二次根式比大小例题3
- 格式:ppt
- 大小:236.50 KB
- 文档页数:8
二次根式知识点总结及练习题大全1.二次根式:式子(≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:(1)()2= (≥0);(2)5.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.=·(a≥0,b≥0);(b≥0,a>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】(2)、平方法当时,①如果,则;②如果,则。
例1、比较与的大小。
例2、比较与的大小。
(3)、分母有理化法通过分母有理化,利用分子的大小来比较。
例3、比较与的大小。
(4)、分子有理化法通过分子有理化,利用分母的大小来比较。
例4、比较与的大小。
(5)、倒数法例5、比较与的大小。
(6)、媒介传递法适当选择介于两个数之间的媒介值,利用传递性进行比较。
例6、比较与的大小。
(7)、作差比较法在对两数比较大小时,经常运用如下性质:①;②例7、比较与的大小。
(8)、求商比较法它运用如下性质:当a>0,b>0时,则:①;②例8、比较与的大小。
二次根式的概念和性质1.判断题(对的打“∨”,错的打“×”)(1)()2=- ();(2)=- ()(3)(-)2=- ();(4)(2)2=2×=1 ()2.下面的计算中,错误..的是()A.=±0.03 B.±=±0.07C.=0.15 D.-=-0.133.下列各式中一定成立的是()A.=+=3+4=7 B.=-C.(-)2= D.=1-=4.()2-=________; 5.+(-)2=________.6.[-]·-6;7.数a在数轴上的位置如图所示,化简:-│1-a│=_______.8.计算:+=_______.9.--()2 10、-|-|11.+ 12.+ 13.二次根式的乘除练习题1、填空:(1)二次根式的乘法法则用式子表示为__________(2)二次根式的除法法则用式子表示为__________(3)把分母中的___化去,叫做分母有理化. 将式子分母有理化后等于_________ (4)成立的条件是_________(5)成立的条件是_________(6)(6)成立的条件是_________(7)化简:(8)计算:1.下列运算正确的是()A.()2=-5 B.(-)2=-5 C.-=5 D.=5a -2-12102.下面的计算中,正确的是( )A .=0.1;B .-=-0.03;C .±=±13;D .=-43.下列命题中,错误..的是( ) A .如果=5,则x=5;B .若a (a ≥0)为有理数,则是它的算术平方根C .化简的结果是-3D .在直角三角形中,若两条直角边分别是,2,那么斜边长为54.计算+|-11|-,正确的结果是( )A .-11B .11C .22D .-225.(-)2-+=________; 6.=________.7.-(2)2=__________.8.比较大小6______7.(填“>”,“=”,“<”号)9.数a 在数轴上的位置如图所示,化简:│-a-1│-2=________.10.=________.11.计算:+++…+=______.12.如果+│b-2│=0,求以a 、b 为边长的等腰三角形的周长.1、判断题:下列运算是否正确.( )(1)( )(2)( )(3)( )(4)( )(5)( )(6)( )(7)( )(8)1、运用乘法分配律进行简单的根式运算.例1 计算 (1) (2)(1) (2)(3)2、比较两个实数的大小.例2 比较下列两个数的大小(1)与(2)与1、与2、与3、与4、与3、二次根式的乘除混合运算.(1)(2)(1)(2)4、运用分母有理化进行计算.例3 化简分析:当分母里二次根式的被开方数都相差1时,如果分母有理化后则变为1或-1,就可将原式变为不含分母的二次根式.思考题:计算二次根式的加减1.若与是同类二次根式,则a=_______,b=_______.2.在,,,中能与进行加减合并的根式有_________.3.计算: +=_________.4.已知长方形的长和宽分别为,,则它的周长是________.5.在实数范围内分解因式:a2-4=_________.6. +与+大小关系是_________.7.下列根式中与其他三个不同类的是()A. B. C. D.8.下列各组二次根式中,可以进行加减合并的一组是()A.与 B.与 C.与2 D.18与9.下列根式合并过程正确的是()A.2--=2 B.a+b=a+bC.5+=a+ D. -=10.计算: ++-的值是()A. +5 B. +8 C.6+ D.12+11.若5+=6,则y值为()A. B.1 C.2 D.312.一个等腰三角形的两边分别为2,3,则这个三角形的周长为()A.3+4 B.6+2C.6+4 D.3+4或6+213.计算:(1)2+3 (2)5+-7(3)++-+ (4)+6a-3a214.如果△ABC的三边a=7,b=4,c=2,求周长P.巩固练习1. 下列根式中,与是同类二次根式的是()A. B. C. D.2. 下面说法正确的是()A. 被开方数相同的二次根式一定是同类二次根式B.与是同类二次根式C.与不是同类二次根式D. 同类二次根式是根指数为2的根式3. 与不是同类二次根式的是()A. B. C. D.4. 下列根式中,是最简二次根式的是()A. B. C. D.★5. 若,则化简的结果是()A. B. C. 3 D. -3★6. 若的整数部分为,小数部分为,则的值是()A. B. C. 1 D. 37. 下列式子中正确的是()A. B.C. D.8. 在中,与是同类二次根式的是。
4、不会比较根式的大小5、不会利用二次根式的非负性6、对最简二次根式的条件掌握不牢八、经典例题例1、求下列各数的平方根与算术平方根( )A.36B.81121 C.2-(5) D.41【答案】A.2=36±(6)∴36的平方根为6±,即6± ∴36的算术平方根为6,即B.2981=11121±()∴81121的平方根为911±,即911±∴81121的算术平方根为911,即911 C.25=25±()∴2-(5)的平方根为5±,即5± ∴2-(5)的算术平方根为5,即D.()241=41±∴41的平方根为 ∴41【解析】一个正数的平方根有两个,它们互为相反数,解答本题注意解题步骤的规范书写,不是完全平方数的正数,它的平方根只能用含有根号的形式表示.练习1、计算:(1 (2)【答案】(1)211=121(2)20.9=0.810.9±表示121的算术平方根,表示0.81的平方根,、的意义是解答本题的关键例2、如果一个正数的平方根为3a-5和2a-10,求这个正数【答案】由题意得,3a-5+2a-10=0得a=3∴3a-5=4∴这个数为24=16【解析】一个正数的平方根有两个,它们互为相反数,而互为相反数的两个数相加为0,故(3a-5)+(2a-10)=0.求出a后,可知3a-5与2a-10的值,在考虑哪个正数的平方根是3a-5,2a-10的值即可。
练习1、x为何值时,下列各式有意义。
【答案】解:A.10x-≥,即1x≥有意义B.10x-≥且0x≥,即01x≤≤有意义C.10x+>,即1x>-D.230x+≥,即x都有意义【解析】a≥例3、【答案】解252736<<<<即56<<的整数部分是5【解析】处在哪两个完全平方数之间.例4、:x y【答案】解:33y-1和互为相反数3y-1∴和1-2x互为相反数3y-1+1-2x=0∴:=3:2x y∴互为相反数,则a和b互为相反数,所以本题中3y-1与1-2x 互为相反数例5、实数0.5的算术平方根等于().D.1 2【答案】C【解析】理解算术平方根的意义,把二次根式化成最简形式是解答本题的关键.例6、的算术平方根是()A. 4±B. 4C. 2±D. 2【答案】D【解析】4的算术平方根,4的算术平方根为2.例7、根据下列运算正确的是()3=2 C. (x+2y)2=x2+2xy+4y2 D. A.x6+x2=x3 B.√−8√18−√8=√2【答案】解:A、本选项不能合并,错误;3=-2,本选项错误;B、√-8C、((x+2y)2=x2+2xy+4y2,本选项错误;D、√18-√8=3√2-2√2=√2,本选项正确.故选D【解析】此题考查了完全平方公式,合并同类项,以及负指数幂,幂的乘方,熟练掌握公式及法则是解本题的关键.例8、)【答案】B综合练习简单1. 式子在实数范围内有意义,则x的取值范围是()A.<1 B.≥1 C.≤-1 D.<-1【答案】B【解析】由二次根式的意义,知:x-1≥0,所以x≥1.2.如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠1【答案】D解:根据题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故选D.【解析】代数式√x有意义的条件为:x﹣1≠0,x≥0.即可求得x的范围.x-13.要使式子2-x有意义,则x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2 D.x≤2【答案】D解:根据题意得,2﹣x≥0,解得x≤2.【解析】根据被开方数大于等于0列式计算即可得解.4. 下列计算正确的是()=√2 D.3+2√2=5√2 A.4√3-3√3=1 B.√2+√3=√5 C.2√12【答案】C【解析】 A、4√3-3√3=√3,原式计算错误,故本选项错误;B、√2与√3不是同类二次根式,不能直接合并,故本选项错误;=√2,计算正确,故本选项正确;C、2√12D、3+2√2≠5√2,原式计算错误,故本选项错误;根据二次根式的化简及同类二次根式的合并,分别进行各选项的判断即可.5. 若,则=【答案】6【解析】原方程变为:,所以,,由得:=3,两边平方,得:=7,所以,原式=7-1=6中等题1.结果是。
21.1 二次根式知识点1.二次根式的相关概念:像这样一些正数的算术平方根的式子,我们就把它称二次根式。
因此,一般地,我们把形如 a (a ≥0)的式子叫做二次根式,“ ”称为二次根号。
二次根式a 的特点:(1)在形式上含有二次根号 ,表示 a 的算术平方根。
(2)被开方数 a ≥0,即必须是非负数。
(3)a 可以是数,也可以是式。
(4)既可表示开方运算,也可表示运算的结果。
2.二次根式中字母的取值围的基本依据:(1)被开方数不小于零。
(2)分母中有字母时,要保证分母不为零。
3.二次根式的相关等式:a a =2(a ≥0) ⎩⎨⎧<-≥==)0()0(2a a a a a a 相关例题1.二次根式的概念例题一: 下列各式中144,20,,1,3,152222-++-m b a b a , 二次根式的个数是()考点: 二次根式的概念.分析: 二次根式的被开方数应为非负数,找到根号为非负数的根式即可. 解答: 解:3a ,12-b 有可能是负数,-144是负数不能作为二次根式的被开方数,所以二次根式的个数是3个。
点评: 本题考查二次根式的概念,注意利用一个数的平方一定是非负数这个知识点.变式一:下列各式中①,a ②,z y +③,6a ④,32+a ⑤,962++x x ⑥,12-x 一定是二次根式的有()个。
解:①被开方数a 有可能是负数,不一定是二次根式;②被开方数y+z 有可能是负数,不一定是二次根式;③被开方数6a 一定是非负数,所以③一定是二次根式;④被开方数32+a 一定是正数,所以④一定是二次根式;⑤被开方数22)3(96+=++x x x 一定是非负数,所以⑤一定是二次根式; ⑥被开方数12-x 有可能是负数,不一定是二次根式; 一定是二次根式的有3个,故选C .点评: 用到的知识点为:二次根式的被开方数为非负数;一个数的偶次幂一定是非负数,加上一个正数后一定是正数.2.二次根式中字母的取值围的基本依据例题二:函数y=31-x 中自变量x 的取值围是 _______ .考点: 函数自变量的取值围;分式有意义的条件;二次根式有意义的条件. 分析: 根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,列不等式即可求解. 解答: 解:依题意,得x ﹣3>0,解得x >3.点评: 本题考查的是函数自变量取值围的求法.函数自变量的围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数是非负数. 变式二:若式子x x 1+有意义,则x 的取值围是_______ .考点: 二次根式有意义的条件;分式有意义的条件.分析: 根据二次根式及分式有意义的条件解答即可.解答: 解:根据二次根式的性质可知:x+1≥0,即x ≥﹣1,又因为分式的分母不能为0,所以x 的取值围是x ≥﹣1且x ≠0.点评:此题主要考查了二次根式的意义和性质: 概念:式子a (a ≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义; 当分母中含字母时,还要考虑分母不等于零.3.二次根式的相关等式例题三:对任意实数a ,则下列等式一定成立的是( )A .a a =B .a a -=2C . a a ±=2D . a a =2考点: 二次根式的性质与化简. 专题: 计算题.分析: 根据二次根式的化简、算术平方根等概念分别判断. 解答:解:A 、a 为负数时,没有意义,故本选项错误;B 、a 为正数时不成立,故本选项错误;C 、a a =2,故本选项错误.D 、故本选项正确. 故选D .点评: 本题考查了二次根式的化简与性质,正确理解二次根式有意义的条件、算术平方根的计算等知识点是解答问题的关键.练习题 11x x>0)、2、当x 在实数围有意义?3、当x 11x +在实数围有意义? 4、下列式子中,是二次根式的是( )A ..x5.下列式子中,不是二次根式的是( )A .1x6.已知一个正方形的面积是5,那么它的边长是( )A .5B .15D .以上皆不对 7.形如________的式子叫做二次根式.8.面积为a 的正方形的边长为________.9.负数________平方根.10、计算1.2(x ≥0) 2.2 3.24. 2课后作业1.某工厂要制作一批体积为1m 3的产品包装盒,其高为0.2m ,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.当x 是多少时,x+x 2在实数围有意义?3.4.x 有( )个.A .0B .1C .2D .无数5.已知a 、b =b+4,求a 、b 的值.6、计算(1)2(2)-2(3)(122(4)()2(5)练习题与课后作业答案练习题1、x>0)x≥0,y≥0);不、1x1x y+.2、解:由3x-1≥0,得:x≥13,当x≥13在实数围有意义.3、解:依题意,得23010xx+≥⎧⎨+≠⎩由①得:x≥-3 2由②得:x≠-1当x≥-32且x≠-1+11x+在实数围有意义.4.A 5.D 6.B7a≥0) 8.没有10、解:(1)因为x≥0,所以x+1>02=x+1(2)∵a2≥02=a2(3)∵a2+2a+1=(a+1)2又∵(a+1)2≥0,∴a2+2a+1≥02+2a+1(4)∵4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2 又∵(2x-3)2≥0∴4x2-12x+9≥02=4x2-12x+9作业题1.设底面边长为x,则0.2x2=1,解答:2.依题意得:230xx+≥⎧⎨≠⎩,32xx⎧≥-⎪⎨⎪≠⎩∴当x>-32且x ≠0+x 2在实数围没有意义. 3.134.B5.a=5,b=-46、.(1)2=9 (2)-2=-3 (3)(122=14×6=32(4)(2=9×23=6 (5)-621.2二次根式的乘除法知识点1.二次根式的乘法 )0,0(≥≥=⋅b a ab b a),0(o b a b a ab ≥≥⋅=2.二次根式的除法有两种常用方法:(1)利用公式:)0,0(>≥=b a ba b a )0,0(>≥=b a ba b a (2)把除法先写成分式的形式,再进行分母有理化运算。
【二次根式典型例题】 一. 利用二次根式的双重非负性来解题(0a (a ≥0),即一个非负数的算术平方根是一个非负数。
) 1.下列各式中一定是二次根式的是( )。
A 、3 B 、x ; C 、12x ; D 、1x 2.x 取何值时,下列各式在实数范围内有意义。
(1);2x (2)121x (3)xx 21 (4)45xx (5)1 21 3xx (6)若1)1(xxxx ,则x 的取值范围是 (7)若1 3 13 xxxx ,则x 的取值范围是 。
3.若13m 有意义,则m 能取的最小整数值是 4.若20m 是一个正整数,则正整数m 的最小值是________. 5..当x 为何整数时,1110x 有最小整数值,这个最小整数值为 。
6. 若20042005aaa 2 2004a =_____________. 7.若433xxy yx 8. 设m 、n 满足3 2 9922mmmn ,则mn= 。
9. 若m 适合关系式35223199199xymxymxyxym 的值. 10.若三角形的三边a 、b 、c 满足3442 baa=0,则第三边c 的取值范围是 11.方程0|84|myxx ,当0y 时,m 的取值范围是( ) A 、10m B 、2m C 、2m D 、2m 12. 下列各式不是最简二次根式的是( ) A. 21a B. 21x B. 21x C. C. 24 b D. 0.1y 13. 已知0xy 2y x x __________。
初三全科目课件教案习题汇总初三全科目课件教案习题汇总 语文语文 数学数学 英语英语 物理物理 化学化学二.利用二次根式的性质2a=|a|=)0()0(0)(aaabaa(即一个数的平方的算术平方根等于这个数的绝对值)来解题 1.已知233xx x3x ,则( )A.x ≤0 B.x ≤-3 C.x ≥-3 D.-3≤x ≤0 2.已知a<b ,化简二次根式ba3( )A .aba B .aba C .aba D .aba 3.若化简若化简|1-x|-1682xx 的结果为2x-5则x 的取值范围是()A 、x 为任意实数 B 、1≤x ≤4 C 、x ≥1 D 、x ≤4 4.已知a ,b ,c 为三角形的三边,则2 22)()()(acbacbcba = 5. 当-3<x<5时,化简25109622xxxx= 。
二次根式及性质.知识要点:(1)平方根与立方根a. 平方根的概念:如果一个数的平方等于a ,那么这个数叫做a 的平方根。
用±a 表示。
例如:因为()±=±=±525252552,所以的平方根为。
b. 算术平方根的概念:正数a 的正的平方根叫做a 的算术平方根。
0的算术平方根为0。
用a 表示a 的算术平方根。
例如:3的平方根为±3,其中3为3的算术平方根。
c. 立方根的概念:如果一个数的立方等于a ,那么这个数就叫做a 的立方根,用a 3表示。
例如:因为3272727333==,所以的立方根为。
d. 平方根的特征:①一个正数有两个平方根,它们互为相反数。
②0有一个平方根,就是0本身。
③负数没有平方根。
e. 立方根的特征:①正数有一个正的立方根。
②负数有一个负的立方根。
③0的立方根为0。
④-=-a a 33。
⑤立方根等于其本身的数有三个:1,0,-1。
(2)二次根式a. 二次根式的概念:形如a (a ≥0)的式子叫做二次根式(二次根式中,被开方数一定是非负数,否则就没有意义,并且根式a ≥0)。
b. 二次根式的基本性质: ①a a ≥≥00() ②()a a a 20=≥()③a a a a a a a 20000==>=-<⎧⎨⎪⎩⎪||()()()④ab a b a b =⋅≥≥(,)00⑤b a b a a b =>≥(,)00c. 二次根式的乘除法 ①a b ab a b ⋅=≥≥(,)00②b a ba ab =>≥(,)00d. 最简二次根式的标准:①被开方数的因数是整数,因式是整式(分母中不含根号)。
②被开方数中不含开得尽方的因数或因式。
e. 同类二次根式的识别:几个二次根式化简到不能再化简为止后,被开方数相同,则这几个二次根式是同类二次根式。
例如:8222=与是同类二次根式,35a a 与-是同类二次根式。
二次根式知识点知识回顾:算术平方根的定义:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。
一、二次根式的概念一般地,我们把形如√a(a≥0)的式子叫做二次根式,“√”称为二次根号。
★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“√”,“√”的根指数为2,即“√2”,我们一般省略根指数2,写作“√”。
如√52可以写作√5。
(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。
(3)式子√a表示非负数a的算术平方根,因此a≥0,√a≥0。
其中a≥0是√a 有意义的前提条件。
(4)在具体问题中,如果已知二次根式√a,就意味着给出了a≥0这一隐含条件。
(5)形如b√a(a≥0)的式子也是二次根式,b与√a是相乘的关系。
要注意当b是分数时不能写成带分数,例如83√2可写成8√23,但不能写成223√2。
二、二次根式的性质:=|a|=a (a≥0)或=|a|= - a(a<0)★(√a)2(a≥0)与√a2的区别与联系:典型例题剖析题型一:二次根式有意义的条件当x取何值时,下列各式在实数范围内有意义?;(3)√x−3+√3+x(1)√x+5-√3−2x;(2)√2x−1√1−x题型二:利用二次根式的非负性化简求值已知a+√b−2=4a-4,求√ab的值。
题型三:二次根式非负性的简单应用已知实数x,y满足|x-4|+√y−8=0,则以x,y的值为两边长的等腰三角形的周长是()题型四:利用√a2=|a|并结合数轴化简求值已知实数a,b在数轴上的位置如图所示。
试化简:√a2+√b2+√(a−b)2+√(b−1)2-√(a−1)2题型五:√a2=|a|与三角形三边关系的综合应用在△ABC中,a,b,c是三角形的三边长,化简√(a−b+c)2-2|c-a-b|题型六:逆用(√a)2= a(a≥0)在实数范围内分解因式在实数范围内分解因式:(1)x-4;(2)x-4√x+4三、二次根式的乘除:1、单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
二次根式【知识点回顾】 一、概念:1.二次根式:式子a (a ≥0)叫做二次根式。
“”叫二次根号,根指数为2,a叫被开方数。
2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含小数或分数线; ⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
问:同类二次根式被开方数一定相同吗?二、二次根式的性质:(1)双重非负性 a ≥0,a ≥0(2)(a )2=a (a ≥0);(3)==a a 2三、二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先分解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面。
(2)二次根式的加减法:先把二次根式化成最简二次根式,找同类二次根式,合并同类a (a >0)a -(a <0)0 (a =0)二次根式。
(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式。
ab =a ·b (a≥0,b≥0);b ba a=(b≥0,a>0). 二次根式的乘法公式和除法公式返过来可以对二次根式进行化简。
(4)有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算。
【典型例题】1、概念与性质例1下列各式1)22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+, 其中是二次根式的是_________(填序号). 例2、求下列二次根式中字母的取值范围(1)42-x (2)m1 (3)421-x (4)21-+x x (5)21++x x(6)x x --+21例3、 在根式1)222;2);3);4)275xa b x xy abc +-,最简二次根式是( ) A .1) 2) B .3) 4) C .1) 3) D .1) 4)例4、已知:的值。
知识点归纳:1、理解二次根式的概念.2、理解a (a ≥0)是一个非负数,(a )2=a (a ≥0),2a =a (a ≥0).3、掌握a ·b =ab (a ≥0,b ≥0),ab =a ·b ;a b =a b (a ≥0,b>0),a b =ab(a ≥0,b>0).重点:1、二次根式a (a ≥0)的内涵.a (a ≥0)是一个非负数;(a )2=a (a ≥0);2a =a(a ≥0)•及其运用.2、二次根式乘除法的规定及其运用.3、最简二次根式的概念.4、二次根式的加减运算. 难点:1、对a (a ≥0)是一个非负数的理解;对等式(a )2=a (a ≥0)及2a =a (a ≥0)的理解及应用.2、二次根式的乘法、除法的条件限制.3、利用最简二次根式的概念把一个二次根式化成最简二次根式. 知识梳理:1 ,二次根式的概念:1)二次根式:式子a (0a ≥)叫做二次根式。
2) 最简二次根式:满足下列两个条件的二次根式是最简二次根式: (1) 被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式。
3)同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式4) 把分母中的根号化去,叫分母有理化。
2,二次根式的性质1)(0)2(0){a a a a a a≥-<==2)(0,0)ab a b a b =≥≥3)(0,0)a a a b b b=≥> 4)()2(0)a a a =≥考点一:二次根式的概念例1.下列式子,哪些是二次根式,哪些不是二次根式:2、33、1x、x (x>0)、0、42、-2、1x y+、x y +(x ≥0,y•≥0).例2.当x 是多少时,31x -在实数范围内有意义?例3.当x 是多少时,(1)23x ++11x +在实数范围内有意义? 考点二:二次根式的非负性初中阶段满足非负性的共有三类: (1)绝对值:a (2)平方:2a(3)二次根式:a 以上三种情况满足:0a ≥例题1 已知:3324x x y -+--=,求yx的值。
二次根式典型例题1. 求解方程:√(3x+5) = 7解:将方程两边进行平方,得到3x + 5 = 49将方程两边同时减去5,得到3x = 44将方程两边同时除以3,得到x = 44/3所以方程的解为x = 44/32. 求解方程:2√(x+2) - 1 = 5解:将方程两边加上1,得到2√(x+2) = 6将方程两边除以2,得到√(x+2) = 3将方程两边进行平方,得到x + 2 = 9将方程两边减去2,得到x = 7所以方程的解为x = 73. 求解方程:√(5x-1) + 2 = 9解:将方程两边减去2,得到√(5x-1) = 7将方程两边进行平方,得到5x - 1 = 49将方程两边加上1,得到5x = 50将方程两边除以5,得到x = 10所以方程的解为x = 104. 求解方程:√(2x+3) + √(x-1) = 5解:将方程两边减去√(x-1),得到√(2x+3) = 5 -√(x-1)将方程两边进行平方,得到2x + 3 = 25 - 10√(x-1) + (x-1)整理得到x - 10√(x-1) = 21再将方程两边平方,得到x^2 - 20x(x-1) + 100(x-1) = 441展开得到x^2 - 20x^2 + 20x + 100x - 100 = 441合并同类项,得到-19x^2 + 120x - 541 = 0该方程需要用求根公式或因式分解法求解,结果为x ≈1.988 或x ≈14.2435. 求解方程:√(3x-2) -√(x+1) = 1解:将方程两边加上√(x+1),得到√(3x-2) = 1 + √(x+1)将方程两边进行平方,得到3x - 2 = 1 + 2√(x+1) + (x+1)整理得到2√(x+1) = 2x + 2再将方程两边平方,得到4(x+1) = (2x+2)^2展开得到4x + 4 = 4x^2 + 8x + 4合并同类项,得到4x^2 + 4x - 8x - 4 + 4 = 0化简得到4x^2 - 4x = 0因式分解得到4x(x-1) = 0解得x = 0 或x = 1但由方程可知,当x = 0 时,√(3x-2) 和√(x+1) 不满足等式关系,所以方程的解为x = 16. 求解方程:√(4x+1) + 2√(x-3) = 6解:将方程两边减去2√(x-3),得到√(4x+1) = 6 - 2√(x-3)将方程两边进行平方,得到4x + 1 = 36 - 24√(x-3) + 4(x-3)整理得到24√(x-3) = 4x - 35再将方程两边平方,得到576(x-3) = (4x - 35)^2展开得到576x - 1728 = 16x^2 - 280x + 1225合并同类项,得到16x^2 - 856x + 3953 = 0该方程需要用求根公式或因式分解法求解,结果为x ≈3.886 或x ≈24.1947. 求解方程:2√(x+5) + √(2x+3) = 8解:将方程两边减去√(2x+3),得到2√(x+5) = 8 -√(2x+3)将方程两边进行平方,得到4(x+5) = 64 - 16√(2x+3) + (2x+3)整理得到2x - 16√(2x+3) = 56再将方程两边平方,得到4x^2 - 128(x+3) = 3136展开得到4x^2 - 128x - 384 = 3136合并同类项,得到4x^2 - 128x - 3520 = 0该方程需要用求根公式或因式分解法求解,结果为x ≈-5 或x ≈228. 求解方程:√(x+1) -√(2x-3) = 2解:将方程两边加上√(2x-3),得到√(x+1) = 2 + √(2x-3)将方程两边进行平方,得到x + 1 = 4 + 4√(2x-3) + 2x - 3整理得到2√(2x-3) = x + 2再将方程两边平方,得到8x - 12 = x^2 + 4x + 4将方程移项,得到x^2 - 4x - 8x + 4 + 12 = 0合并同类项,得到x^2 - 12x + 16 = 0该方程需要用求根公式或因式分解法求解,结果为x ≈2.828 或x ≈9.1729. 求解方程:√(3x-2) + √(x-5) = 4解:将方程两边减去√(x-5),得到√(3x-2) = 4 -√(x-5)将方程两边进行平方,得到3x - 2 = 16 - 8√(x-5) + (x-5)整理得到8√(x-5) = 23 - 2x再将方程两边平方,得到64(x-5) = (23 - 2x)^2展开得到64x - 320 = 529 - 92x + 4x^2合并同类项,得到4x^2 - 156x + 849 = 0该方程需要用求根公式或因式分解法求解,结果为x ≈3.455 或x ≈61.54510. 求解方程:√(x+2) + √(3x-1) = 5解:将方程两边减去√(3x-1),得到√(x+2) = 5 -√(3x-1)将方程两边进行平方,得到x + 2 = 25 - 10√(3x-1) + (3x-1)整理得到10√(3x-1) = 3x - 24再将方程两边平方,得到900x - 3600 = (3x - 24)^2展开得到900x - 3600 = 9x^2 - 144x + 576将方程移项,得到9x^2 - 1044x + 4176 = 0该方程需要用求根公式或因式分解法求解,结果为x ≈43.225 或x ≈16.308。