蜗杆受力分析
- 格式:ppt
- 大小:708.00 KB
- 文档页数:3
蜗轮蜗杆受力分析
蜗轮蜗杆是一种常用的传动装置,广泛应用于机械工程中。
在进行蜗轮蜗杆的受力分析时,需要考虑以下几个方面:蜗轮蜗杆受力、力的传递路径、材料的应力和变形等。
首先要对蜗轮蜗杆的受力进行分析。
蜗轮蜗杆传动时,通过蜗杆的螺旋线与蜗轮的齿面配合,使蜗轮绕自身轴线旋转并传递力矩。
在这个过程中,蜗轮和蜗杆分别承受轴向力和径向力。
轴向力是由于蜗杆的螺旋线对蜗轮齿面的作用,使蜗杆的轴向力沿蜗杆轴线方向产生,而蜗轮受到等大反向轴向力。
径向力是由于蜗轮的齿面曲率半径与蜗杆螺旋线的半径差导致的,在传动过程中使得蜗轮和蜗杆受到径向力,造成受力状态的变化。
其次,要对力的传递路径进行分析。
蜗轮蜗杆传动的力矩是由蜗杆传递给蜗轮的,在传递过程中遵循力的平衡原理。
蜗杆上的力矩通过轴承传递给蜗杆轴承座,再通过蜗杆轴承座传递给机架。
而蜗轮上的力矩则通过蜗轮轴承传递给蜗轮轴承座,再通过蜗轮轴承座传递给机架。
这样,蜗轮和蜗杆上的力矩同时传递到机架上,实现了力的平衡。
最后,要考虑材料的应力和变形对蜗轮蜗杆的影响。
传动过程中,蜗轮和蜗杆上的受力会导致材料的应力产生变化,甚至会引起材料的变形。
在进行蜗轮蜗杆设计时,要考虑到材料的强度和刚度等因素,以确保蜗轮蜗杆的可靠性和稳定性。
总结起来,蜗轮蜗杆的受力分析是一个复杂的过程,需要综合考虑受力、力的传递路径、材料的应力和变形等因素。
只有在合理的受力分析基础上进行设计,才能确保蜗轮蜗杆的正常运转和长期使用。
普通圆柱蜗杆传动承载能力计算(一)蜗杆传动的失效形式、设计准则及常用材料和齿轮传动一样,蜗杆传动的失效形式也有点蚀(齿面接触疲劳破坏)、齿根折断、曲面胶合及过度磨损等。
由于材料和结构上的原因,蜗杆螺旋齿部分的强度总是高于蜗轮轮齿的强度,所以失效经常发生在蜗轮轮齿上。
因此,一般只对蜗轮轮齿进行承载能力计算。
由于蜗杆与蜗轮齿面间有较大的相对滑动,从而增加了产生胶合和磨损失效的可能性,尤其在某些条件下(如润滑不良),蜗杆传动因齿面胶合而失效的可能性更大。
因此,蜗杆传动的承载能力往往受到抗胶合能力的限制。
在开式传动中多发生齿面磨损和轮齿折断,因此应以保证齿根弯曲疲劳强度作为开式传动的主要设计准则。
在闭式传动中,蜗杆副多因齿面胶合或点蚀而失效。
因此,通常是按齿面接触疲劳强度进行设计,而按齿根弯曲疲劳强度进行校核。
此外,闭式蜗杆传动,由于散热较为困难,还应作热平衡核算。
由上述蜗杆传动的失效形式可知,蜗杆、蜗轮的材料不仅要求具有足够的强度,更重要的是要具有良好的磨合和耐磨性能。
蜗杆一般是用碳钢或合金钢制成。
高速重载蜗杆常用15Cr或20Cr,并经渗碳淬火;也可用40、45号钢或40Cr并经淬火。
这样可以提高表面硬度,增加耐磨性。
通常要求蜗杆淬火后的硬度为40~55HRC,经氮化处理后的硬度为55~62HRC。
一般不太重要的低速中载的蜗杆,可采用40或45号钢,并经调质处理,其硬度为220~300HBS。
常用的蜗轮材料为铸造锡青铜(ZCuSnlOPl,ZCuSn5Pb5Zn5)、铸造铝铁青铜(ZCuAl10Fe3)及灰铸铁(HTl5O、HT2OO)等。
锡青铜耐磨性最好,但价格较高,用于滑动速度Vs≥3m/s的重要传动;铝铁青铜的耐磨性较锡青铜差一些,但价格便宜,一般用于滑动速度Vs≤4m/s的传动;如果滑动速度不高(Vs<2m/s),对效率要求也不高时,可采用灰铸铁。
为了防止变形,常对蜗轮进行时效处理。
(二)蜗杆传动的受力分析蜗杆传动的受力分析和斜齿圆柱齿轮传动相似。