基本图像变换
- 格式:ppt
- 大小:419.00 KB
- 文档页数:33
三种图象变换:平移变换、对称变换和伸缩变换①平移变换:(h>0)Ⅰ、水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左(0)a >或向右(0)a <平移||a 个单位即可得到;1)y=f(x)h 左移→y=f(x+h);2)y=f(x) h 右移→y=f(x -h);Ⅱ、竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到;1)y=f(x) h 上移→y=f(x)+h ;2)y=f(x) h下移→y=f(x)-h 。
②对称变换:Ⅰ、函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到; y=f(x) 轴y →y=f(-x)Ⅱ、函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到;y=f(x) 轴x →y= -f(x)Ⅲ、函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到;y=f(x) 原点→y= -f(-x)Ⅳ、函数)(y f x =的图像可以将函数()y f x =的图像关于直线y x =对称得到。
y=f(x) x y =→直线x=f(y)Ⅴ、函数)2(x a f y -=的图像可以将函数()y f x =的图像关于直线a x =对称即可得到;y=f(x) a x =→直线y=f(2a -x)。
③翻折变换:Ⅰ、函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到;Ⅱ、函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留()y f x =在y 轴右边部分即可得到④伸缩变换:Ⅰ、函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到;y=f(x)ay ⨯→y=af(x)Ⅱ、函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵坐标不变横坐标压缩(1)a >或伸长(01a <<)为原来的1a倍得到。
opencv:图像的基本变换0.概述图像变换的基本原理都是找到原图和⽬标图的像素位置的映射关系,这个可以⽤坐标系来思考,在opencv中,图像的坐标系是从左上⾓开始(0,0),向右是x增加⽅向(cols),向下时y增加⽅向(rows)。
普通坐标关系:图像坐标关系:1.图像的平移图像的平移是⽐较简单的映射关系,对于原图像的某个像素点位置(X0,Y0),向右平移100个像素的话,变换之后的⽬标像素点位置(X =X0+100,Y),然后⽤原图像的像素值填充⽬标位置就可,因此我们需要将这种映射关系转换⼀下,⽅便获得原图像素值,也就是X0 = X-100,这⾥X是已知的。
具体代码如下:void translation(cv::Mat & src, cv::Mat & dst, int dx, int dy){const int rows = src.rows; // 获得原图的⾼度(y)const int cols = src.cols; // 获得原图的宽度(x)dst.create(rows, cols, src.type()); // 按照原图⼤⼩和格式创建⼀个空⽩图Vec3b *p;for (int Y = 0; Y < rows; ++Y) // 按⾏扫描{p = dst.ptr<Vec3b>(Y);for (int X = 0; X < cols; ++X){int X0 = X - dx; // 逆映射关系,求得原图的位置int Y0 = Y - dy;if (X0 >= 0 && Y0 >= 0 && X0 < cols && Y0 < rows) // 防⽌越界{p[X] = src.ptr<Vec3b>(Y0)[X0]; // 将原图的像素值赋给⽬标位置}}}}2.图像的缩放这⾥暂时只贴出opencv的缩放接⼝:void resize(InputArray src, //输⼊图像OutputArray dst, // 输出图像Size dsize, // 指定的输出图像的⼤⼩double fx=0, // 横向缩放⽐例double fy=0, // 纵向缩放⽐例int interpolation=INTER_LINEAR // 指定插值⽅式);3.图像的旋转图像旋转矩阵的原理可以参考基本映射关系:我们只需要根据这个映射关系写就好,其中的dx和dy主要⽤来计算旋转中⼼的,如果都是0的话图像就是围绕图像坐标(0,0)来旋转,该公式中的W'和H'指的是⽬标图像的宽度和⾼度。
高中数学图像变换问题教案在高中数学课程中,图像变换是一个重要的知识点,它不仅涉及代数与几何的综合应用,还锻炼了学生的空间想象能力和逻辑推理能力。
为了帮助教师更好地设计教学环节,本文将提供一个针对高中数学图像变换问题的教案范本。
## 教学目标1. 理解并掌握平移、翻折、旋转等基本的图像变换规律。
2. 能够熟练进行坐标系中的点、线段等基本图形的变换操作。
3. 培养学生通过图像变换解决实际问题的能力。
4. 提高学生利用几何画板软件进行图像变换操作的实践技能。
## 教学内容- 平移变换:点的平移公式,线段的平移方法。
- 翻折变换:关于x轴、y轴以及任意直线的翻折。
- 旋转变换:围绕某一点或某一轴旋转的变换规则。
- 综合应用:多种变换结合的问题解决方法。
## 教学过程### 引入新课开始上课时,教师可以通过展示日常生活中的实例,如钟表的指针转动、折叠纸张等,来引出图像变换的概念,激发学生的学习兴趣。
### 讲解新知1. **平移变换**:- 定义说明:保持图形的形状和大小不变,沿一定方向移动一定距离。
- 公式推导:(x, y) -> (x+a, y+b),其中a、b为沿x轴和y轴的移动距离。
- 实例演示:用几何画板展示点的平移过程。
2. **翻折变换**:- 概念介绍:图形以某条直线为对称轴进行反转。
- 坐标变化:关于x轴翻折,y坐标取反;关于y轴翻折,x坐标取反;关于任意直线翻折,则需找到对应的对称点坐标。
- 练习操作:指导学生使用几何画板完成翻折变换。
3. **旋转变换**:- 原理解释:图形绕一个点或一条直线旋转一定角度。
- 坐标转换:绕原点逆时针旋转θ度,坐标变为(xcosθ-ysinθ,xsinθ+ycosθ)。
- 案例分析:通过具体例题让学生了解旋转变换的应用。
### 课堂练习分发练习题,让学生独立完成,包括点的平移、翻折和旋转等基本题型,然后进行小组讨论,互相解答疑惑。
### 归纳总结由学生总结本节课所学内容,教师补充并强调关键点和常见错误。
图像变换原理图像变换是一种通过改变图像的像素值或空间关系,以得到新的视觉效果或数据表示的技术。
它在计算机图形学、计算机视觉、图像处理等领域中具有重要的应用。
图像变换可以分为两类:几何变换和像素变换。
几何变换是通过改变图像的形状、位置、大小或者方向来实现的。
常见的几何变换包括平移、旋转、缩放和错切等操作。
平移是通过将图像在水平和垂直方向上的像素值进行移动来实现的,旋转是将图像绕着某个中心点旋转一定角度,缩放是通过改变图像的像素间距来改变图像的大小,而错切是通过改变图像像素之间的相对位置来改变图像的形状。
像素变换是通过改变图像的像素值来实现的。
常见的像素变换包括亮度调整、对比度调整、颜色空间转换和直方图均衡化等操作。
亮度调整是通过改变图像的亮度值来调整图像的明暗程度,对比度调整是通过改变图像的像素值范围来调整图像的清晰程度,颜色空间转换是将图像从一个颜色空间转换到另一个颜色空间,而直方图均衡化是通过改变图像的像素分布来增强图像的对比度和细节。
图像变换的原理主要包括以下几个方面:1. 像素级处理:图像变换是在图像的每个像素上进行的,通过改变每个像素的数值或颜色来实现图像的变换。
2. 空间转换:图像变换可以在图像的整个空间范围内进行,也可以只在图像的局部区域进行。
3. 插值方式:在对图像进行变换时,需要对新像素的像素值进行估计。
插值是一种常用的方法,通过对周围已知像素的像素值进行加权平均或其他数学处理来估计新像素的像素值。
4. 变换模型:不同的图像变换可以使用不同的数学模型来描述。
常见的变换模型包括仿射变换、透视变换和非线性变换等。
图像变换的原理和方法是计算机图形学和图像处理领域的基础知识,它为我们理解图像的特征提取、目标识别、图像增强和图像生成等问题提供了重要的工具和思路。
随着计算机技术的不断发展,图像变换的应用和研究也在不断深入和扩展,为我们实现更加丰富多样的图像处理和图像生成效果提供了可能。
函数的图像及变换一、函数图像的变换对称变换(||)翻折翻折变换|()|翻折左右平移平移变换上下平移横坐标不变,纵坐标伸缩伸缩变换纵坐标不变,横坐标伸缩y f x y f x ⎧⎪⎧=⎪⎨⎪=⎩⎪⎪⎧⎨⎨⎪⎩⎪⎪⎧⎪⎨⎪⎩⎩关于x 轴对称:(,)(,)x y x y →- 关于y 轴对称:(,)(,)x y x y →- 关于原点对称:(,)(,)x y x y →-- 关于y x =对称:(,)(,)x y y x →关于y x =-对称:(,)(,)x y y x →-- 关于直线x a =对称:(,)(2,)x y a x y →-(轴对称) 关于y x b =+对称:(,)(,)x y y b x b →-+ 关于y x b =-+对称:(,)(,)x y b y x b →--+ 关于点(,)P a b 对称:(,)(2,2)x y a x b y →--(点对称)例1:已知2()2f x x x =-,且()g x 与()f x 关于点(1,2)对称,求()g x 的解析式.(相关点法)例2:已知函数()y f x =的图像关于直线1x =-对称,且当(0,)x ∈+∞时,有1()f x x=,则当 (,2)x ∈-∞-时,()f x 的解析式是( ).A. 1x -B. 12x +C.12x -+D. 12x- 例3:下列函数中,同时满足两个条件“①x R ∀∈,()()01212f x f x ππ++-=;②当6π-<x 3π<时,'()0f x >”的一个函数是( ) A.()sin(2)6f x x π=+B. ()cos(2)3f x x π=+C. ()sin(2)6f x x π=-D. ()cos(2)6f x x π=-①关于形如()y f x =的图像画法:当0x ≥时,()y f x =;当0x ≤时,()y f x =-()y f x =为偶函数,关于y 轴对称,即把0x ≥时()y f x =的图像画出,然后0x ≤时的图像与 0x ≥的图像关于y 轴对称即可得到所求图像.②关于形如()y f x =的图像画法当()0f x ≥时,()y f x =;当()0f x ≤时,()y f x =-先画出()y f x =的全部图像,然后把()y f x =的图像x 轴下方全部关于x 轴翻折上去,原x 轴上方的图像保持不变,x 轴下方的图像去掉不要即可得到所求图像.例3:画出下列函数的图像.(1)12log y x = (2)228y x x =--例4:设函数2()45f x x x =--.(1)在区间[2,6]-上,画出函数()f x 的图像;(2)设集合{}()5A x f x =≥,(,2][0,4][6,)B =-∞-+∞.试判断集合A B 、之间的关系,并给出证明;(3)当2k >时,求证:在区间[1,5]-上,3y kx k =+的图像位于函数()f x 图像的上方.①左右平移把函数()y f x =的全部图像沿x 轴方向向左(0a >)或向右(0a <)平移a 个单位即可得到函数()y f x a =+的图像②上下平移把函数()y f x =的全部图像沿y 轴方向向上(0a >)或向下(0a <)平移a 个单位即可得到函数()y f x a =+的图像例4:将函数lg(32)1y x =-+按向量(2,3)a =-平移后得到新的图象解析式为 例5:把一个函数的图象按向量(,2)8a π=-平移后得到的图象的解析式为sin(2)24y x π=+-,则原来函数的解析式 .Ⅰ.将函数()y f x =的全部图像中的每一点横坐标不变,纵坐标伸长(1)a >或缩短(01)a <<为原来的a 倍得到函数()(0)y af x a =>的图像.Ⅱ. 将函数()y f x =的全部图像中的每一点纵坐标不变,横坐标伸长(1)a >或缩短(01)a <<为原来的1a倍得到函数()(0)y f ax a =>的图像. 例6:已知函数21()2lg(2)-=++x f x x ,把函数()y f x =的图像关于y 轴对称,然后向右平移1个单位,最后纵坐标保持不变,横坐标变为原来的2倍得到()g x 的图像,求()g x 的解析式.例7:已知函数2()log (1)f x x =+,将()y f x =的图像向左平移1个单位,再将图像上所有点纵坐标伸长到原来的2倍,得到函数()y g x =的图像. (1)求()y g x =的解析式和定义域; (2)求函数()(1)()F x f x g x =--的最大值.【练习】1.为了得到函数321x y -=-的图像,只需要把函数2x y =的图像上所有的点( ).A.向右平移3个单位长度,再向下平移1个单位长度B.向左平移3个单位长度,再向下平移1个单位长度C.向右平移3个单位长度,再向上平移1个单位长度D.向左平移3个单位长度,再向上平移1个单位长度 2.下面四个图形中,与函数22log (1)yx x =+≥的图像关于y x =对称的是( ).3.若函数()()y f x x R =∈满足(2)()f x f x +=,且[1,1]x ∈-时,()f x x =,则函数()y f x =的图像与函数4log y x =的图像的交点的个数为( ).A.3B.4C.6D.84.将函数by a x a=++的图像向右平移2个单位长度后又向下平移2个单位,所得到的函数图像与原图像如果关于直线y x =对称,那么( ).A. 1,0a b =-≠B. 1,a b R =-∈C.1,0a b =≠D. 0,a b R =∈ 5.已知21()f x x x =+,且()g x 与()f x 关于点(1,0)-对称,求()g x 的解析式.6.画出下列函数的图像.(1)ln y x = (2)26y x x =--7. 函数()2xf x =和3()g x x =的图像的示意图如图所示,设两函数的图像交于点11(,)A x y ,22(,)B x y ,且12x x <.(1)请指出示意图中曲线12,C C 分别对应于哪一个函数;(2)若12[,1],[,1]x a a x b b ∈+∈+,且{},1,2,3,4,5,6,7,8,9,10,11,12a b ∈,指出,a b 的值,并说明理由;(3)结合函数图像的示意图,判断(6),(6),(2010),(2010)f g f g 的大小关系.8.已知函数()f x 和()g x 的图像关于原点对称,且2()2f x x x =+. (1)求函数()g x 的解析式; (2)解不等式()()1g x f x x ≥--;(3)若()()()1h x g x f x λ=-+在[1,1]-上是增函数,求实数λ的取值范围.6. 已知函数()y f x =,把函数()y f x =的图像向左平移1个单位,然后横坐标保持不变,纵坐标变为原来的3倍再向下平移3个单位得到()g x 的图像,求()g x 的解析式.补充:请把相应的幂函数图象代号填入表格.①32x y =;②2-=x y ;③21x y =;④1-=x y ;⑤31x y =;⑥23x y =;⑦34x y =; ⑧21-=x y ;⑨35x y =.常规函数图像有:函数代号 ①②③④⑤⑥⑦⑧⑨⑩图象代号HI指数函数:逆时针旋转,底数越来越大 .对数函数:逆时针旋转,底数越来越小幂函数:逆时针旋转,指数越来越大。
函数图像变换知识点总结一、基本概念1. 函数图像的平移函数图像的平移是指将原函数图像沿横轴或纵轴方向平移一定的距离。
平移的方向和距离可以是正数也可以是负数。
- 沿横轴方向平移:对于函数y=f(x),如果在横轴方向上平移了a个单位,新函数表示为y=f(x-a)。
- 沿纵轴方向平移:对于函数y=f(x),如果在纵轴方向上平移了b个单位,新函数表示为y=f(x)+b。
2. 函数图像的伸缩函数图像的伸缩是指将原函数图像沿横轴或纵轴方向进行拉伸或压缩。
伸缩的方向和比例可以是正数也可以是负数。
- 沿横轴方向伸缩:对于函数y=f(x),如果在横轴方向上进行了伸缩,新函数表示为y=f(kx)。
- 沿纵轴方向伸缩:对于函数y=f(x),如果在纵轴方向上进行了伸缩,新函数表示为y=kf(x)。
3. 函数图像的翻转函数图像的翻转是指对原函数图像进行镜像操作,可以分为关于横轴翻转和关于纵轴翻转两种情况。
- 关于横轴翻转:对于函数y=f(x),进行横轴翻转后,新函数表示为y=-f(x)。
- 关于纵轴翻转:对于函数y=f(x),进行纵轴翻转后,新函数表示为y=f(-x)。
二、函数图像变换的特点1. 平移:平移不改变函数的基本形状,只是改变了函数的位置;2. 伸缩:伸缩可以改变函数的斜率和幅度,但不改变函数的形状;3. 翻转:翻转改变了函数的整体形状,使得原函数变为其镜像;4. 组合变换:可以将多种变换进行组合,得到更复杂的函数图像变换。
三、函数图像变换的应用函数图像变换不仅仅是数学中的一种抽象概念,还可以应用到具体的问题中,如物理、经济等领域。
1. 物理问题:在物理学中,函数图像变换可以用来描述物体的运动、变形等。
例如,对于速度-时间图像,进行平移可表示物体的起始位置不同;进行伸缩则可以描述加速度的变化;进行翻转可以描述反向运动等情况。
2. 经济问题:在经济学中,函数图像变换可以用来描述经济模型的变化。
例如,对于需求-价格图像,进行平移可以表示需求量或价格的变化;进行伸缩可以描述需求的弹性;进行翻转可以描述替代品或补充品的关系等情况。