千米 1千米=1000米1米=10分米 1分米=10厘米 1厘米=10毫米面积单位:1平方千米=100公顷 1公顷=10000平方米1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米1亩=666.666平方米。
体积单位1立方米=1000立方分米 1立方分米=1000立方厘米1立方厘米=1000立方毫米1升=1立方分米=1000毫升 1毫升=1立方厘米重量单位1吨=1000千克 1千克= 1000克= 1公斤= 1市斤比什么叫比:两个数相除就叫做两个数的比。
如:25或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
什么叫比例:表示两个比相等的式子叫做比例。
如3:6=9:18 比例的基本性质:在比例里,两外项之积等于两内项之积。
解比例:求比例中的未知项,叫做解比例。
如3:=9:18正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
如:y/x=k( k一定)或kx=y反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
如:xy = k( k一定)或k / x = y以上就是小编为大家整理的小升初数学知识:数量关系计算公式。
数量关系”常用数学公式汇总(系统版)一、(2、4、8)整除及余数判定基本法则一个数能被2(或5)整除,当且仅当其末一位数能被2(或5)整除;一个数能被4(或25)整除,当且仅当其末两位数能被4(或25)整除;一个是能被8(或125)整除,当且仅当其末三位数能被8(或125)整除。
一个数被2(或5)除得的余数,就是其末一位数被2(或5)除得的余数。
一个数被4(或25)除得的余数,就是其末两位数被4(或25)除得的余数。
一个数被8(或125)除得的余数,就是其末三位数被8(或125)除得的余数。
二、(3、9)整除及余数判定基本法则一个数能被3整除,当且仅当其各位数字和能被3整除;一个数能被9整除,当且仅当其各位数字和能被9整除;一个数能被3除得的余除,就是其各位数字和被3除得的余数;;一个数能被9除得的余数,就是其各位数字和被9除得的余数。
三、整除与余数问题1、被除数÷除数=商…余数(0≤余数<除数);2、余同取余,和同加和,差同减差,公倍数作周期;余同:一个数除以4余1,除以5余1,除以6 余1,则取1,表示为60n+1;和同:一个数除以4余3,除以5余2,除以6 余1,则取7,表示为60n+7;差同:一个数除以4余1,除以5余2,除以6 余3,则取-3,表示为60n-3;四、奇偶特征1、二个奇数之和/差为偶数,二个偶数之和/差为偶数,一奇一偶之和/差为奇数;2、两个数的和/差为奇数,则它们奇偶相反,两个数的和/差为偶数,则它们奇偶相同;3、两个数的和为奇数,则其差也为奇数,两个数的和为偶数,则其差也为偶数。
五、基础代数公式1. 平方差公式:(a+b)·(a-b)=a2-b22. 完全平方公式:(a±b)2=a2±2ab+b23. 完全立方公式:(a±b)3=(a±b)(a2ab+b2)4. 立方和差公式:a3+b3=(a b)(a2+ ab+b2)5. a m·a n=a m+n a m÷a n=a m-n (a m)n=a mn(ab)n=a n·b n六、等差数列+ n(n-1)d;1. ==na12. =a+(n-1)d;13. 项数n =+1;4. 若a,b,c成等差数列,则:2b=a+c;5. 若m+n=k+i,则:;6. 前n个奇数:1,3,5,7,9,…(2n-1)之和为(其中:n为项数,a1为首项,an为末项,d为公差,为等差数列前n项的和)七、等比数列1. ;2. =(q 1)3. 若a,b,c成等比数列,则:b2=ac;4. 若m+n=k+i,则:am ·an=ak·ai;5. =q(m-n)(其中:n为项数,a1为首项,an为末项,q为公比,为等比数列前n项的和)八、不等式1.一元二次方程求根公式:ax2+bx+c=a(x-x1)(x-x2)其中:(b2-4ac 0)根与系数的关系:x1+x2=- ,x1·x2=2. (a、b ,当且仅当a=b时取等号)3. (a、b )4. (a、b、c ,当且仅当a=b=c时取等号)5.一阶导为零法:连续可导函数,在其内部取得最大值或最小值时,其导数为零。
数量关系常用公式总结:1.行程问题基础公式:路程=速度*时间一、相遇追及型追及问题:追及距离=(大速度-小速度)×追及时间相遇问题:相遇距离=(大速度+小速度)×相遇时间背离问题:背离距离=(大速度+小速度)×背离时间二、环形运动型反向运动:第N次相遇路程和为N个周长,环形周长=(大速度+小速度)×相遇时间同向运动:第N次相遇路程差为N个周长,环形周长=(大速度-小速度)×相遇时间三、流水行船型顺流路程=(船速+水速)×顺流时间逆流路程=(船速-水速)×逆流时间静水速度=(顺水速度+逆水速度)÷2水流速度=(顺水速度-逆水速度)÷2四、扶梯上下型扶梯总长=人走的阶数×[1±(V梯÷V人)],顺行用加法,逆行用减法,根据公式带入级,速度为v解析:设扶梯为s v=1 1) 解得×S=30×1(1+v÷S=20×2×(1+v÷2) s=60,所以选择B。
五、队伍行进型队头→队尾:队伍长度=(人速+队伍速度)×时间队尾→队头:队伍长度=(人速-队伍速度)×时间解析:假设通讯员和队伍的速度分别为v和u,所求时间为t,则: 600=(v-u)×3 解得 v=250600=v×(2+24÷60) u=50600=(v+u)×t t=2,所以选择D六、往返相遇型左右点出发:第N次迎面相遇,路程和=全程×(2N-1)第N次追上相遇,路程差=全程×(2N-1)同一点出发:第N次迎面相遇,路程和=全程×2N第N次追上相遇,路程差=全程×2N解析:a汽车第二次从甲地出发后与b汽车相遇,实际上是两辆车第3次迎面相遇,根据公式,路程和为5个全程,即5×210=1050(公里),使用的时间为1050÷(90+120)=5(小时),所以b汽车共行驶了120×5=600(公里),选择B七、典型行程模型等距离平均速度=(2速度1×速度2)÷(速度1+速度2)(调和平均数公式)(速度1和速度2分别代表往﹑返的速度)解析:代入公式v=2×60×120÷(60+120)=80等发车前后过车:发车间隔T=(2t1×t2) ÷(t1+t2);V车/V人=(t2+t1) ÷( t2-t1)例:某人沿电车线路匀速行走,每分钟有一辆电车从后面追上,每4分钟有一辆电车迎面开来,假设两个起点站的发车间隔相同,则这个发车间隔为多少?解析:依据公式,发车间隔T=(2t1×t2) ÷(t1+t2)=2×12×4÷(12+4)=6(分钟)。
2021年六年级期末数学知识点之常用数量关系式知识点总结小学数学是一门很有趣的课程,可以启迪孩子的心智,可以培养孩子的逻辑思维,小编今天为您带来了六年级期末数学知识点希望能对您的学习有帮助。
常用的数量关系式
1、每份数_份数=总数总数÷每份数=份数总数÷份数=每份数
2、1倍数_倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3、速度_时间=路程路程÷速度=时间路程÷时间=速度
4、单价_数量=总价总价÷单价=数量总价÷数量=单价
5、工作效率_工作时间=工作总量工作总量÷工作效率=工作时
间工作总量÷工作时间=工作效率
6、加数+加数=和和-一个加数=另一个加数
7、被减数-减数=差被减数-差=减数差+减数=被减数
8、因数_因数=积积÷一个因数=另一个因数
9、被除数÷除数=商被除数÷商=除数商_除数=被除数
更多关于六年级期末数学知识点的内容请关注小学频道,我们与您一起成长!。
数量关系公式汇总
1、单价×数量=总价
2、单产量×数量=总产量
3、速度×时间=路程@高途课堂
4、工效×时间=工作总量
5、加数+加数=和一个加数=和+另一个加数
被减数-减数=差
减数=被减数-差
被减数=减数+差
因数×因数=积
一个因数=积÷另一个因数
被除数÷除数=商
除数=被除数÷商
被除数=商×除数
有余数的除法:被除数=商×除数+余数
一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,
结果不变。
例:90÷5÷6=90÷(5×6)。
6、1公里=1千米1千米=1000米。
1米=10分米1分米=10厘米1厘米=10毫米。
1平方米=100平方分米1平方分米=100平方厘米。
1平方厘米=100平方毫米。
1立方米=1000立方分米1立方分米=1000立方厘米。
一、题目的难度是由题干和选项共同决定的, 要根据题干结合选项, 优先考虑是否可以排除干扰选项。
注意题目中命题人的基本逻辑, 尤其要注意选项的三种布局方式。
①选项布局: 4=2(明显错的)+2=1(对/错)+3(错/对)=1+1+1+1(每个选项都是一样的)②猜题: A.23.6%与25.2% B.26.6%与19.0% C.23.6%与19.0% D.25.9%与33.6% 二、在题目中结合选项布局, 要重点关注亲密原则、相关原则(❤❤)、常识原则(❤)、相反原则四个选项分布原则。
①亲密原则: (不会做或者没时间做的时候蒙的原则) A.117 B.126 C.127 D.189②相关原则: 两教室均有5 排座位, 甲教室每排可坐10 人, 乙教室每排可坐9人。
两教室当月共举办该培训27次, 每次培训均座无虚席, 当月培训1290 人次。
问甲教室当月共举办了多少次这项培训? A.8 B.10 C.12 D.15③相关原则: 甲乙两种食品共100 千克, 现在甲食品降价20%, 乙食品提价20%, 调整后甲乙两种食品售价均为每千克9.6 元, 总值比原来减少140元, 请问甲食品有多少千克?A.25 千克B.45 千克C.65 千克D.75千克④常识原则: 为节约用水, 某市决定用水收费实行超额超收, 月标准用水量以内每吨2.5 元, 超过标准的部分加倍收费。
某用户某月用水15 吨, 交水费62.5 元。
若该用户下个月用水12吨, 则应交水费多少钱?A.42.5 B.47.5 C.50 D.55 吨数一般是整数.相反原则:1、3、4、1、9、.)A.. B.1. C.1...D.64三、要注意奇偶、倍数、整除等数字特性的应用, 尤其当数学运算中出现几比几、几分之几等分数时, 谨记倍数关系的应用, 即: 前面的数是分子的倍数, 后面的数是分母的倍数。
譬如: A=B×5/13, 则前面的数A 是分子5 的倍数, 后面的数B 是分母13 的倍数, A 与B 的和A+B 是5+13=18 的倍数, A与B的差A-B是13-5=8 的倍数。
数量关系常用公式总结:1.行程问题基础公式:路程=速度*时间一、相遇追及型追及问题:追及距离=(大速度-小速度)×追及时间相遇问题:相遇距离=(大速度+小速度)×相遇时间背离问题:背离距离=(大速度+小速度)×背离时间二、环形运动型反向运动:第N次相遇路程和为N个周长,环形周长=(大速度+小速度)×相遇时间同向运动:第N次相遇路程差为N个周长,环形周长=(大速度-小速度)×相遇时间三、流水行船型顺流路程=(船速+水速)×顺流时间逆流路程=(船速-水速)×逆流时间静水速度=(顺水速度+逆水速度)÷2水流速度=(顺水速度-逆水速度)÷2四、扶梯上下型扶梯总长=人走的阶数×[1±(V梯÷V人)],顺行用加法,逆行用减法解析:设扶梯为s级,速度为v,根据公式带入S=30×1×(1+v÷1) 解得 v=1S=20×2×(1+v÷2) s=60,所以选择B。
五、队伍行进型队头→队尾:队伍长度=(人速+队伍速度)×时间队尾→队头:队伍长度=(人速-队伍速度)×时间解析:假设通讯员和队伍的速度分别为v和u,所求时间为t,则: 600=(v-u)×3 解得 v=250600=v×(2+24÷60) u=50600=(v+u)×t t=2,所以选择D六、往返相遇型左右点出发:第N次迎面相遇,路程和=全程×(2N-1)第N次追上相遇,路程差=全程×(2N-1)同一点出发:第N次迎面相遇,路程和=全程×2N第N次追上相遇,路程差=全程×2N解析:a汽车第二次从甲地出发后与b汽车相遇,实际上是两辆车第3次迎面相遇,根据公式,路程和为5个全程,即5×210=1050(公里),使用的时间为1050÷(90+120)=5(小时),所以b汽车共行驶了120×5=600(公里),选择B七、典型行程模型等距离平均速度=(2速度1×速度2)÷(速度1+速度2)(调和平均数公式)(速度1和速度2分别代表往﹑返的速度)解析:代入公式v=2×60×120÷(60+120)=80等发车前后过车:发车间隔T=(2t1×t2) ÷(t1+t2);V车/V人=(t2+t1) ÷( t2-t1)例:某人沿电车线路匀速行走,每分钟有一辆电车从后面追上,每4分钟有一辆电车迎面开来,假设两个起点站的发车间隔相同,则这个发车间隔为多少?解析:依据公式,发车间隔T=(2t1×t2) ÷(t1+t2)=2×12×4÷(12+4)=6(分钟)。
第一课数字特性及数列相关一、整除特性1、能被常见数字整除的数字特性(1)被2整除特性:偶数(2)能被3整除特性:一个数字每位数字相加能被3整除.可以把被三整除的个别数字直接消掉,以减少计算量(3)被4和25整除特性:只看一个数字的末两位能不能被4 (25)整除(4)被5整除特性:末尾是0或5(5)被6整除特性:兼被2和3整除的特性(6)被7整除特性:划分出末尾3位,大数减小数除以7,能整除说明这个数能被7整除(7)被8和125整除特性:看一个数的末3位,能被8 (125)整除(8)被9整除特性:一个数字每位数字相加能被9整除.可以把被三整除的个别数字直接消掉,以减少计算量(9)被11整除:奇数位的和-偶数位的和,能被11整除2、关于整除的其他本卷须知(1)被合数整除的数字,也能被其因数整除(2)三个连续的自然数之和(积)能被3整除(3)四个连续自然数之和是偶数,但不能被4整除(4)平方数的尾数只能是0、1、4、5、6、9.二、奇、偶、质、合性1、奇偶性奇数:不能被2整除的整数偶数:能被2整除的整数(0是偶数) 2、奇数和偶数的运算规律奇数士奇数=偶数;偶数士偶数=偶数奇数士偶数=奇数;奇数x奇数=奇数偶数X偶数 =偶数;奇数X偶数=偶数3、质合性质数:一个大于1的正整数,只能被1和它本身整除,那么这个正整数叫做质数(质数也称为素数),如2、5、7、11、13合数:一个正整数除了能被1和它本身整除外,还能被其他的正整数整除, 这样的正整数叫做合数1既不是质数也不是合数4、方法技巧及规律(1)两个连续的自然数之和(或差)必为奇数.(2)两个连续自然数之积必为偶数.(3)乘方运算后,数字的奇偶性不变.(4) 2是唯一一个为偶数的质数如果两个质数的和(或差)是奇数,那么其中必有一个是2如果两个质数的积是偶数,那么其中必有一个是2三、公倍数、公约数(往往考察周期性问题)四、余数问题根本形式:被除数=除数X商十余数(都是正整数)1、同余定义两个整数a、b除以自然数m(m>1),所得余数相同,那么称整数a、b对自然数m同余.2、四种常考形式:余同取余、和同加和, 差同减差,最小公倍数做周期.(1)余同取余,公倍数做周期:一个数除以几个不同的数,余数相同, 那么这个数可以表示成这几个除数的最小公倍数的倍数与余数相加的形式.(2)和同加和,公倍数做周期:一个数除以几个不同的数,除数与余数之和相同,那么这个数可以表示成这几个除数的最小公倍数的倍数与该和相加的形式.(3)差同减差,公倍数做周期:一个数除以几个不同的数,除数与余数之差相同,那么这个数可以表示成这几个除数的最小公倍数的倍数与该差相减的形式.(4)如果三个不符合口诀,先两个结合,再跟第三结合五、尾数乘方问题尾数变化规律:底数留个位,指数除4留余数,余数为0转成4六、数的拆分与重排数的拆分是将一个数拆分成几个因数相乘或者相加的形式,经常需要综合应用整除性质、奇偶性质、因式分解、同余理论等解答数字的重排问题时,经常需要借助于尾数法进行考虑、判断,同时可以利用列方程法、代入法、假设法等一些方法,进行快速求解.七、不定方程未知数个数多于方程个数叫做不定方程. 通常只考虑他的整数解或正整数解.常用解法有:综合利用整数的奇偶性,质合性、整除特性、尾数法、余数特性、特殊之法、代入排除法等多种数学知识得到答案.八、数列〔等差与等比〕〔1〕等差数列:求和公式〔上底+下底X高+ 2〕、中位数求和公式〔重点〕. 〔2〕等比数列:a n=a i q〔n-1〕第二课终极比例法比例就是数量之间的比照关系,或指一种事物在整体中所占的分量, 运用比例法是将繁琐的数值简化为简单的数值进行分析.比例问题的重点在于找出两种相关联的量,并明确两者间的比例关系.比和比例的性质1.正比:2也=卜也=常数〕,那么称a、b成正比2.反比:2油=卜也=常数〕,那么称a、b成反比采用比例法的一个重要条件是含有一个固定的乘除等式关系,及1、2所述的正反比例,实际应用中的路程=速度x时间,总量=效率x时间, 溶剂=溶液X浓度,利润=本钱X利润率.需特别注意:三个量中必须有一个量是固定的,另外两个量才有相对关系. 差值比例:旦交 b d 一、常规比例二、工程问题工程问题是重点一、工程问题的本质:将一般的工作问题分数化,就是研究工作总量、工作效率、工作时间三者之间的关系问题.二、常用的数量关系式为:工作总量=工作效率X工作时间三、工程问题的两大利器1、比例法2、特殊值法四、核心要点:方程问题,用比例不用方程,用份数不用分数五、题型分类:单人完成工程问题、全程合作问题、分阶工程问题、轮流合作型、水管问题、时间效率转化三、和差比例法四、三量比例法遇到三个量或者多个量,建立比例关系,需要通过某一个量的统一,比方①甲:乙=2: 3,②乙:丙=4:5,需要对乙进行搭桥统一成12.五、恒值比例法恒值比例法,在研究比例问题的时候,有一个量是恒定不变的,在题干所述的情况下,从头到尾没有发生变化,那么我们可以利用这样的一个对象所代表的比例点来求解.一般情况下,这种恒量对象在不同的情况下代表的比例点不同,这个时候,需要把不同的比例点化为相同的数值来代替.第三课行程问题根底模型之一、相遇追击1.根本公式:距离=速度x时间2.相遇及追及问题:相遇距离=〔大速度+小速度〕x相遇时间相向追及距离二〔大速度—小速度〕X相遇时间同向3.核心方法:比例、公式、画图法4.解决要点:用比例不用方程、用份数不用分数根底模型之二、顺流逆流1、根本行船问题:顺水速度=船速+水速逆水速度=船速-水速船速=〔顺水速度+逆水速度〕+ 2水速=〔顺水速度—逆水速度〕+ 22、顺水漂流问题:漂流速度=水速漂流时间1=或…t1 - t2根底模型之三、上下扶梯1、顺行扶梯长度=〔人速+电梯速度〕X顺行时间2、逆行扶梯长度=〔人速-电梯速度〕x逆行时间3、顺行扶梯级数二人走过的梯级数十扶梯运行梯级数4、逆行扶梯级数二人走过的梯级数-扶梯运行梯级数根底模型之四、环形运动1、同向运动:环形周长=〔大速度-小速度〕X时间2、反向运动:环形周长=〔大速度+小速度〕X时间根底模型之五、等距离平均速度公式根底模型之六、公车模型〔双向数车〕1、题型特征:人按一定速度出行,每隔一段时间迎面遇到一辆公交车,每隔一段时间从背后超出一辆公交车,求发车间隔或撤人速度2、经典公式:发车间隔时间=t =也,售=色t1+t2人速t1-t2根底模型之七、队首队尾1.队尾一队首:队伍长度=〔人的速度-队伍速度〕x时间2.队首一队尾:队伍长度=〔人的速度+队伍速度〕x时间3.从队尾赶到队首,可看做该人与队首的追击过程4.从队首赶到队尾,可看做该人与队尾的相遇过程根底模型之八、火车过桥1、核心思维:火车本身长度也是路程的一局部,以火车的头或为作为运动点,按相遇或追击问题考虑根底模型之九、往返相遇1、题目特征:题目表述为两个运动体从一条线段的两端或一端出发,在两端点之间不断往返,求一定时间后相遇次数或第N次相遇时间等.2、核心知识:(1)两运动体从两端同时出发,相向而行,不断往返:第N次迎面相遇,路程和=全程x (2n-1 )第N次追上相遇,路程差=全程x (2n-1 )(2)两运动体从一端同时出发,同向而行,不断往返:第N次迎面相遇,路程和=全程X2n第N次追上相遇,路程差=全程X2n(3)单人的路程第N次迎面相遇,路程=第一次相遇时所走的路程x 2n (或2n-1 )第N次追上相遇,路程=第一次相遇时所走的路程x 2n (或2n-1 ) 根底模型之十、二次相遇1、题型特征:两物体从两端点,相向而行,相遇后继续前行到达端点后折返至而次相遇.题目给出的相遇点到端点的距离,带球两端点距离.2、核心知识:两边型:S=3S1-S2单边型:S= (3S1+S2) /2其中,S表示两端点之间的距离,单边型两次距离都是相对于统一端点. 两边型指两次距离分别相对于两端点.第四课计数模型鸡兔同笼1、列方程法2、假设法:先假设全部是某一种,然后求出的值与实际值的差值,除以它们单个的差值,得出来的是另一种.植树问题关键在于理清间隔数与端点数之间的关系1、两端植树:棵树=线路总长+株距+12、一端植树:棵树=线路总长+株距3、两端都不栽树:棵树=线路总长+株距-14、双边植树需要在一条的根底上乘以25、封闭性植树,棵树=线路总长+株距=总段数6、类似于两端不植树的还有“上楼梯问题〞,那么上每层用M/(N-1)分钟.锯木头,剑圣自,锯成N段需要锯N-1次;站成一列,相邻两人间隔M米, 队伍长MX N-1)米.方阵问题1、方阵的核心是一个等差数列.可以将方阵的每一层看做是一项.每一层边长之差是2,每层周长之差为8,也就是方阵等差数列的所谓公差.2、每一层,边长和周长的关系:(1)周长=(边长-1) X4(2)边长=周长刃+ 13、方阵总数:(1)实心方阵:m=a2 (a为最外层每边人数,即边长)(2)空心方阵:m=(最外层每边人数-层数)x层数M4.增加或取消行列(1)增加m行n歹!J,,人数增加=边长x (m+n) +mn(2)取消m行n列,,人数减少=边长x (m+n) -mn剪绳问题1、题目表述:将一根绳子折成几段,然后在上面剪几刀,求分成段数.2、经典公式:2NHM + 1 (一根绳子连续对折N次,剪M刀,问绳子被剪成几段)3、实战秒杀:最后的段数一定是奇数,直接秒杀过河问题1.题目表述:一只船只能运送N个人,现在M个人等待过河,求过河安排信息2.核心知识:共需:M二次,如需N个人划船,那么1变成N;过一次河N -1指的是单程,往返一次指的是双程.3.载人过河时,最后一次不需要返回.空瓶换水1、题目特征:一定数量的空瓶子可以换到一瓶水,已有局部空瓶子,求可以换取水的瓶数.2、经典公式:假设M个空瓶换一瓶水,相当于M-1个空瓶喝到一瓶水第五课星期、日期、钟表、年龄一、年月、星期问题1、星期推移口诀:平年就是1,闰年再加1,小月就是2,大月要补加1,7天一循环,28年一周期2、闰年判定口诀:四年一闰,百年不闰,四百年再闰.3、平年是52周余1天,该年最后一天与第一天星期数相同.闰年是52周余2天,该年最后一天是第一天星期数加1.二、紧邻的两日:多的在前,垫后;多的在后,垫前.当题目中出现连续多个日期之和,或连续几个星期几的日期之和时, 这些日期本质上都是等差数列,可以通过计算其平均数来定位这些日期的中位数,从而完成打做题三、解题技巧(求某一天是星期几)(1)所求日期与日期同月同日不同年.解决此类问题只用记住一句话,每过一年星期数增加1.过闰年再加1, 也就是说,每过一年星期数就在原来的根底上加1 ,如果这个时间段包含2月29日这一天那么需要再加1.有几个2月29日就加几个1.(2)所求日期与日期同年同日不同月解决此类问题,同样只用记住一句话,每过一个月星期数将增加2(或3).(3)所求日期与日期同年同月不同日日期之差除以七所得的余数.年龄问题1、年龄问题的主要特点:随着时间推移,年龄差始终不变、年龄倍数变小2、三大必杀技:方程、画图、代入排除钟表问题钟表问题即时针和分针之间的运动规律和的位置关系.因此钟表问题其实就是追击问题的变形,从而可以利用钟面上的路程时间以及速度的关系来求解.一、按格来分,那么钟面上的路程〔角度〕和速度〔角速度〕有如下关系.1、每小时:时针走1大格,5小格;分钟走一圈12大格,60小格2、每小时:时针走30,分针走360 ° ,他们每小时相差330 °.3、每分钟:时针0.5° ,分钟走6°.他们每分钟相差5.5 o4、分针的速度是时针的12倍,时针是分针速度的1/12.三、解题技巧.1、可以转化成时针和分针的相遇追及问题,时针速度为0.5°/min;分针速度为6°/min,该方法适用于定量计算.2、借助画图缩小范围然后进行排除该方法适用于定性计算.3、直接应用是工具手表通过旋转手表解体.第六课排列组合一、排列及组合问题二、特殊优先法三、捆绑法四、插空法五、插板法六、逆向计算法七、错位排列:元素数为1、2、3、4、5、6时,情况数为:0、1、2、9、44、265八、圆周排列:n个元素,共有〔n-1〕!种排列方法.九、多人传球问题NM个人传N次球,X=1M怔,与X最接近的整数为传给非自己的某人的方M法数,第二接近的整数便是传给自己的方法数.十、比赛问题涉及多支队伍比赛场次的问题〔N个队伍〕淘汰赛:仅需决出冠亚军:N-1;需决出1234: N循环赛:单循环:C2 ;双循环:A N单循环:任意两只队伍打一场比赛双循环:任意两只队伍打两场比赛第七课几何统筹问题一、几何问题1.直线和线段的性质:过两点有且只有一条直线;两点之间线段最短2,三角形任意两边之和大于第三边,两边之差小于第三边.3.三角形的一个外角等于和它不相邻的两个内角的和4.三角形的一个外角大于任何一个和它不相邻的内角.5.多边形的角的定理:n边形的内角的和等于〔n-2〕 M80;任意多边形的外角和等于360度.6.与周长、面积相关:面积相等,越接近圆周长最小;周长相等,越接近圆面积越大7,体积一定,球外表积最小;外表积一定,球体积最大二、统筹问题1.时间统筹2,装卸工统筹:X个工厂Y辆车X★,需要装卸工最多的Y个工厂人数之和X寸,X个工厂所需装卸工之和3.效率统筹:与自身比较,找出劣势者所擅长的事情,并安排劣势者全力以赴,另一个人根据这个弱者继续统筹.4.集中化统筹:有重量划分时,只考虑重量,不考虑路径.小往大靠.如果某一点重量超过总重量的一半时, 是最正确位置;不考虑重量时,设置在中间.5.拆数问题:拆成2个或3个数的和,使乘积最大,拆成的数尽量接近;拆成假设干个自然数的和,使乘积最大,拆分数都由2或3组成,不含其它数字,且3尽量多.第八课盈亏、容斥、牛吃草问题、盈亏问题公式盈-亏〔盈数+亏数〕+两次每人分配数的差 =对象数两次皆盈〔大盈-小盈〕一两次每人分配数的差 =对象数两次皆亏〔人"-小万〕+两次每人分配数的差 =对象数盈-尽盈数.两次每人分配数的差=对象数亏-尽亏数一两次每人分配数的差=对象数二、容斥问题公式1:总数=A+B+C-A CB-A PC-BPC+Tf、公式2:总数=A+B+C-a-b-c-2T三、牛吃草问题秒杀大法:草长速度= 牛数1父吃草时间1-牛数2 M吃草时间2时间1-时间2。
数量关系公式知识点总结数量关系是数学中一个非常重要的概念,它涉及到物体之间的数量关系、比较关系以及运算关系。
在学习数量关系时,我们需要掌握一些基本的概念和公式,以便能够准确地描述和分析物体之间的数量关系。
本文将对数量关系公式的一些知识点进行总结,希望能够帮助大家更好地理解和掌握这一重要的数学概念。
一、数量关系的基本概念和定义在学习数量关系之前,我们需要先了解一些基本的概念和定义。
数量关系是指两个对象之间的数量比较或运算关系,它涉及到数量的大小、数量的比较以及数量的加减乘除等运算。
在数量关系中,我们通常会涉及到一些重要的概念,如数量、比例、倍数等。
1. 数量:数量是指一个对象的数量大小。
在数量关系中,我们通常会用数字或符号来表示一个对象的数量大小,如“3只苹果”、“5本书”等。
2. 比例:比例是指两个量之间的相对大小关系。
在数量关系中,我们通常会用两个数字或符号来表示两个量之间的比例关系,如“2:3”、“1/4”等。
3. 倍数:倍数是指一个数是另一个数的整数倍。
在数量关系中,我们通常会用一个数或符号来表示一个数是另一个数的几倍,如“3的倍数”、“4的整数倍”等。
以上是数量关系的一些基本概念和定义,了解了这些基本概念之后,我们就可以更好地理解和掌握数量关系的公式和知识点。
二、数量关系公式在数量关系中,我们通常会用一些公式来描述和分析物体之间的数量关系。
这些公式包括数量的比较公式、倍数的运算公式以及数量的加减乘除公式等。
下面将介绍一些常见的数量关系公式。
1. 数量的比较公式数量的比较是指两个量之间的大小关系。
在数量的比较中,我们通常会用一些符号和公式来表示,如“大于”、“小于”、“等于”等。
下面是一些常见的数量比较公式:(1)大于:表示一个量比另一个量大,用符号“>”来表示,如a>b。
(2)小于:表示一个量比另一个量小,用符号“<” 来表示,如a<b。
(3)等于:表示两个量相等,用符号“=”来表示,如a=b。
小学数量关系式数学公式总结_公式总结
数学不仅是各门学科所必不可少的工具,而且它从不顾及直观感觉的约束而自由地飞翔着。
下面是为大家收集的小学数量关系式数学公式,供大家参考。
1,每份数×份数=总数总数÷每份数=份数总数÷份数=每份数
2,1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3,速度×时间=路程路程÷速度=时间路程÷时间=速度
4,单价×数量=总价总价÷单价=数量总价÷数量=单价
5,工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6,加数+加数=和和-一个加数=另一个加数
7,被减数-减数=差被减数-差=减数差+减数=被减数
8,因数×因数=积积÷一个因数=另一个因数
9,被除数÷除数=商被除数÷商=除数商×除数=被除数
以上是查字典数学网为大家准备的小学数量关系式数学公式,希望对大家有所帮助。
初三数量关系计算公式方面与初三数学知识点归纳中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。
接下来小编为大家整理了初三数学学习相关内容,一起来看看吧!初三数量关系计算公式方面1、单价×数量=总价2、单产量×数量=总产量3、速度×时间=路程4、工效×时间=工作总量5、加数+加数=和一个加数=和+另一个加数被减数-减数=差减数=被减数-差被减数=减数+差因数×因数=积一个因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=商×除数有余数的除法:被除数=商×除数+余数一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。
例:90÷5÷6=90÷(5×6)6、 1公里=1千米 1千米=1000米1米=10分米 1分米=10厘米 1厘米=10毫米1平方米=100平方分米 1平方分米=100平方厘米1平方厘米=100平方毫米1立方米=1000立方分米 1立方分米=1000立方厘米1立方厘米=1000立方毫米1吨=1000千克 1千克= 1000克= 1公斤= 1市斤1公顷=10000平方米。
1亩=666.666平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米7、什么叫比:两个数相除就叫做两个数的比。
如:2÷5或3:6或1/3比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
8、什么叫比例:表示两个比相等的式子叫做比例。
如3:6=9:189、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。
如3:χ=9:1811、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
数量关系第一节代入排除法代入排除法:范围:1、特征选项:年龄、不定方程、余数、多位数;2、选项充分:问法特征:分别、各位、比例。
3、两项必代:只剩两项时,代入一项即可4、条件复杂:题长、数多、关系乱,要么放弃要么代入方法:1、先排除:尾数、奇数、偶数、倍数2、再代入:最值、好算第二节数字特性一、奇偶特性看答案是奇数还是偶数1、和差:同奇同偶则为偶,一奇一偶才为奇,■和差同性很重要:a+b与a-b的奇偶性相同。
■着重点为和或者差,两个数确定,做和做差奇偶同性2、乘(除法不考虑奇偶):一个(至少一个)为偶数则为偶,全部为奇才为奇。
三个数相乘,只要有一个数为偶,则乘积为偶;三个数都是奇数,则乘积为奇。
3、不定方程:看到ax+by=c,a,b,c可正可负,先看c的奇偶性,c为常数,可确定奇偶性,观察式子左侧,哪个的系数为偶数则乘积为偶数,可推算出剩余的数的奇偶性。
4、其他:①质数:逢质必奇,2是唯一特殊的偶质数;②两者相等:A和B相等,假设都为X,A=B=X,则A+B=2X为偶数;③A是B的2倍:A是2的倍数,则A为偶数。
知识点链接:整除判定法则1、一般口诀发(3/9看各位和;4/8看末2/3位;2/5看末位)2、懒得记口诀的可以用拆分法要验证是否是a的倍数,只需要将它拆分成a的整数倍+(-)一个小数字,若小数字也能被a整除,原数即能被a整除。
3、复杂倍数用因式分解判断一个数能否15整除,只需要判断它是3和5的倍数即可注意:分解后的2个数必须互质二、倍数特性范围:1、分数、百分数、比例、倍数2、平均分配方法:1、A/B=m/n;A是m的倍数,B是n的倍数,则A加减B是m加减n的倍数2、ax+b,若b是a的倍数,答案-b能被a整除;若b不是a的倍数,则答案不被a整除第三节方程法一、普通方程:设小不设大、设中间量、求谁设谁;二、不定方程(组):1、数字特性:奇偶特性;倍数特性、尾数法2、代入排除:3、不定方程组:先消元,转化成不定方程三、赋零法1、范围:不定方程组;未知数可以非整数;求的是算式;2、方法:社方程中系数较复杂的未知数为零,解出其余未知数即可第四节工程问题一、给具体题型1、识别:题干有效率,总量的具体值2、方法:代公式,列方程求解,主要是计算难度大一点。