《三角函数》综合训练
- 格式:doc
- 大小:167.00 KB
- 文档页数:3
高中数学三角函数专项训练(含答案)一、填空题1.如图,在ABC 中,1cos 3BAC ∠=-,2AC =,D 是边BC 上的点,且2BD DC =,AD DC =,则AB 等于______.2.如图,在矩形ABCD 中,AB a ,2BC a =,点E 为AD 的中点,将△ABE 沿BE 翻折到△A BE '的位置,在翻折过程中,A '不在平面BCDE 内时,记二面角A DC B '--的平面角为α,则当α最大时,cos α的值为______.3.三棱锥P ABC -中,PA ⊥平面ABC ,直线PB 与平面ABC 所成角的大小为30,23AB =60ACB ∠=︒,则三棱锥P ABC -的外接球的表面积为________.4.已知函数23tan ,,,2332()63233,,33x x f x x ππππππ⎧⎛⎤⎛⎫∈-⋃ ⎪⎪⎥⎝⎦⎝⎭⎪=⎨⎛⎤⎪+∈ ⎥⎪⎝⎦⎩若()f x 在区间D 上的最大值存在,记该最大值为{}K D ,则满足等式{[0,)}3{[,2]}K a K a a =⋅的实数a 的取值集合是___________. 5.在长方体1111ABCD A B C D -中,13AB =,5AD =,112AA =,过点A 且与直线CD 平行的平面α将长方体分成两部分.现同时将两个球分别放入这两部分几何体内,则在平面α变化的过程中,这两个球的半径之和的最大值为___________.6.平行六面体1111ABCD A B C D -的各棱长均相等,1160BAD DAA A AB ∠=∠=∠=,直线1AC ⋂平面1A BD E =,则异面直线1D E 与AD 所成角的余弦值为_________.7.在锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2cos b a a C -=,则ac的取值范围是______.8.在ABC 中,sin 2sin B C =,2BC =.则CA CB ⋅的取值范围为___________.(结果用区间表示)9.已知ABC 为等边三角形,点G 是ABC 的重心.过点G 的直线l 与线段AB 交于点D ,与线段AC 交于点E .设AD AB λ=,AE AC μ=,则11λμ+=__________;ADE 与ABC 周长之比的取值范围为__________.10.在平面直角坐标系xOy 中,已知直线2y x =+与x 轴,y 轴分别交于M ,N 两点,点P 在圆22()2x a y -+=上运动.若MPN ∠恒为锐角,则实数a 的取值范围是________.二、单选题11.已知函数()()2212sin 2,2212,x a x af x x a x a x a π⎧⎡⎤⎛⎫-+<⎪ ⎪⎢⎥=⎝⎭⎨⎣⎦⎪-+++≥⎩,若函数()f x 在[)0,∞+内恰有5个零点,则a 的取值范围是( ) A .75,42⎛⎫ ⎪⎝⎭B .7,24⎛⎫ ⎪⎝⎭C .75,2,342⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭D .75,22,42⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭12.函数()()sin 04f x x πωω⎛⎫=+> ⎪⎝⎭在7,44ππ⎛⎫⎪⎝⎭内恰有两个最小值点,则ω的范围是( ) A .13,47⎛⎤⎥⎝⎦B .13,37⎛⎤ ⎥⎝⎦C .4,33⎛⎤ ⎥⎝⎦D .4,43⎛⎤ ⎥⎝⎦13.已知无穷项实数列{}n a 满足: 1a t =, 且 14111n n n a a a +=--, 则( ) A .存在1t >, 使得20111a a = B .存在0t <, 使得20211a a =C .若2211a a =, 则21a a =D .至少有2021个不同的t , 使得20211a a = 14.已知ABC 的内角分别为,,A B C,2cos 12A A =,且ABC 的内切圆面积为π,则AB AC ⋅的最小值为( ) A .6B .8C .10D .1215.已知,a b Z ∈,满足)sin 50a b ︒=,则a b +的值为( )A .1B .2C .3D .416.如图所示,已知△ABC ,D 是AB 的中点,沿直线CD 将△ACD 翻折成△ACD ',所成二面角A CD B '--的平面角为α,则( )A .A DB α'∠≤ B .A DB α'∠≥C .A CB α∠'≤D .A CB α'∠≥17.已知函数()()sin f x x ωφ=+π0,02ωφ⎛⎫><< ⎪⎝⎭在π5π,88⎛⎫ ⎪⎝⎭上单调,且π3π088f f ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,则π2f ⎛⎫⎪⎝⎭的值为( ) A 2B .1 C .1- D .218.已知函数()()3log 911x f x x+=-,下列说法正确的是( )A .()f x 既不是奇函数也不是偶函数B .()f x 的图象与sin y x =有无数个交点C .()f x 的图象与2y =只有一个交点D .()()21f f -<-19.已知直线1y x =+上有两点1122(,),(,)A a b B a b ,且12a a >.已知1122,,,a b a b 满足12122||a a b b +22221122a b a b ++||23AB =,则这样的点A 个数为( )A .1B .2C .3D .420.设函数()sin cos f x a x b x ωω=+()0ω>在区间,62ππ⎡⎤⎢⎥⎣⎦上单调,且2236f f f πππ⎛⎫⎛⎫⎛⎫==- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当12x π=时,()f x 取到最大值4,若将函数()f x 的图象上各点的横坐标伸长为原来的2倍得到函数()g x 的图象,则函数()3y g x x π=+为( ) A .4B .5C .6D .7三、解答题21.如图,湖中有一个半径为1千米的圆形小岛,岸边点A 与小岛圆心C 相距3千米,为方便游人到小岛观光,从点A 向小岛建三段栈道AB ,BD ,BE ,湖面上的点B 在线段AC 上,且BD ,BE 均与圆C 相切,切点分别为D ,E ,其中栈道AB ,BD ,BE 和小岛在同一个平面上.沿圆C 的优弧(圆C 上实线部分)上再修建栈道DE .记CBD ∠为θ.()1用θ表示栈道的总长度()f θ,并确定sin θ的取值范围;()2求当θ为何值时,栈道总长度最短.22.已知函数 f (x )=a (|sin x |+|cos x |)﹣sin2x ﹣1,a ∈R . (1)写出函数 f (x )的最小正周期(不必写出过程); (2)求函数 f (x )的最大值;(3)当a =1时,若函数 f (x )在区间(0,k π)(k ∈N*)上恰有2015个零点,求k 的值. 23.已知()3,sin a x ω=,1,2cos 3b x πω⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,其中0>ω,()f x a b =⋅,且函数()f x 在12x π=处取得最大值.(1)求ω的最小值,并求出此时函数()f x 的解析式和最小正周期; (2)在(1)的条件下,先将()y f x =的图像上的所有点向右平移4π个单位,再把所得图像上所有点的横坐标伸长为原来的2倍(纵坐标不变),然后将所得图像上所有的点向下平移y g x 的图像.若在区间5,33ππ⎡⎤⎢⎥⎣⎦上,方程()210g x a +-=有两个不相等的实数根,求实数a 的取值范围;(3)在(1)的条件下,已知点P 是函数()y h x =图像上的任意一点,点Q 为函数()y f x =图像上的一点,点,6A π⎛ ⎝⎭,且满足12OP OQ OA =+,求()104h x +≥的解集.24.已知函数()()()()2cos +2cos 02f x x x x πϕϕϕϕ⎛⎫=+++<< ⎪⎝⎭.(1)求()f x 的最小正周期;(2)若13f π⎛⎫= ⎪⎝⎭,求当()2f x =时自变量x 的取值集合.25.已知函数()cos s co )f x x x x =-. (1)求()f x 的最小正周期及对称中心;(2)若将函数()y f x =的图象向左平移m 个单位所得图象关于y 轴对称,求m 的最小正值.26.已知函数22cos 3sin 2f xxx a 的最小值为0.(1)求a 的值及函数()y f x =图象的对称中心;(2)若关于x 的方程()0f x m -=在区间70,6π⎡⎤⎢⎥⎣⎦上有三个不相等的实数根1x ,2x ,3x ,求m的取值范围及()123tan 2x x x ++的值.27.对于函数()f x ,若存在定义域中的实数a ,b 满足0b a >>且()()2()02a bf a f b f +==≠,则称函数()f x 为“M 类” 函数. (1)试判断()sin f x x =,x ∈R 是否是“M 类” 函数,并说明理由;(2)若函数()2|log 1|f x x =-,()0,x n ∈,*n N ∈为“M 类” 函数,求n 的最小值. 28.将函数()4sin cos 6g x x x π⎛⎫=+ ⎪⎝⎭的图象向左平移02πϕϕ⎛⎫<≤ ⎪⎝⎭个单位长度后得到()f x 的图象.(1)若()f x 为偶函数,求ϕ;(2)若()f x 在7,6ππ⎛⎫ ⎪⎝⎭上是单调函数,求ϕ的取值范围.29.已知(1,sin )a x =,(1,cos )b x =,(0,1)e =,且(cos sin )x x -∈. (1)若()//a e b +,求sin cos x x 的值;(2)设()()f x a b me a b =⋅+⋅-,m R ∈,若()f x 的最大值为12-,求实数m 的值.30.函数()sin()f x A x ωϕ=+(其中0,0,||2A πωϕ>><)的部分图象如图所示,把函数()f x 的图像向右平移4π个单位长度,再向下平移1个单位,得到函数()g x 的图像.(1)当17,424x ππ⎡⎤∈⎢⎥⎣⎦时,求()g x 的值域(2)令()=()3F x f x -,若对任意x 都有2()(2)()20F x m F x m -+++≤恒成立,求m 的最大值【参考答案】一、填空题 1.32253.20π 4.47,912ππ⎧⎫⎨⎬⎩⎭ 5.16538 6.567.32⎝⎭8.8,83⎛⎫ ⎪⎝⎭9. 3 213,32⎡⎢⎣⎦10.71a 或4a二、单选题11.D 12.B 13.D 14.A 15.B 16.B 17.D 18.C 19.D 20.D 三、解答题21.()1()1232sin tan f θπθθθ=-+++,1sin ,13θ⎡⎫∈⎪⎢⎣⎭;()2当3πθ=时,栈道总长度最短.【解析】()1连CD ,CE ,由切线长定理知:1tan tan CD BE BD θθ===,1sin sin CD BC θθ==,130sin AB AC BC θ=-=-≥,1sin 3θ≥,即01sin 3θ=,00,2πθ⎛⎫∈ ⎪⎝⎭, 则()1232sin tan f θπθθθ=-+++,0,2πθθ⎡⎫∈⎪⎢⎣⎭,进而确定sin θ的取值范围; ()2根据()12cos 23sin f θθθπθ-=-++求导得()()2cos 2cos 1sin f θθθθ--'=,利用增减性算出()min 533f πθ=+,进而求θ得取值. 【详解】解:()1连CD ,CE ,由切线长定理知:1tan tan CD BE BD θθ===,1sin sin CD BC θθ==, CBE CBD θ∠=∠=,又CD BD ⊥,CE BE ⊥,故2DCE πθ∠=-,则劣弧DE 的长为2πθ-,因此,优弧DE 的长为2πθ+, 又3AC =,故130sin AB AC BC θ=-=-≥,1sin 3θ≥,即01sin 3θ=,00,2πθ⎛⎫∈ ⎪⎝⎭, 所以,()1232sin tan f θπθθθ=-+++,0,2πθθ⎡⎫∈⎪⎢⎣⎭,则1sin ,13θ⎡⎫∈⎪⎢⎣⎭; ()2()12cos 23sin f θθθπθ-=-++,0,2πθθ⎡⎫∈⎪⎢⎣⎭,其中01sin 3θ=,00,2πθ⎛⎫∈ ⎪⎝⎭,()()2cos 2cos 1sin f θθθθ--'=故3θ=时,()min 33f θ=+ 所以当3πθ=时,栈道总长度最短.【点睛】本题主要考查导数在函数当中的应用,属于中档题. 22.(1)最小正周期为π.(2)见解析(3)k =1008. 【解析】(1)由题意结合周期函数的定义直接求解即可;(2)令t ,t ∈[1,则当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()2f x t at t μ==-,当,2x π⎛⎤∈π ⎥⎝⎦时,()()22f x v t t at ==+-,易知()()t v t μ≤,分类比较()1v 、v的大小即可得解;(3)转化条件得当且仅当sin2x =0时,f (x )=0,则x ∈(0,π]时,f (x )有且仅有两个零点,结合函数的周期即可得解. 【详解】(1)函数 f (x )的最小正周期为π. (2)∵f (x )=a (|sin x |+|cos x |)﹣sin2x ﹣1=sin2x ﹣1=(sin2x +1),令t =t ∈[1],当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()(21f x t at t t μ==-≤≤,当,2x π⎛⎤∈π ⎥⎝⎦时,()()(221f x v t t at t ==+-≤≤,∵()()()2222220t v t at t t at t μ-=--+-=-+≤即()()t v t μ≤.∴()()(){}max max max 1,f x v t v v ==,∵()11v a =-,v,∴当1a ≤-()f x 最大值为1a -;当1a >-()f x .(3)当a =1时,f (x )sin 21x -,若f (x )=0sin 21x =+即22sin 22sin 2sin x x x =+,∴当且仅当sin2x =0时,f (x )=0,∴x ∈(0,π]时,f (x )有且仅有两个零点分别为2π,π, ∴2015=2×1007+1, ∴k =1008. 【点睛】本题考查了三角函数的综合问题,考查了分类讨论思想和转化化归思想,属于难题.23.(1)ω的最小值为1,()sin 23f x x π⎛⎫=+ ⎪⎝⎭,T π=,(2)104a <≤(3)原不等式的解集为3,22428k k xx k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭【解析】 【分析】(1)先将()f x 化成正弦型,然后利用()f x 在12x π=处取得最大值求出ω,然后即可得到()f x 的解析式和周期(2)先根据图象的变换得到()sin 6x y g x π⎛⎫-= ⎝=⎪⎭,然后画出()g x 在区间5,33ππ⎡⎤⎢⎥⎣⎦上的图象,条件转化为()g x 的图象与直线12y a =-有两个交点即可(3)利用坐标的对应关系式,求出()h x 的函数的关系式,进一步利用三角不等式的应用求出结果. 【详解】 (1)因为()3,sin a x ω=,1,2cos 3b x πω⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭所以()32sin cos 3f x a b x x πωω⎛⎫=⋅=++ ⎪⎝⎭212sin cos sin cos 2x x x x x x ωωωωωω⎛⎫== ⎪ ⎪⎝⎭11cos 21sin 2sin 22222x x x x ωωωω-=+=+sin 23x πω⎛⎫=+ ⎪⎝⎭因为()f x 在12x π=处取得最大值.所以22,1232k k Z πππωπ⨯+=+∈,即121,k k Z ω=+∈当0k =时ω的最小值为1此时()sin 23f x x π⎛⎫=+ ⎪⎝⎭,T π=(2)将()y f x =的图像上的所有的点向右平移4π个单位得到的函数为33sin 2sin 243262y x x πππ⎛⎫⎛⎫⎛⎫=-++=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,再把所得图像上所有的点的横坐标伸长为原来的2倍(纵坐标不变)得到的函数为3sin 62y x π⎛⎫=-+ ⎪⎝⎭,然后将所得图像上所有的点向下平移32个单位,得到函数()sin 6x y g x π⎛⎫-= ⎝=⎪⎭()sin 6g x x π⎛⎫=- ⎪⎝⎭在区间5,33ππ⎡⎤⎢⎥⎣⎦上的图象为:方程()210g x a +-=有两个不相等的实数根等价于()g x 的图象 与直线12y a =-有两个交点 所以11212a ≤-<,解得104a <≤(3)设(),P x y ,()00,Q x y因为点3,6A π⎛ ⎝⎭,且满足12OP OQ OA =+ 所以00126132x x y y π⎧=+⎪⎪⎨⎪=⎪⎩002332x x y y π⎧=-⎪⎪⎨⎪=⎪⎩因为点()00,Q x y 为函数()y f x =图像上的一点 所以332sin 2233y x ππ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭即1()sin 423y h x x π⎛⎫==- ⎪⎝⎭因为()104h x +≥,所以1sin 432x π⎛⎫-≥- ⎪⎝⎭所以7242,636k x k k Z πππππ-≤-≤+∈所以3,22428k k x k Z ππππ+≤≤+∈ 所以原不等式的解集为3,22428k k xx k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭【点睛】本题考查的知识要点:三角函数关系式的变换,正弦型函数的性质的应用,平面向量的数量积的应用,三角不等式的解法及应用,主要考查学生的运算能力和转换能力,属于中档题.24.(1)π;(2)12x x k ππ⎧=-+⎨⎩或()4x k k Z ππ⎫=+∈⎬⎭【解析】 【分析】(1)由辅助角公式可得()f x 2sin 2216x πϕ⎛⎫=+++ ⎪⎝⎭,再求周期即可;(2)由13f π⎛⎫= ⎪⎝⎭求出12πϕ=,再解方程2sin 2123x π⎛⎫++= ⎪⎝⎭即可.【详解】解:(1)()()()()2cos 2cos f x x x x ϕϕϕ=++++()()2cos21x x ϕϕ=++++2sin 2216x πϕ⎛⎫=+++ ⎪⎝⎭,则()f x 的最小正周期为2T ππω==.(2)因为13f π⎛⎫= ⎪⎝⎭,所以2sin 221136ππϕ⎛⎫⨯+++= ⎪⎝⎭,即()526k k Z πϕπ+=∈, 解得()5212k k Z ππϕ=-∈. 因为02πϕ<<,所以12πϕ=.因为()2f x =,所以2sin 2123x π⎛⎫++= ⎪⎝⎭,即1sin 232x π⎛⎫+= ⎪⎝⎭,则2236x k πππ+=+或()52236x k k Z πππ+=+∈, 解得12x k ππ=-+或()4x k k Z ππ=+∈.故当()2f x =时,自变量x 的取值集合为12x x k ππ⎧=-+⎨⎩或()4x k k Z ππ⎫=+∈⎬⎭.【点睛】本题考查了三角恒等变换,重点考查了解三角方程,属中档题. 25.(1)π,1,()2122k k Z ππ⎛⎫+-∈⎪⎝⎭;(2)3π 【解析】【分析】(1)直接利用三角函数关系式的变换,把函数的关系式变形成正弦型函数,进一步求出函数的周期和对称中心.(2)利用(1)的关系式,利用整体思想的应用对函数的关系式进行平移变换和对称性的应用求出最小值. 【详解】(1)因为2()cos cos )cos cos f x x x x x x x =-=-1cos 212sin 2262x x x π+⎛⎫=-=-- ⎪⎝⎭, 所以最小正周期为22T ππ==, 由正弦函数的对称中心知26x k ππ-=,解得212k x ππ=+,k Z ∈, 所以对称中心为1,()2122k k Z ππ⎛⎫+-∈⎪⎝⎭; (2)()y f x =的图象向左平移m 个单位所得解析式是1sin 2262y x m π⎛⎫=+-- ⎪⎝⎭,因为其图象关于y 轴对称, 所以262m k πππ-=+,k Z ∈,解得23k m ππ=+,k Z ∈, 所以m 的最小正值是3π. 【点睛】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.26.(1)1,,2212k ππ⎛⎫- ⎪⎝⎭,k Z ∈;(2)[)3,4, 【解析】(1)由题得()2sin 216f x x a π⎛⎫=+++ ⎪⎝⎭,求出a 的值即得函数()y f x =图象的对称中心;(2)作出函数()y f x =在70,6x π⎡⎤∈⎢⎥⎣⎦上的大致图象,求出123523x x x π++=即得解.【详解】(1)()cos 2212sin 216x x a x a f x π⎛⎫=++=+++ ⎪⎝⎭,由已知可得()2110a ⨯-++=,∴1a =,()2sin 226f x x π⎛⎫=++ ⎪⎝⎭,令26x k ππ+=可得()y f x =图象的对称中心为,2212k ππ⎛⎫- ⎪⎝⎭,k Z ∈. (2)()y f x =在70,6x π⎡⎤∈⎢⎥⎣⎦上的大致图象如图所示,由图可得[)3,4m ∈,所以123x x π+=,2343x x π+=,所以123523x x x π++=, 所以()1235tan 2tan33x x x π++==-.【点睛】本题主要考查三角恒等变换和三角函数的图象和性质,考查三角函数图象的综合应用,意在考查学生对这些知识的理解掌握水平和分析推理能力. 27.(1)不是.见解析(2)最小值为7. 【解析】(1)不是,假设()f x 为M 类函数,得到2b a k π=+或者2b a k ππ+=+,代入验证不成立.(2)()221log ,02log 1,2x x f x x x -<≤⎧=⎨->⎩,得到函数的单调区间,根据题意得到326480b b b ---=,得到()6,7b ∈,得到答案. 【详解】 (1)不是.假设()f x 为M 类函数,则存在0b a >>,使得sin sin a b =, 则2b a k π=+,k Z ∈或者2b a k ππ+=+,k Z ∈, 由sin 2sin2a ba +=, 当2b a k π=+,k Z ∈时,有()sin 2sin a a k π=+,k Z ∈, 所以sin 2sin a a =±,可得sin 0a =,不成立;当2b a k ππ+=+,k Z ∈时,有sin 2sin()2a k ππ=+,k Z ∈,所以sin 2a =±,不成立, 所以()f x 不为M 类函数.(2)()221log ,02log 1,2x x f x x x -<≤⎧=⎨->⎩,则()f x 在()0,2单调递减,在()2,+∞单调递增,又因为()f x 是M 类函数,所以存在02a b <<<,满足2221log log 12|log 1|2a ba b +-=-=-, 由等式可得:()2log 2ab =,则4ab =,所以()22142(4)0222a a b a a a -+-=+-=>,则2log 102a b +->,所以得22log 12log 12a b b +⎛⎫-=- ⎪⎝⎭, 从而有222log 1log 2a b b +⎛⎫+= ⎪⎝⎭,则有()224a b b +=,即248b b b ⎛⎫+= ⎪⎝⎭, 所以43288160b b b -++=,则()()3226480b b b b ----=,由2b >,则326480b b b ---=,令()32648g x x x x =---,当26x <<时,()()26480g x x x x =---<,且()6320g =-<,()7130g =>,且()g x 连续不断,由零点存在性定理可得存在()6,7b ∈, 使得()0g b =,此时()0,2a ∈,因此n 的最小值为7. 【点睛】本题考查了函数的新定义问题,意在考查学生对于函数的理解能力和应用能力. 28.(1)6π=ϕ;(2),62ππϕ⎡⎤∈⎢⎥⎣⎦【解析】 【分析】(1)根据三角恒等变换对()4sin cos 6g x x x π⎛⎫=+ ⎪⎝⎭化简变形为()2sin 216g x x π⎛⎫=+- ⎪⎝⎭,然后可得到图象左移之后的函数()2sin 2216f x x ϕπ⎛⎫=++- ⎪⎝⎭,利用三角函数偶函数的性质即可求出ϕ;(2)先求出2222,22662x πππϕπϕπϕ⎛⎫++∈++++ ⎪⎝⎭,再根据ϕ的范围求出26πϕ+和22πϕ+的范围,从而根据单调性列出关于ϕ的不等式,解之即可求得结果. 【详解】 (1)()()14sin sin 21cos 22g x x x x x x ⎫=-=--⎪⎪⎝⎭2sin 216x π⎛⎫=+- ⎪⎝⎭,∴()2sin 2216f x x ϕπ⎛⎫=++- ⎪⎝⎭.又()f x 为偶函数,则()262k k Z ππϕπ+=+∈,02πϕ<≤,∴6π=ϕ; (2)7,6x ππ⎛⎫∈ ⎪⎝⎭,∴2222,22662x πππϕπϕπϕ⎛⎫++∈++++⎪⎝⎭.02πϕ<≤,∴72,666πππϕ⎛⎫+∈ ⎪⎝⎭,32,222πππϕ⎛⎫+∈ ⎪⎝⎭()f x 在7,6ππ⎛⎫ ⎪⎝⎭是单调函数,∴26202ππϕπϕ⎧+≥⎪⎪⎨⎪<≤⎪⎩, ∴,62ππϕ⎡⎤∈⎢⎥⎣⎦.【点睛】本题考查三角恒等变换、三角函数的图象变换及性质,以及基本的运算能力和逻辑推理能能力,综合性较强,属于有一定难度的中档题. 29.(1)0 (2)32【解析】 【分析】(1)通过()//a e b +可以算出()(1,sin 1)//1,cos cos sin 1x x x x +⇒=+,移项、两边平方即可算出结果.(2)通过向量的运算,解出()()f x a b me a b =⋅+⋅-,再通过最大值根的分布,求出m 的值. 【详解】(1)通过()//a e b +可以算出()(1,sin 1)//1,cos cos sin 1x x x x +⇒=+, 即2cos sin 1(cos sin )112sin cos 1sin cos 0x x x x x x x x -=⇒-=⇒-=⇒= 故答案为0.(2)()1sin cos (sin cos )f x x x m x x =++-,设()cos sin x x t t ⎡-=∈⎣,22112sin cos sin cos 2t x x t x x --=⇒=,22113()()1222t g t f x mt t mt -==+-=--+,即213(),22g t t mt t ⎡=--+∈⎣的最大值为12-; ①当11m m -≤⇒≥-时,max 1313()(1)2222g x g m m ==--+=-⇒=(满足条件);②当11m m <-≤⇒<-时,222max 1311()()22222g x g m m m m =-=-++=-⇒=-(舍);③当m m -><max 131()2222g x g m ==-⨯-=-⇒=故答案为32m = 【点睛】当式子中同时出现sin cos ,sin cos ,sin cos x x x x x x +-时,常常可以利用换元法,把sin cos x x 用sin cos ,sin cos x x x x +-进行表示,但计算过程中也要注意自变量的取值范围;二次函数最值一定要注意对称轴是否在规定区间范围内,再讨论最后的结果.30.(1)1,0⎡⎤⎢⎥⎣⎦(2)265- 【解析】 【分析】(1)根据图象的最低点求得A 的值,根据四分之一周期求得ω的值,根据点7,112π⎛⎫- ⎪⎝⎭求得ϕ的值,由此求得函数()f x 的解析式,进而根据图象平移变换求得()g x 的解析式,并由此求得17,424x ππ⎡⎤∈⎢⎥⎣⎦时()g x 的值域.(2)先求得()f x 的值域,由此求得()F x 的值域.令()[4,2]t F x =∈--对题目所给不等式换元,根据二次函数的性质列不等式组,解不等式组求得m 的取值范围,由此求得m 的最大值. 【详解】(1)根据图象可知171,4123A T ππ==- 2,2,()sin(2)T f x x Tππωϕ∴=∴===+ 代入7,112π⎛⎫-⎪⎝⎭得,7sin 1,2,63k k Z ππϕϕπ⎛⎫+=-=+∈ ⎪⎝⎭, ||,0,23k ππϕϕ<∴==()sin 23f x x π⎛⎫∴=+ ⎪⎝⎭把函数()f x 的图像向右平移4π个单位长度,再向下平移1个单位,得到函数()g x ()sin 21sin 21436g x x x πππ⎛⎫⎛⎫⎛⎫∴=-+-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,设26t x π=-,则5,34t ππ⎡⎤∈⎢⎥⎣⎦,此时sin t ⎡⎤∈⎢⎥⎣⎦,所以值域为1,0⎡⎤⎢⎥⎣⎦. (2)由(1)可知()sin 2[1,1]3f x x π⎛⎫=+∈- ⎪⎝⎭()()3[4,2]F x f x =-∈--对任意x 都有2()(2)()20F x m F x m -+++≤恒成立 令()[4,2]t F x =∈--,2()(2)2h t t m t m =-+++,是关于t 的二次函数,开口向上则max ()0h t ≤恒成立而()h t 的最大值,在4t =-或2t =-时取到最大值则(2)0(4)0h h -≤⎧⎨-≤⎩,4(2)(2)2016(2)(4)20m m m m -+-++≤⎧⎨-+-++≤⎩, 解得103265m m ⎧≤-⎪⎪⎨⎪≤-⎪⎩所以265m ≤-,则m 的最大值为265-. 【点睛】本小题主要考查由三角函数图像求三角函数的解析式,考查三角函数图像变换,考查不等式恒成立问题,考查化归与转化的数学思想方法,属于中档题.。
初中三角函数应用题综合一.解直角三角形的应用(共10小题)1.如图,小明同学用仪器测量一棵大树AB的高度,在C处测得∠ADM=30°,在E处测得∠AFM =60°,CE=10米,仪器高度CD=1.5米,求这棵树AB的高度.(结果精确到0.1,参考数据:≈1.41,≈1.73,≈2.24)2.如图,小明家A和地铁口B两地恰好处在东西方向上,且相距3km,学校C在他家A正北方向的4km处,公园D与地铁口B和学校C的距离分别5km和km.(1)若∠BDA=10°,求∠ADC的大小;(2)计算公园D与小明家A的距离.3.如图,A、B两地间有一座山,汽车原来从A地到B地需要经折线ACB绕山行驶.为加快城乡对接,建立全域美丽乡村,某地区对A、B两地间的公路进行改建,在这座山打一条隧道,使汽车可以直接沿AB行驶.已知AC=80千米,∠A=30°,∠B=45°.求:(1)开通隧道前,汽车从A地到B地需要行驶多少千米;(2)开通隧道后汽车从A地到B地大约少行驶多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)4.如图,数学兴趣小组利用硬纸板自制的Rt△DEF来测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DE=1m,EF=0.6m,测得边DF离地面的高度AC=0.8m,CD=6m,求树高AB.5.如图是小朋友玩的“滚铁环”游戏的示意图,⊙O向前滚动时,铁棒DE保持与OE垂直.⊙O与地面接触点为A,若⊙O的半径为25cm,∠AOE=53°.(1)求点E离地面AC的距离BE的长;(2)设人站立点C与点A的距离AC=53cm,DC⊥AC,求铁棒DE的长.(参考数据:sin53°≈0.8,cos53°≈0.6)6.某中学数学活动小组设计了如图检测公路上行驶的校车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于30米,在l上点D的同侧取点A,B,使∠CAD=30°,∠CBD=45°.(1)求AB的长(精确到0.1米,参考数据:≈1.73,≈1.41);(2)已知本路段对校车限速为40千米/小时,若测得校车从A到B用时2秒,这辆校车是否超速?说明理由.7.为了测量旗杆AB的高度,小颖画了如下的示意图,其中CD,EF是两个长度为2m的标杆.(1)如果现在测得∠DEC=30°,EG=4m,求旗杆AB的高度;(参考数据:≈1.41,≈1.73)(2)如果CE的长为x,EG的长为y,请用含x,y的代数式表示旗杆AB的高度.二.解直角三角形的应用−坡度坡角问题(共7小题)8.如图所示,斜坡的坡比i=h:l=1:,则斜坡的坡度是( )A.30°B.60°C.1:D.:19.如图,要测量山高CD,可以把山坡“化整为零”地划分为AB和BC两段,每一段上的山坡近似是“直”的.若量得坡长AB=600m,BC=800m,测得坡角∠BAD=30°,∠CBE=45°,则山高CD为( )A.(300+800)m B.700mC.(300+400)m D.(400+300)m10.如图,河坝横断面迎水坡AB的坡比为1:,坝高BC为4m,则AC的长度为( )A.8m B.4m C.8m D.m11.如图所示,某拦水大坝的横断面为梯形ABCD,AE,DF为梯形的高,其中迎水坡AB的坡角α=45°,坡长AB=10米,背水坡CD的坡度i=1:,则背水坡的坡长CD为( )米.A.20B.20C.10D.2012.为了学生的安全,某校决定把一段如图所示的步梯路段进行改造.已知四边形ABCD为矩形,DE =10m,其坡度为i1=1:,将步梯DE改造为斜坡AF,其坡度为i2=1:4,求斜坡AF的长度是 米.(结果精确到0.01m,参考数据:≈1.732,≈4.123)13.某校有一露天舞台,纵断面如图所示,AC垂直于地面,AB表示楼梯,AE为舞台面,楼梯的坡角∠ABC=45°,坡长AB=2m,为保障安全,学校决定对该楼梯进行改造,降低坡度,拟修新楼梯AD,使∠ADC=30°.(1)求舞台的高AC(结果保留根号);(2)求DB的长度(结果保留根号).14.某居民楼MN后有一个坡度为i=1:2.4的小山坡,小区物业准备在小山坡上加装一广告牌PQ (如图所示),已知QA=5.2米,水平地面上居民楼MN距坡底A点的距离AN=1.2米.当太阳光线与水平线成53°角时,测得广告牌PQ落在居民楼上的影子EN长为3米,求广告牌PQ的高.(参考数据:sin53°≈,cos53°≈,tan53°≈)三.解直角三角形的应用−仰角俯角问题(共8小题)15.若从楼顶A点测得点C的俯角为31°,测得点D的俯角为42°,则∠ADC的度数为( )A.31°B.42°C.48°D.59°16.如图,某建筑物的顶部有一块宣传牌CD,小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°,已知斜坡AB的坡角为30°,AB=10米,AE=15米,则宣传牌CD的高度是( )A.B.C.D.17.某通信公司准备逐步在歌乐山上建设5G基站.如图,某处斜坡CB的坡度(或坡比)为i=1:2.4,通讯塔AB垂直于水平地面,在C处测得塔顶A的仰角为45°,在D处测得塔顶A的仰角为53°,斜坡路段CD长26米,则通讯塔AB的高度为( )(参考数据:,,)A.米B.米C.56米D.66米18.某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进6米到达D处,测得仰角为64°,则建筑物的高度为 米.(测角器的高度忽略不计,结果精确到0.1米)(参考数据:sin48°≈,tan48°≈,sin64°≈,tan64°≈2)19.如图,某校数学兴趣小组要测量楼房DC的高度.在点A处测得楼顶D的仰角为30°,再往楼房的方向前进30m至B处,测得楼顶D的仰角为45°,则楼房DC的高度为 m.20.如图,小马同学在数学综合实践活动中,利用所学的数学知识对山坡一棵树的高度进行测量,先测得小马同学离底部C的距离BC为10m,此时测得对树的顶端D的仰角为55°,已知山坡与水平线的夹角为20°,小马同学的观测点A距地面1.6m,求树木CD的高度(精确到0.1m).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36).21.如图,某中学数学活动小组在学习了“利用三角函数测高”后,选定测量小河对岸一幢建筑物BC 的高度,他们先在斜坡上的D处,测得建筑物顶端B的仰角为30°.且D离地面的高度DE=5m.坡底EA=30m,然后在A处测得建筑物顶端B的仰角是60°,点E,A,C在同一水平线上,求建筑物BC的高.(结果用含有根号的式子表示)22.如图,某人在D处测得山顶C的仰角为37°,向前走100米来到山脚A处,测得山坡AC的坡度为i=1:0.5,求山的高度(不计测角仪的高度,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).参考答案与试题解析一.解直角三角形的应用(共10小题)1.如图,小明同学用仪器测量一棵大树AB的高度,在C处测得∠ADM=30°,在E处测得∠AFM =60°,CE=10米,仪器高度CD=1.5米,求这棵树AB的高度.(结果精确到0.1,参考数据:≈1.41,≈1.73,≈2.24)【解答】解:由题意知,四边形CDBM、CDEF、EFMB是矩形,∴BM=CD=1.5米,CE=DF=10米.在Rt△ADM中,∵tan∠ADM=,∴DM==AM.在Rt△AFM中,∵tan∠AFM=,∴FM==AM.∵DF=DM﹣FM,∴AM﹣AM=10.∴AM=10.AM=5.∴AB=AM+MB=5+1.5≈5×1.73+1.5=8.65+1.5=10.15=10.2(米).答:这棵树AB的高度为10.2米.2.如图,小明家A和地铁口B两地恰好处在东西方向上,且相距3km,学校C在他家A正北方向的4km处,公园D与地铁口B和学校C的距离分别5km和km.(1)若∠BDA=10°,求∠ADC的大小;(2)计算公园D与小明家A的距离.【解答】解:(1)由题意得:BD=5km,CD=5km,∠BAC=90°,AB=3km,CA=4km,∴BC===5(km),∴BC=BD,∵BC2+BD2=52+52=50,CD2=(5)2=50,∴BC2+BD2=CD2,∴△BCD是等腰直角三角形,∴∠CBD=90°,∴∠BDC=45°,∴∠ADC=∠BDC﹣∠BDA=45°﹣10°=35°;(2)过D作DE⊥AB,交AB的延长线于E,如图所示:则∠DEB=90°,∴∠BDE+∠DBE=90°,由(1)得:∠CBD=90°,∴∠DBE+∠CBA=90°,∴∠BDE=∠CBA,在△BDE和△CBA中,,∴△BDE≌△CBA(AAS),∴DE=BA=3km,BE=CA=4km,∴AE=BE+AB=7(km),∴AD===(km).∴公园D与小明家A的距离为km.3.如图,A、B两地间有一座山,汽车原来从A地到B地需要经折线ACB绕山行驶.为加快城乡对接,建立全域美丽乡村,某地区对A、B两地间的公路进行改建,在这座山打一条隧道,使汽车可以直接沿AB行驶.已知AC=80千米,∠A=30°,∠B=45°.求:(1)开通隧道前,汽车从A地到B地需要行驶多少千米;(2)开通隧道后汽车从A地到B地大约少行驶多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)【解答】解:(1)如图,过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=,AC=80千米,∴CD=AC•sin30°=80×=40(千米),BC===40(千米),∴AC+BC=80+40≈1.41×40+80=136.4(千米).∴开通隧道前,汽车从地到地大约要走136.4千米.(2)∵cos30°=,AC=80千米,∴AD=AC•cos30°=80×=40(千米),∵tan45°=,CD=40(千米),∴BD===40(千米),∴AB=BD+AD=40+40≈40+40×1.73=109.2(千米).∴汽车从A地到B地比原来少走的路程为:AC+BC﹣AB=136.4﹣109.2=27.2(千米).∴开通隧道后,汽车从A地到B地大约可以少走27.2千米.4.如图,数学兴趣小组利用硬纸板自制的Rt△DEF来测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DE=1m,EF=0.6m,测得边DF离地面的高度AC=0.8m,CD=6m,求树高AB.【解答】解:方法一:在Rt△EDF中,DE=1m,EF=0.6m,∴tan∠EDF===,在Rt△BCD中,CD=6m,∵tan∠BDC=tan∠EDF,∴=,∴BC=3.6m,∵AC=0.8m,∴AB=AC+BC=3.6+0.8=4.4(m),答:树高AB为4.4m;方法二:由题意得:∠BCD=∠DEF=90°,∠CDB=∠EDF,∴△DCB∽△DEF,∴,∵DE=1m,EF=0.6m,CD=6m,∴=,解得:BC=3.6,∵AC=0.8m,∴AB=AC+BC=3.6+0.8=4.4(m),答:树高AB为4.4m.5.如图是小朋友玩的“滚铁环”游戏的示意图,⊙O向前滚动时,铁棒DE保持与OE垂直.⊙O与地面接触点为A,若⊙O的半径为25cm,∠AOE=53°.(1)求点E离地面AC的距离BE的长;(2)设人站立点C与点A的距离AC=53cm,DC⊥AC,求铁棒DE的长.(参考数据:sin53°≈0.8,cos53°≈0.6)【解答】解:过E作与AC平行的直线,与OA、FC分别相交于H、N.(1)在Rt△OHE中,∠OHE=90°,OE=25cm,∠AOE=53°,∴HO=OE×cos53°=15cm,EH=20cm,EB=HA=25﹣15=10(cm),所以铁环钩离地面的高度为10cm;(2)∵铁环钩与铁环相切,∴∠EOH+∠OEH=∠OEH+∠DEN=90°,∠DEN=∠EOH,∴DE==,在Rt△DEN中,∠DNE=90°,EN=BC=AC﹣AB=53﹣20=33(cm),DE===55(cm),∴铁环钩的长度DE为55cm.6.某中学数学活动小组设计了如图检测公路上行驶的校车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于30米,在l上点D的同侧取点A,B,使∠CAD=30°,∠CBD=45°.(1)求AB的长(精确到0.1米,参考数据:≈1.73,≈1.41);(2)已知本路段对校车限速为40千米/小时,若测得校车从A到B用时2秒,这辆校车是否超速?说明理由.【解答】解:(1)由题意得:在Rt△ADC中,AD==≈51.9(米),在Rt△BDC中,BD===30(米),∴AB=AD﹣BD≈51.9﹣30=21.9(米),答:AB的长为21.9米;(2)不超速,理由:∵汽车从A到B用时2秒,∴速度为21.9÷2=10.95(米/秒),∵10.95×3600=39420(米/时),∴该车速度为39.42千米/小时,∵39.42千米/小时<40千米/小时,∴这辆校车在AB路段不超速.7.为了测量旗杆AB的高度,小颖画了如下的示意图,其中CD,EF是两个长度为2m的标杆.(1)如果现在测得∠DEC=30°,EG=4m,求旗杆AB的高度;(参考数据:≈1.41,≈1.73)(2)如果CE的长为x,EG的长为y,请用含x,y的代数式表示旗杆AB的高度.【解答】解:(1)由题意得:∠ABC=∠DCE=∠FEG=90°,在Rt△DCE中,CE===2m,∵∠DEC=∠AEB,∴△DEC∽△AEB,∴=,∴=,∵∠FGE=∠AGB,∴△FGE∽△AGB,∴=,∴=,∴=,∴EB=(8+12)m,∴=,∴AB=8+4≈14.92m,答:旗杆AB的高度为14.92米;(2)由(1)得:△DEC∽△AEB,∴=,∴=,由(1)得:△FGE∽△AGB,∴=,∴=,∴=,∴EB=,∴=,∴AB=,答:旗杆AB的高度为m.二.解直角三角形的应用−坡度坡角问题(共7小题)8.如图所示,斜坡的坡比i=h:l=1:,则斜坡的坡度是( )A.30°B.60°C.1:D.:1【解答】解:∵斜坡的坡比i=h:l=1:,∴斜坡的坡度为1:,故选:C.9.如图,要测量山高CD,可以把山坡“化整为零”地划分为AB和BC两段,每一段上的山坡近似是“直”的.若量得坡长AB=600m,BC=800m,测得坡角∠BAD=30°,∠CBE=45°,则山高CD为( )A.(300+800)m B.700mC.(300+400)m D.(400+300)m【解答】解:由题意可知,四边形BFDE为矩形,∴DE=BF,在Rt△BAF中,∠BAF=30°,AB=600m,则BF=AB=300(m),∴DE=300m,在Rt△CBE中,∠CBE=45°,BC=800m,∴CE=BC=400(m),∴CD=CE+DE=(300+400)m,故选:C.10.如图,河坝横断面迎水坡AB的坡比为1:,坝高BC为4m,则AC的长度为( )A.8m B.4m C.8m D.m【解答】解:∵迎水坡AB的坡比为1:=,BC=4m,∴AC=BC=4(m),故选:B.11.如图所示,某拦水大坝的横断面为梯形ABCD,AE,DF为梯形的高,其中迎水坡AB的坡角α=45°,坡长AB=10米,背水坡CD的坡度i=1:,则背水坡的坡长CD为( )米.A.20B.20C.10D.20【解答】解:由题意得:四边形AEFD是矩形,∴DF=AE,∵迎水坡AB的坡角α=45°,坡长AB=10米,∴DF=AE=10×sin45°=10(米),∵背水坡CD的坡度i=1:,∴tan C=i===,∴∠C=30°,∴CD=2DF=2AE=20(米),故选:A.12.为了学生的安全,某校决定把一段如图所示的步梯路段进行改造.已知四边形ABCD为矩形,DE =10m,其坡度为i1=1:,将步梯DE改造为斜坡AF,其坡度为i2=1:4,求斜坡AF的长度是 20.62 米.(结果精确到0.01m,参考数据:≈1.732,≈4.123)【解答】解:∵DE的坡度为i1=1:,∴tan∠DEC==,∴∠DEC=30°,∴DC=DE=5(m),∵四边形ABCD为矩形,∴AB=CD=5m,∵斜坡AF的坡度为i2=1:4,AB=5m,∴BF=4AB=20(m),在Rt△ABF中,AF==≈20.62(m),∴斜坡AF的长度约为20.62米,故答案为:20.62.13.某校有一露天舞台,纵断面如图所示,AC垂直于地面,AB表示楼梯,AE为舞台面,楼梯的坡角∠ABC=45°,坡长AB=2m,为保障安全,学校决定对该楼梯进行改造,降低坡度,拟修新楼梯AD,使∠ADC=30°.(1)求舞台的高AC(结果保留根号);(2)求DB的长度(结果保留根号).【解答】解:(1)在Rt△ABC中,AB=2m,∠ABC=45°,∴AC=BC=AB•sin45°=2×=(m),答:舞台的高AC为m;(2)在Rt△ADC中,∠ADC=30°,则CD===,∴BD=CD﹣BC=(﹣)m,答:DB的长度为(﹣)m.14.某居民楼MN后有一个坡度为i=1:2.4的小山坡,小区物业准备在小山坡上加装一广告牌PQ (如图所示),已知QA=5.2米,水平地面上居民楼MN距坡底A点的距离AN=1.2米.当太阳光线与水平线成53°角时,测得广告牌PQ落在居民楼上的影子EN长为3米,求广告牌PQ的高.(参考数据:sin53°≈,cos53°≈,tan53°≈)【解答】解:过点E作EF⊥PQ于点F,延长PQ交BA于点G,则QG⊥BA,∴设QG=x米,∵山坡的坡度为i=1:2.4,∴AG=2.4x米,由勾股定理得:x2+(2.4x)2=5.22,解得:x=2,则QG=2米,AG=2.4x=4.8米,∴EF=NG=4.8+1.2=6(m),在Rt△PEF中,∠PEF=53°,EF=6m,则PF=EF•tan∠PEF=6×tan53°≈6×=8(m),∵FQ=EN﹣QG=3﹣2=1(m),∴PQ=8+1=9(m).答:信号塔PQ的高约为9m.三.解直角三角形的应用−仰角俯角问题(共8小题)15.若从楼顶A点测得点C的俯角为31°,测得点D的俯角为42°,则∠ADC的度数为( )A.31°B.42°C.48°D.59°【解答】解:由题意得:∠ADB=42°,∠BDC=90°,∴∠ADC=∠BDC﹣∠ADB=90°﹣42°=48°,故选:C.16.如图,某建筑物的顶部有一块宣传牌CD,小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°,已知斜坡AB的坡角为30°,AB=10米,AE=15米,则宣传牌CD的高度是( )A.B.C.D.【解答】解:过B作BF⊥AE,交EA的延长线于F,作BG⊥DE于G.在Rt△ABF中,∠BAF=30°,AB=10米,∴BF=AB=5(米),AF=BF=5(米).∴BG=AF+AE=(5+15)(米),在Rt△BGC中,∠CBG=45°,∴△BGC是等腰直角三角形,∴CG=BG=(5+15)(米),在Rt△ADE中,∠DAE=60°,AE=15米,∴DE=AE=15(米),∴CD=CG+GE﹣DE=5+15+5﹣15=(20﹣10)(米),即宣传牌CD的高度是(20﹣10)米,故选:A.17.某通信公司准备逐步在歌乐山上建设5G基站.如图,某处斜坡CB的坡度(或坡比)为i=1:2.4,通讯塔AB垂直于水平地面,在C处测得塔顶A的仰角为45°,在D处测得塔顶A的仰角为53°,斜坡路段CD长26米,则通讯塔AB的高度为( )(参考数据:,,)A.米B.米C.56米D.66米【解答】如图,延长AB与水平线交于F,过D作DM⊥CF,M为垂足,过D作DE⊥AF,E为垂足,连接AC,AD,∵斜坡CB的坡度为i=1:2.4,∴==,设DM=5k米,则CM=12k米,在Rt△CDM中,CD=26米,由勾股定理得,CM2+DM2=CD2,即(5k)2+(12k)2=262,解得k=2,∴DM=10(米),CM=24(米),∵斜坡CB的坡度为i=1:2.4,设DE=12a米,则BE=5a米,∵∠ACF=45°,∴AF=CF=CM+MF=(24+12a)米,∴AE=AF﹣EF=24+12a﹣10=(14+12a)米,在Rt△ADE中,DE=12a米,AE=(14+12a)米,∵tan∠ADE==tan53°≈,∴=,解得a=,∴DE=12a=42(米),AE=14+12a=56(米),BE=5a=(米),∴AB=AE﹣BE=56﹣=(米),答:基站塔AB的高为米.故选:B.18.某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进6米到达D处,测得仰角为64°,则建筑物的高度为 14.7 米.(测角器的高度忽略不计,结果精确到0.1米)(参考数据:sin48°≈,tan48°≈,sin64°≈,tan64°≈2)【解答】解:根据题意,得∠ADB=64°,∠ACB=48°在Rt△ADB中,tan64°=,则BD=≈AB,在Rt△ACB中,tan48°=,则CB=≈AB,∴CD=BC﹣BD,即6=AB﹣AB,解得:AB=≈14.7(米),∴建筑物的高度约为14.7米,故答案为:14.7.19.如图,某校数学兴趣小组要测量楼房DC的高度.在点A处测得楼顶D的仰角为30°,再往楼房的方向前进30m至B处,测得楼顶D的仰角为45°,则楼房DC的高度为 (15+15) m.【解答】解:设BC的长为x米.在Rt△CBD中,∠D=90°,∠CBD=45°,∴CD=BC=x米,在Rt△CAD中,∠ACD=90°,∠DAC=30°,∴tan∠CAD===,解得:x=15+15,答:楼房DC的高度为(15+15)米,故答案为:(15+15).20.如图,小马同学在数学综合实践活动中,利用所学的数学知识对山坡一棵树的高度进行测量,先测得小马同学离底部C的距离BC为10m,此时测得对树的顶端D的仰角为55°,已知山坡与水平线的夹角为20°,小马同学的观测点A距地面1.6m,求树木CD的高度(精确到0.1m).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36).【解答】解:延长DC交BF于F,过A作AH⊥DC于H,则HF=AB=1.6m,AH=BF,在Rt△ACF中,∵∠CBF=20°,BC=10m,∴CF=BC•sin20°≈10×0.34=3.4(m),BF=BC•cos20°≈10×0.94=9.4(m),∴AH=BF=9.4m,在Rt△ADH中,∵∠DAH=55°,∴DH=AH•tan55°≈9.4×1.43≈13.4(m),∴DC=DH+HF﹣CF=13.4+1.6﹣3.4=11.6(m),答:树木CD的高度约为11.6m.21.如图,某中学数学活动小组在学习了“利用三角函数测高”后,选定测量小河对岸一幢建筑物BC 的高度,他们先在斜坡上的D处,测得建筑物顶端B的仰角为30°.且D离地面的高度DE=5m.坡底EA=30m,然后在A处测得建筑物顶端B的仰角是60°,点E,A,C在同一水平线上,求建筑物BC的高.(结果用含有根号的式子表示)【解答】解:过点D作DH⊥BC于点H,如图所示:则四边形DHCE是矩形,DH=EC,DE=HC=5,设建筑物BC的高度为xm,则BH=(x﹣5)m,在Rt△DHB中,∠BDH=30°,∴DH=(x﹣5),AC=EC﹣EA=(x﹣5)﹣30,在Rt△ACB中,∠BAC=60°,tan∠BAC=,∴=解得:x=,答:建筑物BC的高为m.四.解直角三角形的应用−仰角俯角问题(共1小题)22.如图,某人在D处测得山顶C的仰角为37°,向前走100米来到山脚A处,测得山坡AC的坡度为i=1:0.5,求山的高度(不计测角仪的高度,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).【解答】解:设山高BC=x,则AB=x,由tan37°==0.75,得:=0.75,解得x=120,经检验,x=120是原方程的根.答:山的高度是120米.。
三角函数全章训练一、单选题(共14题;共0分)1.下列函数中,最小正周期为,且图象关于直线x=对称的函数是( )A.B.C.D.2.设,则是( )A.周期为的奇函数B.周期为的偶函数C.周期为的奇函数D.周期为的偶函数3.函数的最小正周期为( )A.B.C.D.4.函数是()A.最小正周期为的奇函数B.最小正周期为的偶函数C.最小正周期为的奇函数D.最小正周期为的偶函数5.设命题p:函数y=sin2x的最小正周期为;命题q:函数y=cos x的图像关于直线x=对称.则下列判断正确的是()A.p为真B.为假C.p且q为假D.p或q为真6.已知函数f(x)=sin (x∈R),下面结论错误的是()A.函数f(x)的最小正周期为2πB.函数f(x)在区间上是增函数C.函数f(x)的图象关于直线x=0对称D.函数f(x)是奇函数7.函数的最小正周期是()A.B.C.2πD.4π8.同时具有性质“(1)最小正周期是;(2)图像关于直线对称;(3)在上是增函数”的一个函数是()A.B.C.D.9.函数y=2sin2x+sin2x的最小正周期()A.B.C.πD.2π10.每一个音都是纯音合成的,纯音的数字模型是函数y=Asinωt.音调、响度、音长、音色等音的四要素都与正弦函数及其参数(振幅、频率)有关.我们听到声音是由许多音的结合,称为复合音.若一个复合音的函数是y=sin4x+sin6x,则该复合音的周期为()A.B.πC.D.11.已知函数f(x)=Acos(ωx+φ)的图象如图所示,f()=﹣,则f(0)=()A.﹣B.﹣C.D.12.已知简谐运动的图像经过点(0,1),则该简谐运动的最小正周期T 和初相φ分别为()A.T=6,φ=B.T=6,φ=C.T=6π,φ=D.T=6π,φ=13.已知函数f(x)=cos(ωx+θ)(ω>0,0<θ<π)的最小正周期为π,且f(﹣x)+f(x)=0,若tanα=2,则f(α)等于()A.B.C.D.14.为了使函数y=sinωx(ω>0)在区间[0,1]上至少出现50次最大值,则ω的最小值是().A.98πB.πC.πD.100π二、解答题(共6题;共0分)15.已知函数f(x)=cos(2x﹣)﹣cos2x.(Ⅰ)求f()的值;(Ⅱ)求函数f(x)的最小正周期和单调递增区间.16.已知函数(1)求函数f(x)的最小正周期;(2)求函数f(x)的单调递减区间.17.已知:f(x)=2cos2x+2 sinxcosx+a(1)若x∈R,求f(x)的最小正周期和增区间;(2)若f(x)在[﹣,]上最大值与最小值之和为3,求a的值.18.已知函数f(x)=sin2xcos2x+sin22x﹣.(1)求函数f(x)的最小正周期及对称中心;(2)在△ABC中,角B为钝角,角A,B,C的对边分别为a、b、c,f()= ,且sinC=sinA,S△ABC=4,求c的值.19.已知函数f(x)=2sin2ωx+2sinωxcosωx﹣1(ω>0)的周期为π.(Ⅰ)求ω的值;(Ⅱ)求函数f(x)在上的值域.20.已知函数(x∈R).(1)求函数f(x)的最小正周期(2)若f(x)有最大值3,求实数a的值;(3)求函数f(x)单调递增区间.答案部分第 1 题:【答案】B【考点】三角函数的周期性及其求法,正弦函数的对称性【解析】【解答】首先选项C中函数的周期为4,故排除C;将分别代入A,B,D,得函数值分别为,而函数在对称轴处取最值,故选B.第 2 题:【答案】B【考点】三角函数的周期性及其求法【解析】【解答】根据题意,由于,则可以根据周期公式w=2,则其周期为T=,且是偶函数,因此答案为B.【分析】主要是考查了诱导公式化简函数式,同时研究其性质的运用,属于基础题。
三角函数专项训练令狐采学圆径为1.在△ABC中,角A、B、C对应边a、b、c,外接半1,已知2(sin2A﹣sin2C)=(a﹣b)sinB.证a2+b2﹣c2=ab;(1)明(2)求角C和边c.对边别为a,b,c.已内A,B,C所的分2.在△ABC中,角知bsinA=acos(B﹣).(Ⅰ)求角B的大小;值(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的.为锐tanα=,cos(α+β)=﹣.3.已知α,β角,值(1)求cos2α的;值(2)求tan(α﹣β)的.边ABCD中,∠ADC=90°,∠A=45°,AB=4.在平面四形2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.5.已知函数f(x)=sin2x+sinxcosx.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小.值内A,B,C所的分对边别为a,b,c.已6.在△ABC中,角知asinA=4bsinB,ac=(a2﹣b2﹣c2)值(Ⅰ)求cosA的;(Ⅱ)求sin(2B﹣A)的值设数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0 7.函<ω<3,已知f()=0.(Ⅰ)求ω;将数y=f(x)的象上各点的坐伸原的图横标长为来(Ⅱ)函个单2倍(坐不),再得到的象向左平移纵标变将图位,图g(x)在[﹣,]上的最得到函数y=g(x)的象,求值小.对边别为a,b,c.已内A,B,C所的分8.在△ABC中,角知a>b,a=5,c=6,sinB=.(Ⅰ)求b 和sinA 的;值(Ⅱ)求sin (2A+)的.值9.△ABC 的角内A ,B ,C 的分对边别为a ,b ,c ,已知△ABC 的面积为.(1)求sinBsinC ;(2)若6cosBcosC =1,a =3,求△ABC 的周.长10.△ABC 的角内A ,B ,C 的分对边别为a ,b ,c ,已知sin (A+C )=8sin2.(1)求cosB ;(2)若a+c =6,△ABC 的面积为2,求b .11.已知函数f (x )=cos (2x﹣)﹣2sinxcosx .(I )求f (x )的最小正周期;(II )求:证当x∈[﹣,],时f (x )≥﹣.12.已知向量=(cosx ,sinx ),=(3,﹣),x∈[0,π].(1)若,求x 的;值(2)记f(x)=,求f(x)的最大和最小以及值值对应值的x的.13.在△ABC中,∠A=60°,c=a.值(1)求sinC的;积(2)若a=7,求△ABC的面.14.已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.值(1)求ω的;单调递区间(2)求f(x)的增.内A,B,C所的分对边别为a,b,c,已15.在△ABC中,角知b+c=2acosB.证A=2B;(1)明:(2)若cosB=,求cosC的.值16.设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.单调递区间(Ⅰ)求f(x)的增;图横标长来2(Ⅱ)把y=f(x)的象上所有点的坐伸到原的纵标变图位,得个单倍(坐不),再把得到的象向左平移值图g()的.到函数y=g(x)的象,求对边别为a,b,c,已17.在△ABC中,角内A,B,C所的分知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的.值对边别为a,b,c,已内A,B,C所的分18.在△ABC中,角知b+c=2acosB.证A=2B;(Ⅰ)明:(Ⅱ)若△ABC的面积S=,求角A的大小.对边别a,b,c,且19.在△ABC中,角A,B,C所的分是+=.证sinAsinB=sinC;(Ⅰ)明:(Ⅱ)若b2+c2﹣a2=bc,求tanB.20.在△ABC中,AC=6,cosB=,C=.长(1)求AB的;值(2)求cos(A﹣)的.21.已知函数f(x)=4tanxsin(﹣x)cos(x﹣)﹣.义与(1)求f(x)的定域最小正周期;单调(2)讨论f(x)在区间[﹣,]上的性.对边别为a,b,c,已知内A,B,C的分22.△ABC的角2cosC(acosB+bcosA)=c.(Ⅰ)求C;长(Ⅱ)若c=,△ABC的面积为,求△ABC的周.参考答案圆径为1.在△ABC中,角A、B、C对应边a、b、c,外接半1,已知2(sin2A﹣sin2C)=(a﹣b)sinB.证a2+b2﹣c2=ab;(1)明(2)求角C和边c.证1)∵在△ABC中,角A、B、C对应边【解答】明:(圆径为1,a、b、c,外接半∴由正弦定理得:=2R=2,∴sinA=,sinB=,sinC=,∵2(sin2A﹣sin2C)=(a﹣b)sinB,∴2()=(a﹣b)•,简a2+b2﹣c2=ab,化,得:故a2+b2﹣c2=ab.解:(2)∵a2+b2﹣c2=ab,∴cosC===,解得C=,∴c=2sinC=2•=.对边别为a,b,c.已2.在△ABC中,角内A,B,C所的分知bsinA=acos(B﹣).(Ⅰ)求角B的大小;值(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得bsinA=asinB,又bsinA=acos(B﹣).∴asinB=acos(B﹣),即sinB=cos(B﹣)=cosBcos+sinBsin=cosB+,∴tanB=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由bsinA=acos(B﹣),得sinA=,∵a<c,∴cosA=,∴sin2A=2sinAcosA=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==.3.已知α,β角,为锐tanα=,cos(α+β)=﹣.值(1)求cos2α的;值(2)求tan(α﹣β)的.【解答】解:(1)由,解得,∴cos2α=;(2)由(1)得,sin2,则tan2α=.∵α,β∈(0,),∴α+β∈(0,π),∴sin(α+β)==.则tan(α+β)=.∴tan(α﹣β)=tan[2α﹣(α+β)]==.边ABCD中,∠ADC=90°,∠A=45°,AB=4.在平面四形2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.5.已知函数f(x)=sin2x+sinxcosx.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最值小.【解答】解:(I)函数f(x)=sin2x+sinxcosx=+sin2x=sin(2x﹣)+,f(x)的最小正周期为T==π;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,可得2x﹣∈[﹣,2m﹣],即有2m﹣≥,解得m≥,则m 的最小值为.6.在△ABC 中,角内A ,B ,C 所的分对边别为a ,b ,c .已知asinA =4bsinB ,ac =(a2﹣b2﹣c2)(Ⅰ)求cosA 的;值(Ⅱ)求sin (2B﹣A )的值【解答】(Ⅰ)解:由,得asinB =bsinA ,又asinA =4bsinB ,得4bsinB =asinA ,式作比得:两,∴a =2b .由,得,由余弦定理,得;(Ⅱ)解:由(Ⅰ),可得,代入asinA =4bsinB ,得.由(Ⅰ)知,A 角,为钝则B 角,为锐∴.于是,,故.设数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0 7.函<ω<3,已知f()=0.(Ⅰ)求ω;图横标长为来将数y=f(x)的象上各点的坐伸原的(Ⅱ)函个单纵标变将图位,2倍(坐不),再得到的象向左平移图g(x)在[﹣,]上的最得到函数y=g(x)的象,求值小.【解答】解:(Ⅰ)函数f(x)=sin(ωx﹣)+sin(ωx ﹣)=sinωxcos﹣cosωxsin﹣sin(﹣ωx)=sinωx﹣cosωx=sin(ωx﹣),又f()=sin(ω﹣)=0,∴ω﹣=kπ,k∈Z,解得ω=6k+2,又0<ω<3,∴ω=2;(Ⅱ)由(Ⅰ)知,f (x )=sin (2x﹣),函将数y =f (x )的象上各点的坐伸原的图横标长为来2倍(坐不),得到函纵标变数y =sin (x﹣)的象;图再得到的象向左平移将图位,得到个单y =sin (x+﹣)的象,图∴函数y =g (x )=sin (x﹣);当x∈[﹣,],时x﹣∈[﹣,],∴sin (x﹣)∈[﹣,1],∴当x =﹣,时g (x )取得最小是值﹣×=﹣.8.在△ABC 中,角内A ,B ,C 所的分对边别为a ,b ,c .已知a >b ,a =5,c =6,sinB =.(Ⅰ)求b 和sinA 的;值(Ⅱ)求sin (2A+)的.值【解答】解:(Ⅰ)在△ABC中,∵a>b,故由sinB=,可得cosB=.由已知及余弦定理,有=13,∴b=.由正弦定理,得sinA=.∴b=,sinA=;(Ⅱ)由(Ⅰ)及a<c,得cosA=,∴sin2A=2sinAcosA=,cos2A=1﹣2sin2A=﹣.故sin(2A+)==.对边别为a,b,c,已知9.△ABC的角内A,B,C的分△ABC的面积为.(1)求sinBsinC;长(2)若6cosBcosC=1,a=3,求△ABC的周.积S△ABC=【解答】解:(1)由三角形的面公式可得acsinB=,∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC=;(2)∵6cosBcosC=1,∴cosBcosC=,∴cosBcosC﹣sinBsinC=﹣=﹣,∴cos(B+C)=﹣,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=•===,∴bc=8,∵a2=b2+c2﹣2bccosA,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.对边别为a,b,c,已知内A,B,C的分10.△ABC的角sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC的面积为2,求b.【解答】解:(1)sin(A+C)=8sin2,∴sinB=4(1﹣cosB),∵sin2B+cos2B=1,∴16(1﹣cosB)2+cos2B=1,∴16(1﹣cosB)2+cos2B﹣1=0,∴16(cosB﹣1)2+(cosB﹣1)(cosB+1)=0,∴(17cosB﹣15)(cosB﹣1)=0,∴cosB=;(2)由(1)可知sinB=,∵S△ABC=ac•sinB=2,∴ac=,∴b2=a2+c2﹣2accosB=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.11.已知函数f(x)=cos(2x﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;时f(x)≥﹣.证当x∈[﹣,],(II)求:【解答】解:(Ⅰ)f(x)=cos(2x﹣)﹣2sinxcosx,=(co2x+sin2x)﹣sin2x,=cos2x+sin2x,=sin(2x+),∴T==π,∴f(x)的最小正周期为π,(Ⅱ)∵x∈[﹣,],∴2x+∈[﹣,],∴﹣≤sin(2x+)≤1,∴f(x)≥﹣12.已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].值(1)若,求x的;值值对应(2)记f(x)=,求f(x)的最大和最小以及值的x的.【解答】解:(1)∵=(cosx,sinx),=(3,﹣),∥,∴﹣cosx=3sinx,时sinx=1,不合意,题当cosx=0,时tanx=﹣,当cosx≠0,∵x∈[0,π],∴x=,(2)f(x)==3cosx﹣sinx=2(cosx﹣sinx)=2cos(x+),∵x∈[0,π],∴x+∈[,],∴﹣1≤cos(x+)≤,值值3,当x=0,时f(x)有最大,最大时f(x)有最小,最小值值﹣2.当x=,13.在△ABC中,∠A=60°,c=a.值(1)求sinC的;积(2)若a=7,求△ABC的面.【解答】解:(1)∠A=60°,c=a,由正弦定理可得sinC=sinA=×=,(2)a=7,则c=3,∴C<A,∵sin2C+cos2C=1,又由(1)可得cosC=,∴sinB=sin(A+C)=sinAcosC+cosAsinC=×+×=,∴S△ABC=acsinB=×7×3×=6.14.已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的;值单调递区间(2)求f(x)的增.【解答】解:f(x)=2sinωxcosωx+cos2ωx,=sin2ωx+cos2ωx,=,数为π,由于函的最小正周期则T=,:解得:ω=1.(2)由(1)得:函数f(x)=,令(k∈Z),解得:(k∈Z),数单调递区间为[](k∈Z).所以函的增:15.在△ABC 中,角内A ,B ,C 所的分对边别为a ,b ,c ,已知b+c =2acosB .(1)明:证A =2B ;(2)若cosB =,求cosC 的.值【解答】(1)明:∵证b+c =2acosB ,∴sinB+sinC =2sinAcosB ,∵sinC =sin (A+B )=sinAcosB+cosAsinB ,∴sinB =sinAcosB﹣cosAsinB =sin (A﹣B ),由A ,B∈(0,π),∴0<A﹣B <π,∴B =A﹣B ,或B =π﹣(A﹣B ),化为A =2B ,或A =π(舍去).∴A =2B .(II )解:cosB =,∴sinB ==.cosA =cos2B =2cos2B﹣1=,sinA ==.∴cosC =﹣cos (A+B )=﹣cosAcosB+sinAsinB =+×=.16.设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.单调递区间(Ⅰ)求f(x)的增;图横标长来2(Ⅱ)把y=f(x)的象上所有点的坐伸到原的个单纵标变图位,得倍(坐不),再把得到的象向左平移图g()的.值到函数y=g(x)的象,求【解答】解:(Ⅰ)∵f(x)=2sin(π﹣x)sinx﹣(sinx ﹣cosx)2 =2sin2x﹣1+sin2x=2•﹣1+sin2x =sin2x﹣cos2x+﹣1=2sin(2x﹣)+﹣1,令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,数区间为[kπ﹣,kπ+],k∈Z.可得函的增图横标长来2(Ⅱ)把y=f(x)的象上所有点的坐伸到原的图纵标变y=2sin(x﹣)+﹣1的象;倍(坐不),可得个单数y=g(x)=图位,得到函再把得到的象向左平移图2sinx+﹣1的象,∴g()=2sin+﹣1=.对边别为a,b,c,已17.在△ABC中,角内A,B,C所的分知asin2B=bsinA.(1)求B;值(2)已知cosA=,求sinC的.【解答】解:(1)∵asin2B=bsinA,∴2sinAsinBcosB=sinBsinA,∴cosB=,∴B=.(2)∵cosA=,∴sinA=,∴sinC=sin(A+B)=sinAcosB+cosAsinB==.对边别为a,b,c,已18.在△ABC中,角内A,B,C所的分知b+c=2acosB.证A=2B;(Ⅰ)明:(Ⅱ)若△ABC的面积S=,求角A的大小.【解答】(Ⅰ)明:∵证b+c=2acosB,∴sinB+sinC=2sinAcosB,∴sinB+sin(A+B)=2sinAcosB∴sinB+sinAcosB+cosAsinB=2sinAcosB∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B)∵A,B是三角形中的角,∴B=A﹣B,∴A=2B;(Ⅱ)解:∵△ABC的面积S=,∴bcsinA=,∴2bcsinA=a2,∴2sinBsinC=sinA=sin2B,∴sinC=cosB,∴B+C=90°,或C=B+90°,∴A=90°或A=45°.对边别a,b,c,且19.在△ABC中,角A,B,C所的分是+=.证sinAsinB=sinC;(Ⅰ)明:(Ⅱ)若b2+c2﹣a2=bc,求tanB.【解答】(Ⅰ)明:在△证ABC中,∵+=,∴由正弦定理得:,∴=,∵sin(A+B)=sinC.∴整理可得:sinAsinB=sinC,(Ⅱ)解:b2+c2﹣a2=bc,由余弦定理可得cosA=.sinA=,=+==1,=,tanB=4.20.在△ABC中,AC=6,cosB=,C=.长(1)求AB的;值(2)求cos(A﹣)的.【解答】解:(1)∵△ABC中,cosB=,B∈(0,π),∴sinB=,∵,∴AB==5;(2)cosA═﹣cos(π﹣A)=﹣cos(C+B)=sinBsinC﹣cosBcosC=﹣.为内∵A三角形的角,∴sinA=,∴cos(A﹣)=cosA+sinA=.21.已知函数f(x)=4tanxsin(﹣x)cos(x﹣)﹣.义与(1)求f(x)的定域最小正周期;单调(2)讨论f(x)在区间[﹣,]上的性.【解答】解:(1)∵f(x)=4tanxsin(﹣x)cos(x﹣)﹣.数义为{x|x≠kπ+,k∈Z},∴x≠kπ+,即函的定域则f(x)=4tanxcosx•(cosx+sinx)﹣=4sinx(cosx+sinx)﹣=2sinxcosx+2sin2x﹣=sin2x+(1﹣cos2x)﹣=sin2x﹣cos2x=2sin(2x﹣),则数T=;函的周期(2)由2kπ﹣<2x﹣<2kπ+,k∈Z,数区间为kπ﹣得kπ﹣<x<kπ+,k∈Z,即函的增(,kπ+),k∈Z,时区间为﹣,),k∈Z,当k=0,增(∵x∈[﹣,],∴此时x∈(﹣,],由2kπ+<2x﹣<2kπ+,k∈Z,数减区间为kπ+得kπ+<x<kπ+,k∈Z,即函的(,kπ+),k∈Z,时减区间为﹣,﹣),k∈Z,当k=﹣1,(∵x∈[﹣,],∴此时x∈[﹣,﹣),即在区间[﹣,]上,函的∈数减区间为[﹣,﹣),区间为﹣,].增(对边别为a,b,c,已知内A,B,C的分22.△ABC的角2cosC(acosB+bcosA)=c.(Ⅰ)求C;长(Ⅱ)若c=,△ABC的面积为,求△ABC的周.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sinC≠0简已知等式利用正弦定理化得:2cosC(sinAcosB+sinBcosA)=sinC,整理得:2cosCsin(A+B)=sinC,即2cosCsin(π﹣(A+B))=sinC2cosCsinC=sinC∴cosC=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=absinC=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+.。
三角函数大题综合训练一.解答题共30小题2.2016 广州模拟在△ABC中;角A、B、C对应的边分别是a、b、c;已知3cosBcosC+2=3sinBsinC+2cos2A.I求角A的大小;Ⅱ若△ABC的面积S=5;b=5;求sinBsinC的值.解:I由3cosBcosC+2=3sinBsinC+2cos2A;得2cos2A+3cosA﹣2=0;﹣﹣﹣﹣﹣2分即2cosA﹣1cosA+2=0.解得cosA=或cosA=﹣2舍去.﹣﹣﹣﹣﹣4分因为0<A<π;所以A=.﹣﹣﹣﹣6分II由S=bcsinA=bc =bc=5;得bc=20.又b=5;所以c=4.﹣﹣﹣﹣﹣8分由余弦定理;得a2=b2+c2﹣2bccosA=25+16﹣20=21;故a=.﹣﹣﹣10分又由正弦定理;得sinBsinC=sinA sinA= sin2A=×=.﹣﹣﹣﹣12分3.2016 成都模拟已知函数fx=cos2x﹣sinxcosx﹣sin2x.Ⅰ求函数fx取得最大值时x的集合;Ⅱ设A、B、C为锐角三角形ABC的三个内角;若cosB=;fC=﹣;求sinA的值.解:Ⅰ函数fx=cos2x﹣sinxcosx﹣sin2x=cos2x﹣sinxcosx+cos2x﹣sin2x=﹣sin2x+cos2x=+cos2x+;故函数取得最大值为;此时;2x+=2kπ时;即x的集合为{x|x=kπ﹣;k∈Z}.Ⅱ设A、B、C为锐角三角形ABC的三个内角;若cosB=;fC=+cos2C+=﹣;∴cos2C+=﹣;又A、B、C为锐角三角形ABC的三个内角;∴2C+=;∴C=.∵cosB=;∴sinB=;∴sinA=sinB+C=sinBcosC+cosBsinC=+=.4.2016 台州模拟已知a;b;c分别是△ABC的三个内角A;B;C所对的边;且c2=a2+b2﹣ab.1求角C的值;2若b=2;△ABC的面积;求a的值.解:1∵c2=a2+b2﹣ab;∴cosC==;∵0°<C<180°;∴C=60°;2∵b=2;△ABC的面积;∴=;解得a=3.5.2016 惠州模拟如图所示;在四边形ABCD中;∠D=2∠B;且AD=1;CD=3;cosB=.Ⅰ求△ACD的面积;Ⅱ若BC=2;求AB的长.解:Ⅰ因为∠D=2∠B;;所以.…3分因为∠D∈0;π;所以.…5分因为AD=1;CD=3;所以△ACD的面积.…7分Ⅱ在△ACD中;AC2=AD2+DC2﹣2AD DC cosD=12.所以.…9分因为;;…11分所以.所以AB=4.…13分6.2015 山东△ABC中;角A;B;C所对的边分别为a;b;c;已知cosB=;sinA+B=;ac=2;求sinA和c的值.解:①因为△ABC中;角A;B;C所对的边分别为a;b;c已知cosB=;sinA+B=;ac=2;所以sinB=;sinAcosB+cosAsinB=;所以sinA+cosA=;结合平方关系sin2A+cos2A=1;得27sin2A﹣6sinA﹣16=0;解得sinA=或者sinA=﹣舍去;②由正弦定理;由①可知sinA+B=sinC=;sinA=;所以a=2c;又ac=2;所以c=1.8.2015 湖南设△ABC的内角A;B;C的对边分别为a;b;c;a=btanA.Ⅰ证明:sinB=cosA;Ⅱ若sinC﹣sinAcosB=;且B为钝角;求A;B;C.解:Ⅰ证明:∵a=btanA.∴=tanA;∵由正弦定理:;又tanA=;∴=;∵sinA≠0;∴sinB=cosA.得证.Ⅱ∵sinC=sinπ﹣A+B=sinA+B=sinAcosB+cosAsinB;∴sinC﹣sinAcosB=cosAsinB=;由1sinB=cosA;∴sin2B=;∵0<B<π;∴sinB=;∵B为钝角;∴B=;又∵cosA=sinB=;∴A=;∴C=π﹣A﹣B=;综上;A=C=;B=.10.2015 湖南设△ABC的内角A、B、C的对边分别为a、b、c;a=btanA;且B为钝角.Ⅰ证明:B﹣A=;Ⅱ求sinA+sinC的取值范围.解:Ⅰ由a=btanA和正弦定理可得==;∴sinB=cosA;即sinB=sin+A又B为钝角;∴+A∈;π;∴B=+A;∴B﹣A=;Ⅱ由Ⅰ知C=π﹣A+B=π﹣A++A=﹣2A>0;∴A∈0;;∴sinA+sinC=sinA+sin﹣2A=sinA+cos2A=sinA+1﹣2sin2A=﹣2sinA﹣2+;∵A∈0;;∴0<sinA<;∴由二次函数可知<﹣2sinA﹣2+≤∴sinA+sinC的取值范围为;11.2015 四川已知A、B、C为△ABC的内角;tanA;tanB是关于方程x2+px﹣p+1=0p∈R 两个实根.Ⅰ求C的大小Ⅱ若AB=3;AC=;求p的值.解:Ⅰ由已知;方程x2+px﹣p+1=0的判别式:△=p2﹣4﹣p+1=3p2+4p﹣4≥0;所以p≤﹣2;或p≥.由韦达定理;有tanA+tanB=﹣p;tanAtanB=1﹣p.所以;1﹣tanAtanB=1﹣1﹣p=p≠0;从而tanA+B==﹣=﹣.所以tanC=﹣tanA+B=;所以C=60°.Ⅱ由正弦定理;可得sinB===;解得B=45°;或B=135°舍去.于是;A=180°﹣B﹣C=75°.则tanA=tan75°=tan45°+30°===2+.所以p=﹣tanA+tanB=﹣2+=﹣1﹣.12.2015 河西区二模设△ABC的内角A;B;C的内角对边分别为a;b;c;满足a+b+ca ﹣b+c=ac.Ⅰ求B.Ⅱ若sinAsinC=;求C.解:I∵a+b+ca﹣b+c=a+c2﹣b2=ac;∴a2+c2﹣b2=﹣ac;∴cosB==﹣;又B为三角形的内角;则B=120°;II由I得:A+C=60°;∵sinAsinC=;cosA+C=;∴cosA﹣C=cosAcosC+sinAsinC=cosAcosC﹣sinAsinC+2sinAsinC=cosA+C+2sinAsinC=+2×=;∴A﹣C=30°或A﹣C=﹣30°;则C=15°或C=45°.13.2015 浙江在△ABC中;内角A;B;C所对的边分别为a;b;c;已知A=;b2﹣a2=c2.1求tanC的值;2若△ABC的面积为3;求b的值.解:1∵A=;∴由余弦定理可得:;∴b2﹣a2=bc﹣c2;又b2﹣a2=c2.∴bc﹣c2=c2.∴b=c.可得;∴a2=b2﹣=;即a=.∴cosC===.∵C∈0;π;∴sinC==.∴tanC==2.2∵=×=3;解得c=2.∴=3.15.2015 江苏在△ABC中;已知AB=2;AC=3;A=60°.1求BC的长;2求sin2C的值.解:1由余弦定理可得:BC2=AB2+AC2﹣2AB ACcosA=4+9﹣2×2×3×=7;所以BC=.2由正弦定理可得:;则sinC===;∵AB<BC;∴C为锐角;则cosC===.因此sin2C=2sinCcosC=2×=.16.2015 天津在△ABC中;内角A;B;C所对的边分别为a;b;c;已知△ABC的面积为3;b﹣c=2;cosA=﹣.Ⅰ求a和sinC的值;Ⅱ求cos2A+的值.解:Ⅰ在三角形ABC中;由cosA=﹣;可得sinA=;△ABC的面积为3;可得:;可得bc=24;又b﹣c=2;解得b=6;c=4;由a2=b2+c2﹣2bccosA;可得a=8;;解得sinC=;Ⅱcos2A+=cos2Acos﹣sin2Asin==.17.2015 怀化一模已知a;b;c分别为△ABC三个内角A;B;C的对边;c=asinC﹣ccosA.1求角A;2若a=2;△ABC的面积为;求b;c.解:1由正弦定理==化简已知的等式得:sinC=sinAsinC﹣sinCcosA; ∵C为三角形的内角;∴sinC≠0;∴sinA﹣cosA=1;整理得:2sinA﹣=1;即sinA﹣=;∴A﹣=或A﹣=;解得:A=或A=π舍去;则A=;2∵a=2;sinA=;cosA=;△ABC的面积为;∴bcsinA=bc=;即bc=4①;∴由余弦定理a2=b2+c2﹣2bccosA得:4=b2+c2﹣bc=b+c2﹣3bc=b+c2﹣12;整理得:b+c=4②;联立①②解得:b=c=2.19.2015 衡水四模在△ABC中;角A;B;C所对的边分别为a;b;c;函数fx=2cosxsinx ﹣A+sinAx∈R在x=处取得最大值.1当时;求函数fx的值域;2若a=7且sinB+sinC=;求△ABC的面积.解:∵函数fx=2cosxsinx﹣A+sinA=2cosxsinxcosA﹣2cosxcosxsinA+sinA=sin2xcosA﹣cos2xsinA=sin2x﹣A又∵函数fx=2cosxsinx﹣A+sinAx∈R在处取得最大值.∴;其中k∈z;即;其中k∈z;1∵A∈0;π;∴A=∵;∴2x﹣A∴;即函数fx的值域为:2由正弦定理得到;则sinB+sinC=sinA;即;∴b+c=13由余弦定理得到a2=b2+c2﹣2bccosA=b+c2﹣2bc﹣2bccosA即49=169﹣3bc;∴bc=40故△ABC的面积为:S=.20.2015 潍坊模拟已知函数fx=2cos2x+2sinxcosxx∈R.Ⅰ当x∈0;时;求函数fx的单调递增区间;Ⅱ设△ABC的内角A;B;C的对应边分别为a;b;c;且c=3;fC=2;若向量=1;sinA与向量=2;sinB共线;求a;b的值.解:I∵==.令;解得;即;∵;∴fx的递增区间为.Ⅱ由;得.而C∈0;π;∴;∴;可得.∵向量向量=1;sinA与向量=2;sinB共线;∴;由正弦定理得:=①.由余弦定理得:c2=a2+b2﹣2ab cosC;即9=a2+b2﹣ab②;由①、②解得.21.2015 济南二模已知向量=cos2x﹣;cosx+sinx;=1;cosx﹣sinx;函数fx=.Ⅰ求函数fx的单调递增区间;Ⅱ在△ABC中;内角A;B;C的对边分别为a;b;c;已知fA=;a=2;B=;求△ABC的面积S.解:Ⅰ∵向量=cos2x﹣;cosx+sinx;=1;cosx﹣sinx;∴函数fx==cos2x﹣+cos2x﹣sin2x=cos2x﹣+cos2x=cos2x+sin2x+cos2x=cos2x+sin2x=sin2x+;令﹣+2kπ≤2x+≤+2kπk∈Z;得﹣+kπ≤x≤+kπk∈Z;则函数fx的单调递增区间为﹣+kπ;+kπk∈Z;Ⅱ由fA=sin2A+=;得sin2A+=;∵A为△ABC的内角;由题意知0<A<;∴<2A+<;∴2A+=;解得:A=;又a=2;B=;∴由正弦定理=;得b==;∵A=;B=;∴sinC=sinπ﹣A+B=sinA+B=snAcosB+cosAsinB=×+×=;则△ABC的面积S=absinC=×2××=.22.2015 和平区校级三模在△ABC中;角A、B、C的对边分别为a;b;c;且a=3;b=4;B=+A.1求cosB的值;2求sin2A+sinC的值.解1∵;∴cosB=cos+A=﹣sinA;又a=3;b=4;所以由正弦定理得;所以=;所以﹣3sinB=4cosB;两边平方得9sin2B=16cos2B;又sin2B+cos2B=1;所以;而;所以.2∵;∴;∵;∴2A=2B﹣π;∴sin2A=sin2B﹣π=﹣sin2B =又A+B+C=π;∴;∴sinC=﹣cos2B=1﹣2cos2B=.∴.23.2015 洛阳三模在锐角△ABC中;=1求角A;2若a=;求bc的取值范围.解:1由余弦定理可得:a2+c2﹣b2=2accosB;;∴sin2A=1且;2;又;∴b=2sinB;c=2sinC;bc=2sin135°﹣C 2sinC=;;∴.24.2015 河北区一模在△ABC中;a;b;c分别是角A;B;C的对边;且2cosAcosC+1=2sinAsinC.Ⅰ求B的大小;Ⅱ若;;求△ABC的面积.解:Ⅰ由2cosAcosC+1=2sinAsinC得:∴2cosAcosC﹣sinAsinC=﹣1; ∴;∴;又0<B<π;∴.Ⅱ由余弦定理得:;∴;又;;∴;故;∴.25.2015 云南一模在△ABC中;a;b;c分别是内角A;B;C的对边;且=sinA+sinB+sinC;sinC;=sinB;sinB+sinC﹣sinA;若1求A的大小;2设为△ABC的面积;求的最大值及此时B的值.解:1∵∥;∴sinA+sinB+sinCsinB+sinC﹣sinA=sinBsinC根据正弦定理得a+b+cc+b﹣a=bc;即a2=b2+c2+bc;由余弦定理a2=b2+c2﹣2bccosA;得cosA=﹣;又A∈0;π;∴A=;2∵a=;A=;∴由正弦定理得====2;∴b=2sinB;c=2sinC;∴S=bcsinA=×2sinB×2sinC×=sinBsinC;∴S+cosBcosC=sinBsinC+cosBcosC=cosB﹣C;∴当B=C时;即B=C=时;S+cosBcosC取最大值.27.2015 高安市校级模拟在△ABC中;角A、B、C所对的边分别为a、b、c;已知sinA++2cosB+C=0;1求A的大小;2若a=6;求b+c的取值范围.解:1由条件结合诱导公式得;sinAcos+cosAsin=2cosA;整理得sinA=cosA;∵cosA≠0;∴tanA=;∵0<A<π;∴A=;2由正弦定理得:;∴;;∴==;∵;∴;即6<b+c≤12当且仅当B=时;等号成立28.2015 威海一模△ABC中;A;B;C所对的边分别为a;b;c;;sinB﹣A=cosC.Ⅰ求A;B;C;Ⅱ若S△ABC=3+;求a;c.解:Ⅰ∵;∴;∴sinCcosA+sinCcosB=cosCsinA+cosCsinB;即sinCcosA﹣cosCsinA=cosCsinB﹣sinCcosB;得sinC﹣A=sinB﹣C.∴C﹣A=B﹣C;或C﹣A=π﹣B﹣C不成立.即2C=A+B;得;∴;∵;则;或舍去∴.Ⅱ∵又∵;即;∴.29.2015 新津县校级模拟已知向量;函数fx=.Ⅰ求函数fx的单调递增区间;Ⅱ在△ABC中;角A;B;C的对边分别为a;b;c;若fB=1;b=;sinA=3sinC;求△ABC的面积.解:Ⅰ∵=2cosx;1;=cosx;2sinxcosx﹣1;∴fx==2cos2x+2sinxcosx﹣1=sin2x+cos2x=2sin2x+;∵2x+∈﹣+2kπ;+2kπk∈Z;∴x∈﹣+kπ;+kπk∈Z;∴函数fx的单调递增区间为﹣+kπ;+kπk∈Z;Ⅱ∵fB=2sin2B+=1;∴sin2B+=;即2B+=;即B=;∵sinA=3sinC;∴a=3c;∵b=;b2=a2+c2﹣2accosB;∴a=3;c=1;∵S=acsinB;∴△ABC的面积为.30.2015 和平区二模在△ABC中;角A;B;C为三个内角;已知cosA=;cosB=;BC=5.Ⅰ求AC的长;Ⅱ设D为AB的中点;求CD的长.解:Ⅰ∵在△ABC中;;;∴;.…2分由正弦定理得;…4分即.…6分Ⅱ在△ABC中;AC=7;BC=5;;由余弦定理得AC2=AB2+BC2﹣2AB BC cosB;…8分即;整理得AB2﹣2AB﹣24=0;解得AB=6.…10分∵在△BCD中;;BC=5;;∴由余弦定理得CD2=BD2+BC2﹣2BD BC cosB;…11分即.∴.…13分。
三角函数训练题(1)一、选择题(本大题共10小题,每小题3分,共30分)1.命题p :α是第二象限角,命题q:α是钝角,则p 是q 的( ) A.充分非必要条件 B.必要非充分条件 C.充要条件D.既非充分又非必要条件2.若角α满足sin αcos α<0,cos α-sin α<0,则α在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.集合M ={x |x =42ππ±k ,k ∈Z }与N ={x |x =4πk ,k ∈Z }之间的关系是( )A.M NB.N MC.M =ND.M ∩N=∅4.已知下列各角(1)787°,(2)-957°,(3)-289°,(4)1711°,其中在第一象限的角是( )A.(1)、(2)B.(2)、(3)C.(1)、(3)D.(2)、(4)5.设a <0,角α的终边经过点P (-3a ,4a ),那么sin α+2cos α的值等于( )A.52B.-52C.51D.-51 6.若cos(π+α)=-23,21π<α<2π,则sin(2π-α)等于( )A.-23B.23C.21D.±237.已知sin α>sin β,那么下列命题成立的是( )A.若α、β是第一象限角,则cos α>cos βB.若α、β是第二象限角,则tan α>tan βC.若α、β是第三象限角,则cos α>cos βD.若α、β是第四象限角,则tan α>tan β8.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是( )A.2B.1sin 2C.2sin1D.sin29.如果sin x +cos x =51,且0<x <π,那么cot x 的值是( )A.-34 B.-34或-43 C.-43 D.34或-43 10.已知①1+cos α-sin β+sin αsin β=0,②1-cos α-cos β+sin αcos β=0.则sin α的值为( )A.3101- B.351- C.212- D.221-二、填空题(本大题共4小题,每小题4分,共16分)11.tan300°+cot765°的值是_______.12.已知tan α=3,则sin 2α-3sin αcos α+4cos 2α的值是______.13.若扇形的中心角为3π,则扇形的内切圆的面积与扇形面积之比为______.14.若θ满足cos θ>-21,则角θ的取值集合是______.三、解答题(本题共5小题,共54分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分8分)设一扇形的周长为C (C >0),当扇形中心角为多大时,它有最大面积?最大面积是多少?16.(本小题满分10分)设90°<α<180°,角α的终边上一点为P (x ,5),且cos α=42x , 求sin α与tan α的值.17.(本小题满分12分)已知sin α是方程5x 2-7x -6=0的根,求)(cos )2cos()2cos()2(tan )23sin()23sin(22απαπαπαπαππα-⋅+⋅--⋅-⋅--的值.18.(本小题满分12分)已知sin α+cos α=-553,且|sin α|>|cos α|,求cos 3α-sin 3α的值.19.(本小题满分12分) 已知sin(5π-α)=2 cos(27π+β)和3cos(-α)=- 2cos(π+β),且0<α<π,0<β<π,求α和β的值.三角函数训练题(2)参考答案:1.解析:“钝角”用集合表示为{α|90°<α<180°},令集合为A ;“第二象限角”用集合表示为{α|k ²360°+90°<α<k ²360°+180°,k ∈Z },令集合为B .显然A B .答案:B2.解析:由sin αcos α<0知sin α与cos α异号;当cos α-sin α<0,知sin α>cos α.故sin α>0,cos α<0.∴α在第二象限.答案:B 3.解法一:通过对k 的取值,找出M 与N 中角x 的所有的终边进行判断.解法二:∵M ={x |x =4π²(2k ±1),k ∈Z },而2k ±1为奇数,∴M N .答案:A4.解析:787°=2³360°+67°,-957°=-3³360°+123°. -289°=-1³360°+71°,1711°=4³360°+271°. ∴在第一象限的角是(1)、(3). 答案:C5.解析:∵r=a a a 5)4()3(22-=+-.α为第四象限. ∴53cos ,54sin ==-==r x r y αα.故sin α+2cos α=52. 答案:A6.解析:∵cos(π+α)=- 21,∴cos α=21,又∵23π<α<2π. ∴sin α=-23cos 12-=-α.故sin(2π-α)=-sin α=23. 答案:B 7.答案:D8.解析:∵圆的半径r =1sin 2,α=2 ∴弧度l=r ²α=1sin 2. 答案:B9.分析:若把sin x 、cos x 看成两个未知数,仅有sin x +cos x =51是不够的,还要利用sin 2x +cos 2x =1这一恒等式.解析:∵0<x <π,且2sin x cos x =(sin x +cos x )2-1=-2524. ∴cos x <0.故sin x -cos x =57cos sin 4)cos (sin 2=-+x x x x ,结合sin x +cos x =51,可得sin x =54,cos x =-53,故co t x =-43.答案:C10.分析:已知条件复杂,但所求很简单,由方程思想,只要由①、②中消去β即可.解析:由已知可得:sin β=ααsin 1cos 1-+,cos β=ααsin 1cos 1--.以上两式平方相加得:2(1+cos 2α)=1-2sin α+sin 2α.即:3sin 2α-2sin α-3=0.故sin α=3101-或sin α=3101+ (舍). 答案:A11.解析:原式=tan(360°-60°)+cot (2³360°+45°)=-tan60°+cot45°=1-3.答案:1-312.分析:将条件式化为含sin α和cos α的式子,或者将待求式化为仅含tan α的式子.解法一:由tan α=3得sin α=3cos α,∴1-cos 2α=9cos 2α.∴cos 2α=101.故原式=(1-cos 2α)-9cos 2α+4cos 2α=1-6cos 2α=52.解法二:∵sin 2α+cos 2α=1.∴原式=52194991tan 4tan 3tan cos sin cos 4cos sin 3sin 222222=++-=++-=++-ααααααααα 答案:5213.分析:扇形的内切圆是指与扇形的两条半径及弧均相切的圆.解析:设扇形的圆半径为R ,其内切圆的半径为r ,则由扇形中心角为3π知:2r +r =R ,即R =3r .∴S 扇=21αR 2=6πR 2,S 圆=9πR 2.故S 扇∶S 圆=23. 答案:23 14.分析:对于简单的三角不等式,用三角函数线写出它们的解集,是一种直观有效的方法.其过程是:一定终边,二定区域;三写表达式.解析:先作出余弦线OM =-21,过M 作垂直于x 轴的直线交单位圆于P 1、P 2两点,则OP 1、OP 2是cos θ=21时θ的终边.要cos θ>-21,M 点该沿x 轴向哪个方向移动?这是确定区域的关键.当M 点向右移动最后到达单位圆与x 轴正向的交点时,OP 1、OP 2也随之运动,它们扫过的区域就是角θ终边所在区域.从而可写出角θ的集合是{θ|2k π-32π<θ<2k π+32π,k ∈Z }.答案:{θ|2k π-32π<θ<2k π+32π,k ∈Z }15.解:设扇形的中心角为α,半径为r ,面积为S ,弧长为l,则:l+2r =C ,即l=C -2r .∴16)4()2(212122C C r r r C lr S +--=⋅-==.故当r =4C时,S max =162C ,此时:α=.2422=-=-=CCC rrC r l∴当α=2时,S max =162C .16.解:由三角函数的定义得:cos α=52+x x ,又cos α=42x , ∴34252±=⇒=+x x x x . 由已知可得:x <0,∴x =-3. 故cos α=-46,sin α=410,ta n α=-315. 17.解:∵sin α是方程5x 2-7x -6=0的根. ∴sin α=-53或sin α=2(舍).故sin 2α=259,cos 2α=⇒2516tan 2α=169. ∴原式=169tan cot )sin (sin tan )cos (cos 222==⋅-⋅⋅-⋅ααααααα.18.分析:对于sin α+cos α,sin α-cos α及sin αcos α三个式子,只要已知其中一个就可以求出另外两个,因此本题可先求出sin αcos α,进而求出sin α-cos α,最后得到所求值.解:∵sin α+cos α=-553, ∴两边平方得:1+2sin αcos α=⇒59sin αcos α=52. 故(cos α-sin α)2=1-2sin αcos α=51.由sin α+cos α<0及sin αcos α>0知sin α<0,cos α<0. 又∵|sin α|>|cos α|,∴-sin α>-cos α cos α-sin α>0.∴cos α-sin α=55. 因此,cos 3α-sin 3α=(cos α-sin α)(1+sin αcos α)=55³(1+52)=2557. 评注:本题也可将已知式与sin 2α+cos 2α=1联解,分别求出sin α与cos α的值,然后再代入计算.19.分析:运用诱导公式、同角三角函数的关系及消元法.在三角关系式中,一般都是利用平方关系进行消元.解:由已知得sin α=2sin β ①3cos α=2cos β ② 由①2+②2得sin 2α+3cos 2α=2. 即:sin 2α+3(1-sin 2α)=2. ∴sin 2α=⇒21sin α=±22,由于0<α<π,所以sin α=22. 故α=4π或43π. 当α=4π时,cos β=23,又0<β<π,∴β=6π, 当α=43π时,cos β=-23,又0<β<π,∴β=65π.综上可得:α=4π,β=6π或α=43π,β=65π.三角函数训练题(2)一、选择题(本大题共10小题,每小题3分,共30分) 1.cos24°cos36°-cos66°cos54°的值等于( ) A.0 B.21 C.23 D.-21 2.在△ABC 中,如果sin A =2sin C cos B .那么这个三角形是( )A.锐角三角形B.直角三角形C.等腰三角形D.等边三角形 3.︒-︒80sin 310sin 1的值是( ) A.1 B.2 C.4 D.41 4.tan20°+4sin20°的值是( )A.1B.2C.3D.336+ 5.tan θ和tan(4π-θ)是方程x 2+px +q =0的两根,则p 、q 之间的关系是( )A.p +q +1=0B.p -q -1=0C.p +q -1=0D.p -q +1=06.设sin x +sin y =22,则cos x +cos y 的取值范围是( ) A.[0,214] B.(- 214,0] C.[-214,214] D.[-21,27]7.M =sin α²tan 2α+cos α,N =tan 8(tan 8ππ+2),则M 与N 的关系是( )A.M >NB.M =NC.M <ND.大小与α有关8.已知sin α+sin β=3 (cos β-cos α),α,β∈(0,2π),那么sin3α+sin3β的值是( )A.1B.23C.21D.09.已知tan α、tan β是方程x 2+33x +4=0的两个根,且α、β∈(-2,2ππ),则α+β的值是( )A.3π B.-32πC. 3π或-32πD.- 3π或32π10.(1+tan21°)(1+tan22°)(1+tan23°)(1+tan24°)的值是( ) A.16 B.8 C.4 D.2二、填空题(本大题共4小题,每小题4分,共16分)11.已知tan x =34(π<x <2π).则cos(2x -3π)cos(3π-x )-sin(2x -3π)sin(3π-x )=______.12.sin(θ+75°)+cos(θ+45°)-3cos(θ+15°)的值等于______.13.log 4cos5π+log 4cos 52π的值等于______.14.已知tan(α+β)=52,tan(β-41)4=π,则sin(α+4π)²sin(4π-α)的值为___.三、解答题(本大题共5小题,共54分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分8分)求值:212cos 412csc )312tan 3(2-︒︒-︒.16.(本小题满分10分) 已知cot β=βαsin sin ,5=sin(α+β),求cot(α+β)的值.17.(本小题满分12分)已知tan2θ=-22,x <2θ<2π,求)4sin(21sin 2cos 22πθθθ+--的值.18.(本小题满分12分)是否存在锐角α和β,使得(1)α+β=32π;(2)tan 2αtan β=2-3同时成立?若存在,则求出α和β的值;若不存在,说明理由.19.(本小题满分12分)已知△ABC 的三内角A 、B 、C 成等差数列,且BC A cos 2cos 1cos 1-=+,求cos 2CA -的值.三角函数训练题(2)参考答案:1.解析:原式=cos24°cos36°-sin24°sin36°=cos(24°+36°)=cos60°=21.答案:B2.解析:∵A +B +C =π,∴A =π-(B +C ).由已知可得:sin(B +C )=2sin C cos B ⇒sin B cos C +cos B sin C =2sin C cos B ⇒sin B cos C -cos B sin C =0⇒sin(B -C )=0. ∴B =C ,故△ABC 为等腰三角形. 答案:C3.解析:原式=︒︒-︒=︒-︒20sin 2110sin 310cos 10cos 310sin 1420sin 70cos 420sin )1060cos(420sin )10sin 2310cos 21(4=︒︒=︒︒+︒=︒︒-︒=.答案:C4.分析:运用三角变形的通法:化弦法、异角化同角.解析:原式=︒︒︒+︒=︒+︒︒20cos 20cos 20sin 420sin 20sin 420cos 20sin.320cos )20sin 20cos 3(20sin 20cos )2060sin(220sin 20cos 40sin 220sin =︒︒-︒+︒=︒︒-︒+︒=︒︒+︒=答案:C5.解析:由根与系数关系得tan θ+tan(4π-θ)=-p ,tan θ²tan(4π-θ)=q .又4π=θ+(4π-θ) ∴tan4π=tan [θ+( tan-θ)]=qp--1 故p -q +1=0. 答案:D6.解析:设cos x +cos y =t ,又sin x +sin y =22. 两式平方相加得2+2cos(x -y )=t 2+21 即cos(x -y )=4322-t ,由于|cos(x -y )|≤1.故-1≤4322-t ≤1⇒t 2≤21427-⇒≤t ≤214.答案:C7.解析:12s i n212s in 2)2si n 21(2co s 2s i n 22cos2s i n 222=-+=-+⋅=αααααααM .14cos14sin 24cos 124cos 14sin 24cos18cos 4sin8sin )28cos 8sin(8cos8sin22=++-=++-=+=+=πππππππππππππN∴M =N . 答案:B8.分析:先从已知式中求出α与β的关系,然后代入求值. 解析:由已知得:sin α+3cos α=3cos β-sin β.即cos(α-6π)=cos(β+6π) 又α-6π∈(-6π,3π),β+6π∈(6π,32π)故α-6π=β+6π⇒α=β+3π,∴sin3α+sin3β=sin(3β+π)+sin3β=0. 答案:D 9.解析:由韦达定理得:tan α+tan β=-33,tan αtan β=4 ∴tan(α+β)=3tan tan 1tan tan =-+βαβα.又∵α、β∈(-2,2ππ),且tan α+tan β<0,tan αtan β>0. ∴tan α<0,tan β<0.故α、β∈(-2π,0)从而α+β∈(-π,0),∴α+β=-32π.答案:B 10.分析:本题中所涉及的角均为非特殊角,但两角之和为45°特殊角,为此,将因式重组来求.解析:∵tan45°=tan(21°+24°)=︒︒-︒+︒24tan 21tan 124tan 21tan∴1-tan21°tan24°=tan21°+tan24° 即1+tan21°+tan24°+tan21°tan24°=2 即(1+tan21°)(1+tan24°)=2.(同理,由tan45°+tan(22°+23°)可得 (1+tan22°)(1+tan23°)=2.故(1+tan21°)(1+tan22°)(1+tan23°)(1+tan24°)=4. 答案:C11.解析:原式=cos [(2x -3π)+(3π-x )]=cos x .∵tan x =34>0且π<x <2π,∴π<x <23π.故cos x <0,从而得cos x =-52.答案:-5312.分析:观察所给角易得θ+75°=(θ+15°)+60°,θ+45°=(θ+15°)+30°.考查两角和的正弦余弦公式及换元法的运用.解析:令θ+15°=α,则原式=sin(α+60°)+cos(α+30°)-3cos α=21sin α+23cos α+23cos α-21sin α-3cos α=0.答案:013.解析:∵5sin252cos 5cos 5sin252cos 5cos ππππππ=415sin454sin 5sin 252cos 52sin ===πππππ ∴原式=log 4141log )52cos 5(cos 4-==ππ答案:-114.解析:∵tan(α+4π)=tan [(α+β)-(β-4π)=223,∴原式=sin(α+4π)cos(α+4π)=)4(sin )4(cos )4cos()4sin(22παπαπαπα+++++49366)4(tan 1)4tan(2=+++=παπα. 答案:4936615.分析:本题中函数种类较多,在变换过程中,常用“切割化弦”的基本方法,考查公式的灵活运用.解:原式=)112cos 2(24sin 12cos 312sin 3)112cos 2(212sin 1)312cos 12sin 3(22-︒⋅︒︒-︒=-︒︒⋅-︒︒ ︒⋅︒︒-︒=24cos 24sin )12cos 2312sin 21(323448sin 21)6012sin(32-=︒︒-︒=16.分析:条件式中出现α、β及α+β角,要得到所求三角式的α+β角,显然就需对角α进行变换.即α=(α+β)-β.解:∵βαsin sin =sin(α+β). ∴sin [(α+β)-β]=sin β²sin(α+β).即sin(α+β)cos β-cos(α+β)sin β=sin βsin(α+β). ∴sin(α+β)cos β=sin β[sin(α+β)+cos(α+β)] ∴)sin()cos()sin(sin cos βαβαβαββ++++=即cot β=1+cot(α+β) ∴cot(α+β)=cot β-1=5-1.评注:三角变换的基本原则是化异为同,可以从角及函数名称、式子结构等方面分析思考,逐步实行由异向同的转化.17.分析:求三角函数的值,一般先要进行化简,至于化成哪一种函数,可由已知条件来确定.本题中由已知可求得tan θ的值,所以应将所求的式子化成正切函数式.解:原式=)4sin(2)4sin(2)4sin(2sin cos θπθππθθθ+-=+- ∵2)4()4(πθπθπ=++-∴原式=θθθπθπθπtan 1tan 1)4tan()4cos()4sin(+-=-=--.由已知tan2θ=-22得22tan 1tan 22-=-θθ解得tan θ=-22或tan θ=2. ∴π<2θ<2π,∴2π<θ<π,故tan θ=-22.故原式=223221221+=-+. 评注:以上所给解法,似乎有点复杂,但对于提高学生的三角变换能力大有好处.本题也可将所求式化成θθθθsin cos sin cos +-,注意到此时分子、分母均是关于si n θ、cos θ的齐次式.通过同时除以cos θ,即可化成θθtan 1tan 1+-.18.分析:这是一道探索性问题的题目,要求根据(1)、(2)联解,若能求出锐角α和β,则说明存在,否则,不存在.由于条件(2)涉及到2α与β的正切,所以需将条件(1)变成2α+β=3π,然后取正切,再与(2)联立求解.解:由(1)得:2α+β=3π,∴3tan 2tan 1tan 2tan)2tan(=-+=+βαβαβα将(2)代入上式得tan 2α+tan β=3-3. 因此,tan2α与tan β是一元二次方程x 2-(3-3)x +2-3=0的两根,解之得x 1=1,x 2=2-3.若tan2α=1,由于0<2α<4π.所以这样的α不存在; 故只能是tan 2α=2-3,tan β=1.由于α、β均为锐角,所以α=6π,β=4π故存在锐角α=6π,β=4π使(1)、(2)同时成立.19.解法一:依题意得B =3π,设A =3π+α,C =3π-α,则2CA -=α.同时有:3cos2)3cos(1)3cos(1παπαπ-=-++即22sin 3cos 2sin 3cos 2-=++-αααα023cos 2cos 242sin 3cos cos 2222=-+⇒-=-⇒ααααα ∴cos α=22或cos α=-423 (舍去)即cos222=-C A . 解法二:依题意得C C A C C A C A B -=--=-=+=32,232,32,3ππππ,不妨设cos(C -3π)=x .由已知得CC C C CC CA cos )32cos(cos )32cos(cos 1)32cos(1cos 1cos 1-+-=+-=+πππ∵cos(π32-C )+cos C=cos 32πcos C +sin 32πsin C +cos C=21cos C +23sin C =cos(3π-C ). cos(32π-C )cos C =cos 32πcos 2C+sin 32πsin C cos C)3(cos 43]1)3(cos 2[2141)232cos(21412sin 43)2cos 1(4122C C C C C -+-=--+-=-+-=++-=πππ∴22432-=+-x x 即0232242=-+x x∴x =22或x =-423 (舍去).故222cos=-C A . 解法三:依题意得B =3π,由已知得22cos 1cos 1-=+C A即cos A +cos C =-22cos A cos C利用积化和差及和差化积公式,并注意到A +C =32π,可得2cos22cos 2-=-+CA C A [cos(A +C )+cos(A -C )] 即22cos 22222cos2+--=-CA C A . 即0232cos 22cos 242=--+-CA C A ∴222cos=-C A 或4232cos -=-C A (舍去). 故222cos=-C A . 评注:解法三运用了和差化积及积化和差公式,这组公式虽不要求记忆,但在给出公式的情况下会运用.(3)1.在半经为2米的圆中,120°的圆心角所对的弧长为_____(34π)米。
三角函数的图像与性质专项训练一、单选题1.(23-24高一上·浙江宁波·期末)为了得到πsin 53y x ⎛⎫=+ ⎪⎝⎭的图象,只要将函数sin 5y x =的图象()A .向左平移π15个单位长度B .向右平移π15个单位长度C .向右平移π3个单位长度D .向左平移π3个单位长度2.(23-24高一上·浙江丽水·期末)已知函数()()2sin f x x ωϕ=+的图象向左平移π6个单位长度后得到函数π2sin 23y x ⎛⎫=+ ⎪⎝⎭的图象,则ϕ的一个可能值是()A .0B .π12C .π6D .π33.(23-24高一下·浙江杭州·期末)为了得到函数()sin2f x x =的图象,可以把()cos2g x x =的图象()A .向左平移π2个单位长度B .向右平移π2个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度4.(23-24高一上·浙江宁波·期末)已知函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭.若π8f x ⎛⎫- ⎪⎝⎭为奇函数,π8f x ⎛⎫+ ⎪⎝⎭为偶函数,且()f x 在π0,6⎛⎫⎪⎝⎭上没有最小值,则ω的最大值是()A .2B .6C .10D .145.(23-24高一上·浙江湖州·期末)我们知道,每一个音都是由纯音合成的,纯音的数学模型是sin y A x ω=.已知某音是由3个不同的纯音合成,其函数为()11sin sin 2sin 323f x x x x =++,则()A .π3f ⎛⎫=⎪⎝⎭B .()f x 的最大值为116C .()f x 的最小正周期为2π3D .()f x 在π0,6⎛⎫⎪上是增函数6.(23-24高一上·浙江杭州·期末)已知函数()*2sin 6f x x ωω⎛⎫=+∈ ⎪⎝⎭N 有一条对称轴为23x =,当ω取最小值时,关于x 的方程()f x a =在区间,63ππ⎡⎤-⎢⎥⎣⎦上恰有两个不相等的实根,则实数a 的取值范围是()A .(2,1)--B .[1,1)-6⎣7.(23-24高一下·浙江丽水·期末)已知函数1()2sin(32f x x x π=ω-ω>∈,R),若()f x 的图象的任意一条对称轴与x 轴交点的横坐标均不属于区间(3π,4π),则ω的取值范围是()A .1287(,[]2396B .1171729(,][,]2241824C .52811[,][,]93912D .11171723[,][]182418248.(23-24高一下·浙江杭州·期末)已知函数()()sin ,0f x x ωω=>,将()f x 图象上所有点向左平移π6个单位长度得到函数()y g x =的图象,若函数()g x 在区间π0,6⎡⎤⎢⎥⎣⎦上单调递增,则ω的取值范围为()A .(]0,4B .(]0,2C .30,2⎛⎤⎥⎝⎦D .(]0,1【答案】C【详解】因为函数()()sin ,0f x x ωω=>,二、多选题9.(23-24高一上·浙江台州·期末)已知函数()ππsin cos sin cos 44f x x x x x ⎛⎫⎛⎫=+++ ⎪ ⎝⎭⎝⎭,则()A .函数()f x 的最小正周期为2πB .点π,08⎛⎫- ⎪⎝⎭是函数()f x 图象的一个对称中心C .函数()f x 在区间π5π,88⎡⎤⎢⎥上单调递减D .函数()f x 的最大值为110.(23-24高一上·浙江湖州·期末)筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用,现有一个筒车按逆时针方向匀速转动.每分钟转动5圈,如图,将该筒车抽象为圆O ,筒车上的盛水桶抽象为圆O 上的点P ,已知圆O 的半径为4m ,圆心O 距离水面2m ,且当圆O 上点P 从水中浮现时(图中点0P )开始计算时间,点P 的高度()h t 随时间t (单位秒)变化时满足函数模型()()sin h t A t b ωϕ=++,则下列说法正确的是()A .函数()h t 的初相为π6B .1秒时,函数()h t 的相位为0故选:BC .11.(23-24高一上·浙江丽水·期末)已知函数π()tan(2)6f x x =-,则()A .()f x 的最小正周期是π2B .()f x 的定义域是π{|π,Z}3x x k k ≠+∈C .()f x 的图象关于点π(,0)12对称D .()f x 在ππ(,)32上单调递增三、填空题12.(23-24高一上·浙江金华·期末)函数()π2π200cos 30063f n n ⎛⎫=++ ⎪⎝⎭({}1,2,3,,12n ∈⋅⋅⋅为月份),近似表示某地每年各个月份从事旅游服务工作的人数,游客流量越大所需服务工作的人数越多,则可以推断,当n =时,游客流量最大.13.(23-24高一上·浙江湖州·期末)已知()3sin 4f x x ϕ⎛⎫=+ ⎪⎝⎭,其中0,2ϕ⎛⎫∈ ⎪⎝⎭,且ππ62f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,若函数()f x 在区间2π,3θ⎛⎫⎪上有且只有三个零点,则θ的范围为.14.(23-24高一上·浙江温州·期末)已知函数()π2sin (0)6f x x ωω⎛⎫=+> ⎪⎝⎭,对x ∀∈R 都有()π3f x f ⎛⎫⎪⎝⎭≤,且在,163⎛⎫ ⎪⎝⎭上单调,则ω的取值集合为四、解答题15.(23-24高一下·浙江丽水·期末)已知函数22()sin2f x x x x =.(1)求函数()f x 的最小正周期及单调递减区间;(2)将函数()f x 的图象上每个点的纵坐标缩短到原来的12,横坐标也缩短到原来的12,得到函数()g x 的图象,若函数()y g x m =-在区间π0,4⎡⎤⎢⎥内有两个零点,求实数m 的取值范围.16.(23-24高一下·浙江衢州·期末)已知函数()cos2f x x x =+.(1)求函数()f x 的最小正周期和对称中心;(2)求函数()f x 在π0,2⎡⎤⎢⎥上的值域.17.(23-24高一上·浙江杭州·期末)已知函数22()sin 2sin cos 3cos ,R f x x x x x x =++∈.求:(1)函数()f x 的最小值及取得最小值的自变量x 的集合;(2)函数()f x 的单调增区间.18.(23-24高一下·浙江杭州·期末)已知实数0a <,设函数22()cos sin2f x x a x a =+-,且()64f =-.(1)求实数a ,并写出()f x 的单调递减区间;(2)若0x 为函数()f x 的一个零点,求0cos2x .19.(23-24高一上·浙江嘉兴·期末)已知函数()24cos 2f x x x a x =--.(1)若1a =-,求函数()f x 在[]0,2上的值域;(2)若关于x 的方程()4f x a =-恰有三个不等实根123,,x x x ,且123x x x <<,求()()131278f x f x x --的最大值,并求出此时实数a 的值.,。
高中数学三角函数训练卷一、选择题1、已知角α的终边经过点(3, -4),则sinα的值为()A 3/5B -3/5C 4/5D -4/5解析:因为角α的终边经过点(3, -4),所以 r =√(3²+(-4)²) = 5,sinα = y/r =-4/5,故选 D。
2、若sinθ = 1/3,且θ是第二象限角,则cosθ的值为()A -2√2/3B 2√2/3C √10/3D √10/3解析:因为θ是第二象限角,所以cosθ < 0。
又因为sin²θ +cos²θ = 1,所以cosθ =√(1 sin²θ) =√(1 (1/3)²) =-2√2/3,故选 A。
3、下列函数中,周期为π的奇函数是()A y = sin2xB y = cos2xC y = sin(x +π/2)D y = cos(x +π/2)解析:A 选项,y = sin2x,周期 T =2π/2 =π,且 sin(-2x) =sin2x,为奇函数,A 正确;B 选项,y = cos2x 是偶函数,B 错误;C 选项,y = sin(x +π/2) = cosx 是偶函数,C 错误;D 选项,y = cos(x +π/2) = sinx 是奇函数,但周期 T =2π,D 错误。
故选 A。
4、已知tanα = 2,则sin2α的值为()A 4/5B 3/5C 2/5D 1/5解析:sin2α =2sinαcosα =2sinαcosα/(sin²α +cos²α) =2tanα/(tan²α + 1) = 2×2/(2²+ 1) = 4/5,故选 A。
5、函数 y = sin(2x +π/6)的图象可以由函数 y = sin2x 的图象()A 向左平移π/6 个单位长度得到B 向右平移π/6 个单位长度得到C 向左平移π/12 个单位长度得到D 向右平移π/12 个单位长度得到解析:对于函数 y = sin(2x +π/6) = sin2(x +π/12),所以函数 y= sin(2x +π/6)的图象可以由函数 y = sin2x 的图象向左平移π/12 个单位长度得到,故选 C。
高中数学三角函数专项训练(含答案)一、填空题1.如图,在棱长均为23的正四面体ABCD 中,M 为AC 中点,E 为AB 中点,P 是DM 上的动点,Q 是平面ECD 上的动点,则AP PQ +的最小值是______.2.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .角B 为钝角.设△ABC 的面积为S ,若()2224bS a b c a =+-,则sin A +sin C 的最大值是____________.3.法国著名的军事家拿破仑.波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这三个三角形的外接圆圆心恰为另一个等边三角形的顶点”.在三角形ABC 中,角60A =,以,,AB BC AC 为边向外作三个等边三角形,其外接圆圆心依次为123,,O O O ,若三角形123O O O 的面积为3,则三角形ABC 的周长最小值为___________4.如图,某城市准备在由ABC 和以C 为直角顶点的等腰直角三角形ACD 区域内修建公园,其中BD 是一条观赏道路,已知1AB =,3BC =,则观赏道路BD 长度的最大值为______.5.三棱锥P ABC -中,PA ⊥平面ABC ,直线PB 与平面ABC 所成角的大小为30,23AB =60ACB ∠=︒,则三棱锥P ABC -的外接球的表面积为________.6.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示.将函数()y f x =的图象向右平移4π个单位,得到()y g x =的图象,则下列有关()f x 与()g x 的描述正确的有___________(填序号).①()2sin 23g x x π⎛⎫=- ⎪⎝⎭;②方程()()360,2f x g x x π⎛⎫⎛⎫+=∈ ⎪ ⎪⎝⎭⎝⎭所有根的和为712π; ③函数()y f x =与函数()y g x =图象关于724x π=对称. 7.在三棱锥P ABC -中,4AB BC ==,8PC =,异面直线PA ,BC 所成角为π3,AB PA ⊥,AB BC ⊥,则该三棱锥外接球的表面积为______.8.已知函数()cos()(0,0,0)f x A x A ωϕωϕπ=->><<的部分图像如图所示,设函数()266g x f x f x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则()g x 的值域为___________.9.已知向量a 与b 的夹角为θ,27sin θ=||4a b -=,向量,c a c b --的夹角为2π,||23c a -=,则a c ⋅的最大值是___________.10.函数ππ5sin (1510)55y x x ⎛⎫=+-≤≤ ⎪⎝⎭的图象与函数25(1)22x y x x +=++图象的所有交点的横坐标之和为___________.二、单选题11.已知ABC 中,角,,A B C 的对边分别为,,a b c .若2222224cos 4sin 33a B b A b c +=-,则cos A 的最小值为( )A 2B 7C 7D .3412.已知函数()21ln e 1xf x x -⎛⎫=+ ⎪+⎝⎭,a ,b ,c 分别为ABC 的内角A ,B ,C 所对的边,且222446,a b c ab +-=则下列不等式一定成立的是( ) A .()()sin cos f A f B ≤ B .f (cos A )≤f (cos B ) C .f (sin A )≥f (sin B )D .f (sin A )≥f (cos B )13.已知函数()|sin |(0)f x x ωω=>在区间,53ππ⎡⎤⎢⎥⎣⎦上单调递减,则实数ω的取值范围为( ) A .5,32⎡⎤⎢⎥⎣⎦B .30,2⎛⎤ ⎥⎝⎦C .8,33⎡⎤⎢⎥⎣⎦D .50,4⎛⎤ ⎥⎝⎦14.已知(){}|sin ,A y y n n Z ωϕ==+∈,若存在ϕ使得集合A 中恰有3个元素,则ω的取值不可能是( ) A .27π B .25π C .2π D .23π15.已知函数2()log f x x =,函数()g x 满足以下三点条件:①定义域为R ;②对任意x ∈R ,有()2()g x g x π+=;③当[0,]x π∈时,()sin g x x =.则函数()()y f x g x =-在区间[0,4]π上的零点个数为( )A .5B .6C .7D .816.已知函数()2sin()0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭,且有()0f ()()1g x f x =-的图象在()0,2π内有5个不同的零点,则ω的取值范围为( )A .5571,2424⎛⎤⎥⎝⎦B .5571,2424⎛⎫ ⎪⎝⎭C .4755,2424⎛⎫ ⎪⎝⎭D .4755,2424⎛⎤ ⎥⎝⎦17.已知函数()()sin f x x ωφ=+π0,02ωφ⎛⎫><< ⎪⎝⎭在π5π,88⎛⎫ ⎪⎝⎭上单调,且π3π088f f ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,则π2f ⎛⎫⎪⎝⎭的值为( )A B .1 C .1- D .18.设锐角ABC 的内角,,A B C 所对的边分别为,,a b c ,若,3A a π=2b 2c bc ++的取值范围为( ) A .(1,9] B .(3,9] C .(5,9]D .(7,9]19.函数()sin()(0)6f x x πωω=+>在区间52[,]63ππ-上单调递增,且存在唯一05[0,]6x π∈,使得0()1f x =,则ω的取值范围为( ) A .11[,]52B .21[,]52C .14[,]55D .24[,]5520.函数()2sin(2)()2f x x πφφ=+<的图像向左平移6π个单位长度后对应的函数是奇函数,函数()()23cos 2g x x =+.若关于x 的方程()()2f x g x +=-在[)0,π内有两个不同的解αβ,,则()cos αβ-的值为( )A .55-B .55C .255-D .255三、解答题21.函数()sin y x ωϕ=+与()cos y x ωϕ=+(其中0>ω,2πϕ<)在520,2x ⎡⎤∈⎢⎥⎣⎦的图象恰有三个不同的交点,,P M N ,PMN ∆为直角三角形,求ϕ的取值范围.22.将函数2sin 3y x =+的图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,再将所得的图象向右平移3π个单位长度后得到函数()f x 的图象. (1)写出函数()f x 的解析式;(2)若,36x ππ⎡⎤∈-⎢⎥⎣⎦时,22()2()()1g x f x mf x m =-+-,求()g x 的最小值min ()g x .23.已知函数 f (x )=a (|sin x |+|cos x |)﹣sin2x ﹣1,a ∈R . (1)写出函数 f (x )的最小正周期(不必写出过程); (2)求函数 f (x )的最大值;(3)当a =1时,若函数 f (x )在区间(0,k π)(k ∈N*)上恰有2015个零点,求k 的值.24.如图所示,在平面四边形ABCD 中,1,2,AB BC ACD ==∆为正三角形.(1)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若sin(2)3sin A C C +=,求角B 的大小; (2)求BCD ∆面积的最大值.25.已知ABC ∆的三个内角、、A B C 的对边分别为a b c 、、,且22b c ac =+, (1)求证:2B C =;(2)若ABC ∆是锐角三角形,求ac的取值范围.26.如图,某景区内有一半圆形花圃,其直径AB 为6,O 是圆心,且OC ⊥AB .在OC 上有一座观赏亭Q ,其中∠AQC =23π,.计划在BC 上再建一座观赏亭P ,记∠POB =θ(0)2πθ<<.(1)当θ=3π时,求∠OPQ 的大小; (2)当∠OPQ 越大时,游客在观赏亭P 处的观赏效果越佳,求游客在观赏亭P 处的观赏效果最佳时,角θ的正弦值.27.某公司欲生产一款迎春工艺品回馈消费者,工艺品的平面设计如图所示,该工艺品由直角ΔABC 和以BC 为直径的半圆拼接而成,点P 为半圈上一点(异于B ,C ),点H 在线段BC 上,且满足CH AB ⊥.已知90ACB ∠=︒,1dm AB =,设ABC θ∠=.(1)为了使工艺礼品达到最佳观赏效果,需满足ABC PCB ∠=∠,且CA CP +达到最大.当θ为何值时,工艺礼品达到最佳观赏效果;(2)为了工艺礼品达到最佳稳定性便于收藏,需满足60PBA ∠=︒,且CH CP +达到最大.当θ为何值时,CH CP +取得最大值,并求该最大值.28.对于函数()f x ,若存在定义域中的实数a ,b 满足0b a >>且()()2()02a bf a f b f +==≠,则称函数()f x 为“M 类” 函数. (1)试判断()sin f x x =,x ∈R 是否是“M 类” 函数,并说明理由;(2)若函数()2|log 1|f x x =-,()0,x n ∈,*n N ∈为“M 类” 函数,求n 的最小值. 29.已知函数 2()sin 2cos 1f x x m x =--- [0,]2x π∈()1若()f x 的最小值为 - 3,求m 的值; ()2当2m =时,若对任意 12,[0,]2x x π∈ 都有()()12124f x f x a -≤-恒成立,求实数a 的取值范围.30.已知函数()sin 24a a x x b f π⎛⎫=+++ ⎪⎝⎭,当0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 的值域是2,2⎡⎤-⎣⎦. (1)求常数a ,b 的值;(2)当0a <时,设()2g x f x π⎛⎫=+ ⎪⎝⎭,判断函数()g x 在0,2π⎡⎤⎢⎥⎣⎦上的单调性.【参考答案】一、填空题12.983.641 5.20π6.①③7.80π 8.9[,4]4-9.25 10.-7二、单选题 11.C 12.D 13.A 14.A 15.A 16.A 17.D 18.D 19.B 20.D 三、解答题21.,44ππϕ⎡⎤∈-⎢⎥⎣⎦【解析】且为等腰三角形,由此可确定周期,进而得到ω的知;采用整体对应的方式可知若为三个交点只需95,,442πππϕϕ⎡⎤⎡⎤⊂+⎢⎥⎢⎥⎣⎦⎣⎦,由此可构造不等式求得结果. 【详解】令t x ωϕ=+,结合sin y t =与cos y t =图象可知:sin y t =与cos y t =,其交点坐标分别为4π⎛ ⎝⎭,5,4π⎛ ⎝⎭,94π⎛ ⎝⎭,13,4π⎛ ⎝⎭,...,PMN ∆为等腰三角形.PMN ∆∴斜边长为2T πω==,解得,ω=;52553244T T =⋅<,∴两图象不可能四个交点; 由x ⎡∈⎢⎣⎦,有5,2t πϕϕ⎡⎤∈+⎢⎥⎣⎦,两图象有三个交点只需95,,442πππϕϕ⎡⎤⎡⎤⊂+⎢⎥⎢⎥⎣⎦⎣⎦, 由45924πϕπϕπ⎧≤⎪⎪⎨⎪+≥⎪⎩得:,44ππϕ⎡⎤∈-⎢⎥⎣⎦.【点睛】本题考查根据三角函数的交点与性质求解解析式中的参数范围的问题,关键是能够利用正余弦函数的性质类比得到正弦型和余弦型函数的交点所满足的关系,从而根据两函数交点个数确定不等关系.22.(1)2()2sin 233f x x π⎛⎫=-+⎪⎝⎭;(2)22min21,47()1,4128(32312m m m g x m m m m m ⎧-+≤⎪⎪=-<<+⎨⎪⎪-++≥+⎩ 【解析】(1)根据函数图象的变换规律即可求得()f x的解析式;(2)令()t f x =可求得则()[1,3f x ∈+,设22()21M t t mt m =-+-,[1,3t ∈,通过定区间讨论对称轴4mt =的三种情况()M t 的单调性,进而可确定最小值的情况. 【详解】(1)将函数2sin 3y x =+的图象上所有点的横坐标缩短到原来的12倍,可得2sin 23y x =+得图象,再向右平移3π个单位长度得2()2sin 232sin 2333f x x x ππ⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎝⎭⎝⎭.(2)∵,36x ππ⎡⎤∈-⎢⎥⎣⎦,242,333x πππ⎡⎤-∈--⎢⎥⎣⎦,则()[1,3f x ∈+, 令()t f x =,则设22()21M t t mt m =-+-,[1,3t ∈+, ①当14m≤,即4m ≤时,函数()M t在[1,3上单调递增, ∴22min ()(1)211M t M m m m m ==-+-=-+;②当134m<<412m <<+ 函数()M t 在1,4m ⎛⎫ ⎪⎝⎭上单调递减,在,34m ⎛ ⎝上单调递增,∴2min 7()148m M t M m ⎛⎫==- ⎪⎝⎭;③当34m≥+12m ≥+()M t在[1,3+上单调递减,∴2min ()(3(323M t M m m ==-++∴综上有22min21,47()1,4128(32312m m m g x m m m m m ⎧-+≤⎪⎪=-<<+⎨⎪⎪-++≥+⎩. 【点睛】本题考查三角函数图象的变换,考查二次函数在三角函数中的应用,考查定区间动轴的最值取值情况,难度较难.23.(1)最小正周期为π.(2)见解析(3)k =1008. 【解析】(1)由题意结合周期函数的定义直接求解即可;(2)令t ,t ∈[1,则当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()2f x t at t μ==-,当,2x π⎛⎤∈π ⎥⎝⎦时,()()22f x v t t at ==+-,易知()()t v t μ≤,分类比较()1v、v的大小即可得解;(3)转化条件得当且仅当sin2x =0时,f (x )=0,则x ∈(0,π]时,f (x )有且仅有两个零点,结合函数的周期即可得解. 【详解】(1)函数 f (x )的最小正周期为π. (2)∵f (x )=a (|sin x |+|cos x |)﹣sin2x ﹣1 =sin2x ﹣1=(sin2x +1), 令t =t ∈[1],当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()(21f x t at t t μ==-≤≤,当,2x π⎛⎤∈π ⎥⎝⎦时,()()(221f x v t t at t ==+-≤≤,∵()()()2222220t v t at t t at t μ-=--+-=-+≤即()()t v t μ≤.∴()()(){}max max max 1,f x v t v v ==,∵()11v a =-,v,∴当1a ≤-()f x 最大值为1a -;当1a >-()f x .(3)当a =1时,f (x )sin 21x -,若f (x )=0sin 21x =+即22sin 22sin 2sin x x x =+,∴当且仅当sin2x =0时,f (x )=0,∴x ∈(0,π]时,f (x )有且仅有两个零点分别为2π,π, ∴2015=2×1007+1, ∴k =1008. 【点睛】本题考查了三角函数的综合问题,考查了分类讨论思想和转化化归思想,属于难题.24.(1)23B π=;(21. 【解析】 【分析】(1)由正弦和角公式,化简三角函数表达式,结合正弦定理即可求得角B 的大小;(2)在ABC ∆中,设,ABC ACB αβ∠=∠=,由余弦定理及正弦定理用,αβ表示出CD .再根据三角形面积公式表示出∆BCD S ,即可结合正弦函数的图像与性质求得最大值. 【详解】 (1)由题意可得:sin2cos cos2sin 3sin A C A C C +=∴()22sin cos cos 12sin sin 3sin A A C A C C +-=整理得sin (cos cos sin sin )sin A A C A C C -= ∴sin cos()sin A A C C += ∴sin cos sin A B C -= ∴sin 1cos sin 2C c B A a =-=-=- 又(0,)B π∈ ∴23B π=(2)在ABC ∆中,设,ABC ACB αβ∠=∠=,由余弦定理得:22212212cos 54cos AC αα=+-⨯⨯=-, ∵ACD ∆为正三角形,∴2254cos CD C A α=-=, 在ABC ∆中,由正弦定理得:1sin sin ACβα=, ∴sin sin AC βα=, ∴sin sin CD βα=,∵()222222(cos )1sin sin 54cos sin CD CD CD ββααα=-=-=--2(2cos )α=-,∵BAC β<∠,∴β为锐角,cos 2cos CD βα=-, 12sin sin 233BCD S CD CD ππββ∆⎛⎫⎛⎫=⨯⨯⨯+=+ ⎪ ⎪⎝⎭⎝⎭1cos sin 2CD ββ=+,1cos )sin sin 23πααα⎛⎫=-+=- ⎪⎝⎭, ∵(0,)απ∈∴当56πα=时,()max 1BCD S ∆=. 【点睛】本题考查了三角函数式的化简变形,正弦定理与余弦定理在解三角形中的应用,三角形面积的表示方法,正弦函数的图像与性质的综合应用,属于中档题. 25.(1)证明见解析;(2)(1,2) 【解析】 【分析】(1)由22b c ac =+,联立2222cos b a c ac B =+-⋅,得2cos a c c B =+⋅,然后边角转化,利用和差公式化简,即可得到本题答案; (2)利用正弦定理和2B C =,得2cos 21aC c=+,再确定角C 的范围,即可得到本题答案. 【详解】解:(1)锐角ABC ∆中,22b c ac =+,故由余弦定理可得:2222cos b a c ac B =+-⋅,2222cos c ac a c ac B ∴+=+-⋅,22cos a ac ac B ∴=+⋅,即2cos a c c B =+⋅,∴利用正弦定理可得:sin sin 2sin cos A C C B =+, 即sin()sin cos sin cos sin 2sin cos B C B C C B C C B +=+=+,sin cos sin sin cos B C C C B ∴=+,可得:sin()sin B C C -=,∴可得:B C C -=,或B C C π-+=(舍去),2B C ∴=.(2)2sin sin()sin(2)2cos cos22cos21sin sin sin a A B C C C C C C c C C C++====+=+A B C π++=,,,A B C 均为锐角,由于:3C A π+=,022C π∴<<,04C π<<.再根据32C π<,可得6C π<,64C ππ∴<<,(1,2)ac∴∈ 【点睛】本题主要考查正余弦定理的综合应用,其中涉及到利用三角函数求取值范围的问题.26.(1)6π.(2)sin θ=. 【解析】(1)设∠OPQ =α,在△POQ 中,用正弦定理sin sin OQ OPOPQ OQP=∠∠可得含α,θ的关系式,将其展开化简并整理后得tanαθ=3π代入得答案;(2)令f (θ)f (θ)的最大值,即此时的sin θ,由(1)可知tan α.【详解】(1)设∠OPQ =α,在△POQ 中,用正弦定理可得含α,θ的关系式. 因为∠AQC =23π,所以∠AQO =3π.又OA =OB =3,所以OQ在△OPQ 中,OQ OP =3,∠POQ =2π-θ,设∠OPQ =α,则∠PQO =2π-α+θ.由正弦定理,得3sin 2παθ⎛⎫-+ ⎪⎝⎭=cos (α-θ).展开并整理,得tanαθ∈0,2π⎛⎫⎪⎝⎭.此时当θ=3π时,tanα因为α∈(0,π),所以α=6π. 故当θ=3π时,∠OPQ =6π.(2)设f (θ)θ∈0,2π⎛⎫ ⎪⎝⎭.则f′(θ)令f′(θ)=0,得sinθθ0满足sinθ则cosθ=,即()fθ===列表如下:2由(1)可知tanα=f(θ)>0,则0,2πα⎛⎫∈ ⎪⎝⎭,tanα单调递增则当tanαα也取得最大值.故游客在观赏亭P处的观赏效果最佳时,sinθ【点睛】本题考查三角函数和解三角形的实际应用,应优先建模,将实际问题转化为熟悉的数学问题,进而由正弦定理构建对应关系,还考查了利用导数求函数的最值,属于难题. 27.(1)π6θ=(2)当π12θ=,CH CP+【解析】(1)设ABC PCBθ∠=∠=,则在直角ΔABC中,sinACθ=,cosBCθ=,计算得到2sin sin1AC CPθθ+=-++,计算最值得到答案.(2)计算sin cosCHθθ=⋅,得到πsin23CH CPθ⎛⎫+=+⎪⎝⎭.【详解】(1)设ABC PCBθ∠=∠=,则在直角ΔABC中,sinACθ=,cosBCθ=.在直角ΔPBC中,2cos cos cos cosPC BCθθθθ=⋅=⋅=,sin sin cos sin cosPB BCθθθθθ=⋅=⋅=.22sin cos sin1sinAC CPθθθθ+=+=+-2sin sin1θθ=-++,π0,3θ⎛⎫∈ ⎪⎝⎭,所以当1sin 2θ=,即π6θ=,AC CP +的最大值为54. (2)在直角ΔABC 中,由1122ABC S CA CB AB CH ∆=⋅=⋅,可得sin cos sin cos 1CH θθθθ⋅==⋅. 在直角ΔPBC 中,πsin 3PC BC θ⎛⎫=⋅- ⎪⎝⎭ππcos sin cos cos sin 33θθθ⎛⎫=⋅- ⎪⎝⎭,所以1sin cos cos sin 2CH CP θθθθθ⎫+=+-⎪⎪⎝⎭,π0,3θ⎛⎫∈ ⎪⎝⎭,所以211sin 2sin cos 22CH CP θθθθ+=-11πsin 22sin 2423θθθ⎛⎫==+ ⎪⎝⎭ 所以当π12θ=,CH CP +【点睛】本题考查了利用三角函数求最值,意在考查学生对于三角函数知识的应用能力. 28.(1)不是.见解析(2)最小值为7. 【解析】(1)不是,假设()f x 为M 类函数,得到2b a k π=+或者2b a k ππ+=+,代入验证不成立.(2)()221log ,02log 1,2x x f x x x -<≤⎧=⎨->⎩,得到函数的单调区间,根据题意得到326480b b b ---=,得到()6,7b ∈,得到答案.【详解】 (1)不是.假设()f x 为M 类函数,则存在0b a >>,使得sin sin a b =, 则2b a k π=+,k Z ∈或者2b a k ππ+=+,k Z ∈, 由sin 2sin2a ba +=, 当2b a k π=+,k Z ∈时,有()sin 2sin a a k π=+,k Z ∈, 所以sin 2sin a a =±,可得sin 0a =,不成立;当2b a k ππ+=+,k Z ∈时,有sin 2sin()2a k ππ=+,k Z ∈,所以sin 2a =±,不成立, 所以()f x 不为M 类函数.(2)()221log ,02log 1,2x x f x x x -<≤⎧=⎨->⎩,则()f x 在()0,2单调递减,在()2,+∞单调递增,又因为()f x 是M 类函数,所以存在02a b <<<,满足2221log log 12|log 1|2a ba b +-=-=-, 由等式可得:()2log 2ab =,则4ab =,所以()22142(4)0222a a b a a a -+-=+-=>,则2log 102a b +->,所以得22log 12log 12a b b +⎛⎫-=- ⎪⎝⎭, 从而有222log 1log 2a b b +⎛⎫+= ⎪⎝⎭,则有()224a b b +=,即248b b b ⎛⎫+= ⎪⎝⎭, 所以43288160b b b -++=,则()()3226480b b b b ----=,由2b >,则326480b b b ---=,令()32648g x x x x =---,当26x <<时,()()26480g x x x x =---<,且()6320g =-<,()7130g =>,且()g x 连续不断,由零点存在性定理可得存在()6,7b ∈, 使得()0g b =,此时()0,2a ∈,因此n 的最小值为7. 【点睛】本题考查了函数的新定义问题,意在考查学生对于函数的理解能力和应用能力. 29.(1)1m =;(2)13[,)8a ∈+∞【解析】 【分析】(1)将函数化为2()cos 2cos 2f x x m x =--,设cos [0,1]t x =∈,将函数转化为二次函数,利用二次函数在给定的闭区间上的最值问题的解法求解.(2) 对任意 12,[0,]2x x π∈ 都有()()12124f x f x a -≤-恒成立, 等价于12max1()()24f x f x a -≤-,然后求出函数()f x 的最值即可解决.【详解】(1)2()cos 2cos 2f x x m x =--,[0,]2x π∈令 cos [0,1]t x =∈, 设222()22()2g t t mt t m m =--=---, ①0m <,则min g(0)2()3g t ==-≠-,②01m ≤≤,则2min )3(2t m g =--=-,∴1m =± ∴1m =③1m ,则min g(1)21()3g m t ==--=-,∴1m =.(舍) 综上所述:1m =.(2)对任意12,[0,]2x x π∈都有()()12124f x f x a -≤-恒成立,等价于12max1()()24f x f x a -≤-,2m=,∴2g()(2)6t t=--,[0,1]t∈max()g(0)2f x==-,min()g(1)5f x==-12max()(25)()3f x f x=---=-∴1234a-≥,∴138a≥,综上所述:13[,)8a∈+∞.【点睛】本题考查三角函数中的二次“型”的最值问题,和双参恒成立问题,属于中档题. 30.(1)2a=,2b=-或2a=-,4b=函数()g x在0,8π⎡⎤⎢⎥⎣⎦上单调递增.函数()g x在,82ππ⎡⎤⎢⎥⎣⎦上单调递减.【解析】【分析】(1)先求得sin242xπ⎡⎤⎛⎫+∈-⎢⎥⎪⎝⎭⎣⎦,再讨论0a>和0a<的情况,进而求解即可;(2)由(1)()2sin224f x xπ⎛⎫=-++⎪⎝⎭则()2sin224g x xπ⎛⎫=++⎪⎝⎭进而判断单调性即可【详解】解:(1)当0,2xπ⎡⎤∈⎢⎥⎣⎦时,52,444xπππ⎡⎤+∈⎢⎥⎣⎦,所以sin24xπ⎡⎤⎛⎫+∈⎢⎥⎪⎝⎭⎣⎦,①当0a>时,由题意可得12a a ba a b⎧⎛⨯++=⎪⎨⎝⎭⎪⨯++=⎩即22a ba b⎧++=⎪⎨⎪+=⎩解得2a=,2b=-;②当0a<时,由题意可得21a a ba a b⎧⎛⨯++=⎪⎨⎝⎭⎪⨯++=⎩,即22a ba b⎧++=⎪⎨⎪+=⎩,解得2a=-,4b=(2)由(1)当0a<时,2a=-,4b=所以()2sin224f x xπ⎛⎫=-++⎪⎝⎭所以()2sin 22224f x x g x πππ⎡⎤⎛⎫⎛⎫=+=-+++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦2sin 224x π⎛⎫=++ ⎪⎝⎭令222242k x k πππππ-+≤+≤+,k Z ∈,解得388k x k ππππ-+≤≤+,k Z ∈, 当0k =时,388x ππ-≤≤,则3,0,0,8828ππππ⎡⎤⎡⎤⎡⎤-⋂=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以函数()g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递增,同理,函数()g x 在,82ππ⎡⎤⎢⎥⎣⎦上单调递减【点睛】本题考查由三角函数性质求解析式,考查正弦型函数的单调区间,考查运算能力。
三角函数大题训练1.已知函数()4cos sin()16f x x x π=+-. (Ⅰ)求 ()f x 的最小正周期;(Ⅱ)求()f x 在区间[,]64ππ-上的最大值和最小值.2、已知函数.,1cos 2)32sin()32sin()(2R x x x x x f ∈-+-++=ππ(Ⅰ)求函数)(x f 的最小正周期;(Ⅱ)求函数)(x f 在区间]4,4[ππ-上的最大值和最小值.3、已知函数()tan(2),4f x x =+π(Ⅰ)求()f x 的定义域与最小正周期;(II )设0,4⎛⎫∈ ⎪⎝⎭πα,若()2cos 2,2f =αα求α的大小4、已知函数xx x x x f sin 2sin )cos (sin )(-=. (1)求)(x f 的定义域及最小正周期;(2)求)(x f 的单调递减区间.5、 设函数2()cos(2)sin 24f x x x π=++. (I )求函数()f x 的最小正周期;(II )设函数()g x 对任意x R ∈,有()()2g x g x π+=,且当[0,]2x π∈时, 1()()2g x f x =-,求函数()g x 在[,0]π-上的解析式.6、函数()sin()16f x A x πω=-+(0,0A ω>>)的最大值为3, 其图像相邻两条对称轴之间的距离为2π, (1)求函数()f x 的解析式;(2)设(0,)2πα∈,则()22f α=,求α的值.7、设426f (x )cos(x )sin x cos x π=ω-ω+ω,其中.0>ω (Ⅰ)求函数y f (x )= 的值域(Ⅱ)若y f (x )=在区间322,ππ⎡⎤-⎢⎥⎣⎦上为增函数,求 ω的最大值.8、函数2()6cos 3(0)2xf x x ωωω=->在一个周期内的图象如图所示,A 为图象的最高点,B 、C 为图象与x 轴的交点,且ABC ∆为正三角形.(Ⅰ)求ω的值及函数()f x 的值域;(Ⅱ)若0()f x =,且0102(,)33x ∈-,求0(1)f x +的值.9、已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,cos sin 0a C C b c --=(1)求A ; (2)若2a =,ABC ∆的面积为3;求,b c .10、在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B C .(Ⅰ)求tan C 的值; (Ⅱ)若a ∆ABC 的面积.三角函数大题训练答案1、【思路点拨】先利用和角公式展开,再利用降幂公式、化一公式转化为正弦型函数,最后求周期及闭区间上的最值.【精讲精析】(Ⅰ)因为()4cos sin()16f x x x π=+-14cos cos )12x x x =+-222cos 1x x =+-2cos 22sin(2)6x x x π=+=+,所以()f x 的最小正周期为π.(Ⅱ)因为64x ππ-≤≤,所以22663x πππ-≤+≤.于是,当262x ππ+=,即6x π=时,()f x 取得最大值2;当266x ππ+=-,即6x π=-时,()f x 取得最小值-1.2、【解析】 (1)2()=sin (2+)+sin(2)+2cos 133f x x x x ππ--2sin 2coscos 2)34x x x ππ=+=+ 函数()f x 的最小正周期为22T ππ==(2)32sin(2)11()4444424x x x f x ππππππ-≤≤⇒-≤+≤⇒-≤+≤⇔-≤≤当2()428x x πππ+==时,()m a xf x =,当2()444x x πππ+=-=-时,m i n ()1f x =- 【点评】该试题关键在于将已知的函数表达式化为=sin (+)y A x ωϕ的数学模型,再根据此三角模型的图像与性质进行解题即可.3、【思路点拨】1、根据正切函数的有关概念和性质;2、根据三角函数的有关公式进行变换、化简求值.【精讲精析】(I )【解析】由2,42+≠+∈x k k Z πππ, 得,82≠+∈k x k Z ππ. 所以()f x 的定义域为{|,}82∈≠+∈k x R x k Z ππ,()f x 的最小正周期为.2π (II )【解析】由()2cos 2,2f =αα得tan()2cos 2,4+=παα22sin()42(cos sin ),cos()4+=-+παααπα 整理得sin cos 2(cos sin )(cos sin ).cos sin +=+--αααααααα因为(0,)4∈πα,所以sin cos 0.+≠αα因此211(cos sin ),sin 2.22-==ααα即由(0,)4∈πα,得2(0,)2∈πα.所以2,.612==ππαα即 4、解(1):si n 0()x x k k Z π≠⇔≠∈得:函数()f x 的定义域为{,}x x k k Z π≠∈(sin cos )sin 2()(sin cos )2cos sin x x xf x x x xx-==-⨯sin 2(1cos 2))14x x x π=-+=--得:)(x f 的最小正周期为22T ππ==; (2)函数sin y x =的单调递增区间为[2,2]()22k k k Z ππππ-+∈ 则322224288k x k k x k πππππππππ-≤-≤+⇔-≤≤+得:)(x f 的单调递增区间为3[,),(,]()88k k k k k Z ππππππ-+∈ 5、本题考查两角和与差的三角函数公式、二倍角公式、三角函数的周期等性质、分段函数解析式等基础知识,考查分类讨论思想和运算求解能力. 【解析】211()co42f x x π=++11sin 222x =-, (I )函数()f x 的最小正周期22T ππ== (II )当[0,]2x π∈时,11()()sin 222g x f x x =-= 当[,0]2x π∈-时,()[0,]22x ππ+∈ 11()()sin 2()sin 22222g x g x x x ππ=+=+=- 当[,)2x ππ∈--时,()[0,)2x ππ+∈ 11()()sin 2()sin 222g x g x x x ππ=+=+=得函数()g x 在[,0]π-上的解析式为1sin 2(0)22()1sin 2()22x x g x x x πππ⎧--≤≤⎪⎪=⎨⎪-≤<⎪⎩.6、【解析】(1)∵函数()f x 的最大值是3,∴13A +=,即2A =.∵函数图像的相邻两条对称轴之间的距离为2π,∴最小正周期T π=,∴2ω=. 故函数()f x 的解析式为()2sin(2)16f x x π=-+.(2)∵()2f α2sin()126πα=-+=,即1sin()62πα-=,∵02πα<<,∴663πππα-<-<,∴66ππα-=,故3πα=.7、解:(1)()14sin sin cos 22f x x x x x ωωωω⎫=++⎪⎪⎝⎭222cos 2sin cos sin x x x x x ωωωωω=++-21x ω=+因1sin 21x ω-≤≤,所以函数()y f x =的值域为1⎡⎣(2)因sin y x =在每个闭区间()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上为增函数, 故()21f x x ω=+()0ω>在每个闭区间(),44k k k Z ππππωωωω⎡⎤-+∈⎢⎥⎣⎦上为增函数. 依题意知3,22ππ⎡⎤-⊆⎢⎥⎣⎦,44k k ππππωωωω⎡⎤-+⎢⎥⎣⎦对某个k Z ∈成立,此时必有0k =,于是 32424ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,解得16ω≤,故ω的最大值为16. 8. 本题主要考查三角函数的图像与性质、同角三角函数的关系、两角和差公式,倍角公式等基础知识,考查基本运算能力,以及数形结合思想,化归与转化思想. [解析](Ⅰ)由已知可得:2()6cos3(0)2xf x x ωωω=+->=3cosωx+)3sin(32sin 3πωω+=x x又由于正三角形ABC 的高为23,则BC=4 所以,函数482824)(πωωπ===⨯=,得,即的周期T x f所以,函数]32,32[)(-的值域为x f .……………………6分 (Ⅱ)因为,由538)(0=x f (Ⅰ)有,538)34(sin 32)(00=+=ππx x f 54)34(s i n 0=+ππx 即 由x 0)2,2()34x (323100ππππ-∈+-∈),得,( 所以,53)54(1)34(cos 20=-=+ππx 即 故=+)1(0x f =++)344(sin 320πππx ]4)34(sin[320πππ++x)22532254(324sin)34cos(4cos )34([sin 3200⨯+⨯=+++=ππππππx x567=………………………………………………………12分 9..解:(1)由正弦定理得:cos sin 0sin cos sin sin sin a C C b c A C A C B C --=⇔=+sin cos sin sin()sin 1cos 1sin(30)2303060A C A C a C CA A A A A ︒︒︒︒⇔+=++⇔-=⇔-=⇔-=⇔=(2)1sin 42S bc A bc ==⇔=, 2222cos 4a b c bc A b c =+-⇔+= 10. 本题主要考查三角恒等变换,正弦定理,余弦定理及三角形面积求法等知识点.(Ⅰ)∵cos A =23>0,∴sin A,cos C =sin B =sin(A +C )=sin A cos C +sin C cos A=cos C +23sin C . 整理得:tan C.(Ⅱ)由图辅助三角形知:sin C=.又由正弦定理知:sin sin a cA C=,故c = (1)对角A 运用余弦定理:cos A =222223b c a bc +-=. (2)解(1) (2)得:b =or b舍去). ∴∆ABC 的面积为:S.。
一、选择题 1.已知sin α=
53,cos α=5
4
-,则角α所在的象限是 ( ) A .第一象限. B . 第二象限. C . 第三象限. D . 第四象限. 2.如果函数()cos 2y x φ=3+的图像关于点43π⎛⎫
⎪⎝⎭
,0中心对称,那么||ϕ的最小值为( ) (A )
6π (B )4π (C )3π (D) 2
π
3.若将函数()tan 04y x πωω⎛
⎫
=+
> ⎪⎝
⎭
的图像向右平移
6π个单位长度后,与函数tan 6y x πω⎛⎫=+ ⎪⎝
⎭的图像
重合,则ω的最小值为
A .
16
B.
1
4
C.
13
D.
1
2
二、填空题 4.如果,51cos =
α且α是第四象限的角,那么)2
cos(πα+=.________________ 5.已知12cos()413πα-=,4πα-是第一象限角,则sin(2)2sin()4
π
απα-+的值是: 。
6.已知函数()3sin(),()3cos(),f x x g x x ωϕωϕ=+=+若对任意,x R ∈都有()(),
33f x f x ππ
+=-则()
3g π
=________.
三、解答题 7.已知函数x x x x x f cos sin 2)cos (sin 3)(22--=
.
(1)求()f x 的最小正周期; (2)求()f x 的单调递减区间; (3)设[,
]33x ππ
∈-,求()f x 的值域.
1.使函数x y sin =递减且函数x y cos =递增的区间是 A .(
ππ2,2
3
)
B .(2
32,2π
πππ+
+k k )(Z k ∈)
C .(πππ
π++
k k 2,2
2)(Z k ∈) D .(ππ
πk k 2,2
2-
)(Z k ∈)
2.函数1)4
(cos )4(sin )(22--++
=π
π
x x x f 是 A .周期为π的奇函数 B .周期为π的偶函数 C .周期为2π的奇函数 D .周期为2π的偶函数 3.已知tan 2θ=,则2
2
sin sin cos 2cos θθθθ+-=
A.
5
4
B.
45 C.43- D.34-
4.已知函数))(2
sin()(R x x x f ∈-
=π
,下面结论错误..
的是 A. 函数)(x f 的最小正周期为2π B. 函数)(x f 是奇函数 C.函数)(x f 的图象关于直线x =0对称 D. 函数)(x f 在区间[0,2
π
]上是增函数 5.若21)4
tan(=
-
π
α,且⎪⎭
⎫
⎝⎛∈2,0πα,则.__________________cos sin =+αα
6.关于函数f (x)sin 2x cos 2x =-有下列命题: ① y f (x)=的周期为π; ② x =4
π
是y f (x)=的一条对称轴; ③(
8
π
,0)是y f(x )=的一个对称中心; ④ 将y f (x)=的图象向左平移4
π
个单位,可得到y 2sin 2x
=的图象,其中正确的命题序号是 (把你认为正确命题的序号都写上). 7.已知 5
23sin cos =
-x x ,则 )
4
cos(2sin 15π+x x
= .
8.函数()2cos (sin cos )1,f x x x x =+-将()f x 的图象向左平移α个单位,得到函数()y g x =的图象。
(1)求函数()f x 的最小正周期; (2)若0,2
π
α<<且()g x 是偶函数,求α的值。
1.若sin 0α<且tan 0α>,则α是( )
A .第一象限角
B .第二象限角
C .第三象限角
D .第四象限角 2.化简
)
4
tan(2cos απ
α-得( ) A .sin α B .cos α C .1+cos2α D .1+sin2α
3.设函数()sin(2)3
f x x π
=+
,则下列结论正确的是
A .()f x 的图像关于直线3
x π
=对称 B .()f x 的图像关于点(
,0)4
π
对称
C .把()f x 的图像向左平移
12
π
个单位,得到一个偶函数的图像 D .()f x 的最小正周期为π,且在[0,]6
π
上为增函数
4.已知函数()cos sin ()f x x x x R =∈,给出下列四个命题:
①若12()()f x f x =-,则12x x =-; ②()f x 的最小正周期是2π; ③()f x 在区间[,]44
ππ
-
上是增函数; ④()f x 的图象关于直线34x π
=对称
A .①②④
B .①③
C .②③
D .③④
5.已知)(cos 3sin )(R x x x x f ∈+=,函数)(ϕ+=x f y 的图象关于直线0=x 对称,则ϕ的值可以是
A.
2π B 3π C.4π D.6
π
6.设函数a x x x x f ++=
2cos cos sin 3)(。
(1)写出函数)(x f 的最小正周期及单调递减区间;
(2)当⎥⎦
⎤
⎢⎣⎡-
∈3,6ππx 时,函数)(x f 的最大值与最小值的和为23,求)(x f 的解析式。
解(1),21
)62sin(22cos 12sin 23)(+++=+++=
a x a x x x f π
.π=∴T .3
26,2236
222
ππ
ππππ
ππ
k x kx k x k +≤≤++≤
+
≤+得由
故函数)(x f 的单调递减区间是)(32,6Z ∈⎥⎦
⎤
⎢
⎣⎡++k k k ππππ。
(2).1)62sin(21.656
26,3
6
≤+≤-∴≤
+
≤-
∴≤
≤-
πππ
π
π
π
x x x
当⎥⎦⎤
⎢⎣⎡-∈3,6ππx 时,
原函数的最大值与最小值的和)2121()2
1
1(++-
+++a a .2
1
)62sin()(,0,23++=∴=∴=πx x f a。