2动态规划
- 格式:ppt
- 大小:2.35 MB
- 文档页数:51
第三章:动态规划3.1 动态规划的基本概念一、动态决策问题:决策过程具有阶段性和时序性(与时间有关)的决策问题。
即决策过程可划分为明显的阶段。
二、什么叫动态规划(D.P.–Dynamic Program):多阶段决策问题最优化的一种方法。
广泛应用于工业技术、生产管理、企业管理、经济、军事等领域。
三、动态规划(D.P.)的起源:1951年,(美)数学家R.Bellman等提出最优化原理,从而建立动态规划,名著《动态规划》于1957年出版。
四、动态决策问题分类:1、按数据给出的形式分为:•离散型动态决策问题。
•连续型动态决策问题。
2、按决策过程演变的性质分为:•确定型动态决策问题。
•随机型动态决策问题。
五1、阶段(stage)n :作出决策的若干轮次。
n = 1、2、3、4、5。
2、状态(state)S n :每一阶段的出发位置。
构成状态集,记为S nS 1={A},S 2={B 1,B 2,B 3},S 3={C 1,C 2,C 3},S 4={D 1,D 2,D 3},S 5={E 1,E 2}。
阶段的起点。
3、决策(decision)X n :从一个阶段某状态演变到下一个阶段某状态的选择。
构成决策集,记为D n (S n )。
阶段的终点。
D 1(S 1)={X 1(A)}={B 1,B 2,B 3}= S 2,D 2(S 2)={X 2(B 1),X 2(B 2),X 2(B 3)}={C 1,C 2,C 3}=S 3,D 3(S 3)={X 3(C 1),X 3(C 2),X 3(C 3)}={D 1,D 2,D 3}=S 4,D 4(S 4)={X 4(D 1),X 4(D 2),X 4(D 3)}={E 1,E 2}=S 5D 5(S 5)={X 5(E 1),X 5(E 2)}={F;F}={F}。
4、策略(policy):全过程中各个阶段的决策Xn 组成的有序总体{Xn }。
如 A àB2àC1àD1àE2àF5、子策略(sub-policy):剩下的n个阶段构成n子过程,相应的决策系列叫n子策略。
动态规划的基本思想动态规划是一种常见的解决问题的算法思想,它通过将复杂的问题分解成一个个子问题,逐步求解并记录下每个子问题的解,最终得到原问题的解。
这种思想在很多领域都有广泛的应用,例如计算机科学、经济学、物理学等。
一、动态规划的定义与特点动态规划是一种分治法的改进方法,它主要用于解决具有重叠子问题和最优子结构性质的问题。
它的基本思想可以概括为“记住中间结果,以便在需要的时候直接使用”。
动态规划算法的特点包括:1. 问题可以分解为若干个重叠的子问题;2. 子问题的解可以通过已知的子问题解来求解,且子问题的解可以重复使用;3. 需要使用一个数据结构(通常是一个矩阵)来存储子问题的解,以便在需要时直接取出。
二、动态规划的基本步骤动态规划算法通常可以分为以下几个基本步骤:1. 确定问题的状态:将原问题转化为一个或多个子问题,并定义清楚每个子问题的状态是什么。
2. 定义问题的状态转移方程:找出子问题之间的关系,即如何通过已知的子问题解来解决当前问题。
3. 设置边界条件:确定最简单的子问题的解,即边界条件。
4. 计算子问题的解并记录:按顺序计算子问题的解,并将每个子问题的解记录下来,以便在需要时直接使用。
5. 由子问题的解得到原问题的解:根据子问题的解和状态转移方程,计算得到原问题的解。
三、动态规划的实例分析为了更好地理解动态规划的基本思想,我们以求解斐波那契数列为例进行分析。
问题描述:斐波那契数列是一个经典的数学问题,它由以下递推关系定义:F(n) = F(n-1) + F(n-2),其中F(0) = 0,F(1) = 1。
解决思路:根据递推关系,可以将问题分解为求解F(n-1)和F(n-2)两个子问题,并将子问题的解累加得到原问题的解。
根据以上思路,可以得到以下的动态规划算法实现:1. 确定问题的状态:将第n个斐波那契数定义为一个状态,记为F(n)。
2. 定义问题的状态转移方程:由递推关系F(n) = F(n-1) + F(n-2)可得,F(n)的值等于前两个斐波那契数之和。
动态规划的基本原理和基本应用动态规划(Dynamic Programming)是一种通过将一个问题分解为较小的子问题并存储子问题的解来解决复杂问题的方法。
动态规划的基本原理是通过记忆化或自底向上的迭代方式来求解问题,以减少不必要的重复计算。
它在计算机科学和数学中具有广泛的应用,尤其是在优化、组合数学和操作研究等领域。
1.确定最优子结构:将原问题分解为较小的子问题,并且子问题的最优解能够推导出原问题的最优解。
2.定义状态:确定存储子问题解的状态变量和状态方程。
3.确定边界条件:确定初始子问题的解,也称为边界状态。
4.递推计算:利用状态方程将子问题的解计算出来,并存储在状态变量中。
5.求解最优解:通过遍历状态变量找到最优解。
1.背包问题:背包问题是动态规划的经典应用之一、它有多种变体,其中最基本的是0/1背包问题,即在限定容量的背包中选择物品,使得所选物品的总价值最大。
可以使用动态规划的思想来解决背包问题,确定状态为背包容量和可选物品,递推计算每个状态下的最优解。
2. 最长递增子序列:最长递增子序列(Longest Increasing Subsequence)是一种常见的子序列问题。
给定一个序列,找到其中最长的递增子序列。
可以使用动态规划来解决这个问题,状态可以定义为以第i个元素为结尾的最长递增子序列的长度,并递推计算每个状态的解。
3.矩阵链乘法:矩阵链乘法是一种优化矩阵连乘计算的方法。
给定一系列矩阵,求解它们相乘的最小计算次数。
可以使用动态规划解决矩阵链乘法问题,状态可以定义为矩阵链的起始和结束位置,递推计算每个状态下最小计算次数。
4.最短路径问题:最短路径问题是在有向图或无向图中找到两个节点之间最短路径的问题。
可以使用动态规划解决最短路径问题,状态可以定义为起始节点到一些节点的最短距离,递推计算每个状态的最优解。
动态规划方法求解线性规划问题引言概述:线性规划是一种常见的优化问题,动态规划是一种常用的解决优化问题的方法。
本文将介绍动态规划方法在线性规划问题中的应用。
首先,我们将讨论线性规划问题的定义和特点,然后介绍动态规划方法的基本原理和步骤。
接下来,我们将详细阐述动态规划方法在线性规划问题中的五个关键点,并对每一个关键点进行详细的解释。
最后,我们将总结动态规划方法在线性规划问题中的应用优势、限制和未来研究方向。
正文内容:1. 线性规划问题的定义和特点1.1 线性规划问题的定义线性规划是一种数学优化问题,目标是在一组线性约束条件下,找到使目标函数最优的变量值。
线性规划问题的目标函数和约束条件均为线性函数。
1.2 线性规划问题的特点线性规划问题具有可加性、线性性和可分性的特点。
可加性意味着问题可以分解为多个子问题进行求解;线性性意味着目标函数和约束条件均为线性函数;可分性意味着问题的解可以通过分别求解子问题得到。
2. 动态规划方法的基本原理和步骤2.1 动态规划方法的基本原理动态规划方法是一种将问题分解为相互重叠的子问题,并通过存储子问题的解来避免重复计算的方法。
它通过构建一个状态转移方程来描述问题的最优解与子问题的最优解之间的关系。
2.2 动态规划方法的步骤动态规划方法的步骤包括问题建模、状态定义、状态转移方程的定义、边界条件的确定和最优解的计算。
首先,将原问题转化为子问题,并定义问题的状态。
然后,通过定义状态转移方程,将问题的最优解与子问题的最优解建立关系。
确定边界条件后,可以通过迭代计算得到问题的最优解。
3. 动态规划方法在线性规划问题中的五个关键点3.1 线性规划问题的拆分将线性规划问题拆分为多个子问题,使得每一个子问题都是一个线性规划问题。
这样可以降低问题的复杂度,使得问题更易于求解。
3.2 子问题的状态定义根据线性规划问题的特点,定义子问题的状态。
状态可以包括变量的取值范围、目标函数值和约束条件等信息。
动态规划的基本思想动态规划是一种常用于解决具有重叠子问题和最优子结构特征的问题的算法思想。
它将问题分解成一系列子问题,并通过解决子问题构建出整个问题的最优解。
动态规划的基本思想是将原始问题转化成一个或多个相似的子问题,然后通过解决这些子问题获得原始问题的解。
这种思想在很多实际问题中都能够得到应用。
动态规划的基本流程一般包括以下几个步骤:1. 将原始问题分解为子问题:首先需要将原问题划分为多个子问题,并且确保这些子问题之间有重叠的部分。
2. 定义状态:确定每个子问题需要求解的状态,也即问题需要达成的目标。
3. 确定状态转移方程:根据子问题之间的关系,确定子问题之间的状态转移方程,即如何将子问题的解转移到原问题的解。
4. 解决首个子问题:解决最基本的子问题,获得初始状态下的解。
5. 填充状态表格:根据状态转移方程,依次求解其他子问题,并且填充状态表格。
6. 求解原问题:通过填充状态表格,在保证状态转移方程的基础上求解原问题的最优解。
动态规划的关键在于将原问题转化为子问题,通过递归或者迭代的方式求解子问题,最终获得原问题的最优解。
在这个过程中,重叠子问题的求解是动态规划的特点之一。
由于问题的子问题存在重叠,所以在求解的过程中我们可以保存已经求解过的子问题的解,避免重复计算,从而提高效率。
动态规划还要求问题具有最优子结构特征,即问题的最优解可以通过子问题的最优解构建出来。
通过利用已解决的子问题的最优解,可以有效地解决原问题。
动态规划算法在实际应用中有着广泛的应用。
它可以用于解决很多经典的问题,如最长公共子序列、0-1背包问题、最大子数组和等。
动态规划算法可以有效地解决这些问题,使得它们的时间复杂度得到了有效的降低。
总结来说,动态规划的基本思想是将原始问题转化为子问题,并通过解决子问题构建整个问题的最优解。
动态规划算法通过保存已经解决的子问题的解来避免重复计算,从而提高算法的效率。
动态规划算法在实际应用中具有广泛的应用,是解决具有重叠子问题和最优子结构特征的问题的常用算法思想。
动态规划的三个实施步骤什么是动态规划动态规划(Dynamic Programming)是一种解决复杂问题的算法思想,它通常用于求解最优化问题。
动态规划的核心思想是将复杂问题分解成较简单的子问题,并通过子问题的最优解推导出原问题的最优解。
动态规划的三个实施步骤动态规划的实施步骤通常包括以下三个阶段:1.划分阶段:将原问题划分成若干个子问题,通过划分可以简化问题的复杂度。
2.确定状态:定义状态表示问题的不同阶段和状态,以及状态之间的关系。
状态的选择对最终解决问题的效率和准确性有很大影响。
3.推导方程:根据子问题的最优解和状态之间的关系,推导出原问题的最优解,并通过递推和迭代求解。
下面将详细介绍每个步骤。
1. 划分阶段在划分阶段,我们需要将原问题划分成若干个子问题。
通常,问题的划分可以基于以下两种方式之一:•递归划分:将原问题拆分成规模更小的相同类型的子问题,直到问题规模较小,可以直接得到解答。
•迭代划分:通过迭代的方式,逐步处理原问题的不同阶段,每个阶段都可以看作是一个子问题。
划分阶段可以大大减少问题的复杂度,使得问题的求解更加可行和高效。
2. 确定状态确定状态是动态规划的核心步骤,它需要定义状态并建立状态之间的关系。
状态表示问题的不同阶段和状态,以及状态之间的关联关系。
在确定状态时,通常需要考虑以下几个因素:•问题的边界状态:例如,问题的起始状态和最终状态。
•中间状态的定义:例如,问题的中间阶段的状态。
•状态之间的转移方程:即状态之间的关联关系,包括过程中的选择和决策。
通过合理地确定状态,可以将复杂问题简化成易于求解的子问题,并能够快速推导出原问题的最优解。
3. 推导方程在推导方程阶段,我们通过子问题的最优解和状态之间的关系,推导出原问题的最优解。
根据问题的具体特点和状态定义,推导方程可以采用不同的方式,例如:•递推方程:通过递归地求解子问题,逐步推导出原问题的最优解。
•迭代方程:通过迭代地更新状态,逐步得到原问题的最优解。
数据结构之动态规划动态规划的基本思想和常见应用场景动态规划(Dynamic Programming,DP)是一种通过将问题分解为更小的子问题来解决复杂问题的方法。
它的基本思想是利用已解决过的子问题的解来求解当前问题的解,从而避免重复计算,提高算法效率。
动态规划的应用广泛,可以用于解决一些优化问题、最优化问题以及组合优化问题等。
动态规划的基本思想可以用以下三个步骤来概括:1. 定义子问题:将原问题划分为一个或多个子问题,并找到它们之间的关系。
2. 构建状态转移方程:根据子问题之间的关系,找到问题的递推关系,将问题转化为子问题的解。
3. 解决问题:通过递推计算或者自底向上的方法,求解问题的最终解。
动态规划的核心是状态转移方程。
状态转移方程描述了子问题与原问题之间的关系,通过它可以求解原问题的解。
在构建状态转移方程时,需要考虑如何选择最优子结构并进行状态转移,以及确定初始状态和边界条件。
动态规划常见的应用场景包括:1. 最优化问题:如最短路径问题、最长递增子序列问题、背包问题等。
这类问题中,动态规划可以帮助我们找到最优解。
2. 组合优化问题:如旅行商问题(TSP)、任务分配问题等。
这类问题中,动态规划可以帮助我们找到最佳的组合方案。
3. 概率计算问题:如概率图模型中的推断问题、隐马尔可夫模型中的预测问题等。
这类问题中,动态规划可以帮助我们计算复杂的概率。
举例来说,我们可以通过动态规划求解最长递增子序列问题。
给定一个序列,我们希望找到其中最长递增的子序列的长度。
首先,定义状态dp[i]表示以第i个元素结尾的最长递增子序列的长度。
然后,我们可以根据dp[i-1]和第i个元素的大小关系来更新dp[i]的值,即dp[i]= max(dp[i], dp[j]+1),其中j为i之前的某个位置,且nums[j] < nums[i]。
最后,我们通过遍历数组,找到dp数组中的最大值,即可得到最长递增子序列的长度。
动态规划应用动态规划解决问题的思路与技巧动态规划应用 - 动态规划解决问题的思路与技巧动态规划(Dynamic Programming)是一种常见的算法思想,用于解决一些具有重叠子问题和最优子结构性质的问题。
通过将大问题划分为小问题,并将小问题的解存储起来以避免重复计算,可以在一定程度上优化问题的求解过程。
本文将介绍动态规划的应用,并提供一些思路与技巧。
一、动态规划的基本思路动态规划问题通常可以由以下步骤解决:1. 定义状态:将问题划分成若干子问题,并确定每个子问题需要记录的状态。
2. 定义状态转移方程:通过分析子问题之间的关系,建立状态转移方程,以表达子问题的最优解与更小规模子问题的关系。
3. 初始化边界条件:确定最小规模子问题的解,并初始化状态转移方程中需要用到的边界条件。
4. 递推求解:按照状态转移方程的定义,从较小规模的子问题开始逐步推导出较大规模的问题的解。
5. 求解目标问题:根据最终推导出的状态,得到原始问题的最优解。
二、动态规划的技巧与优化1. 滚动数组:为了降低空间复杂度,可以使用滚动数组来存储状态。
滚动数组只记录当前状态与之前一部分状态相关的信息,避免了存储所有状态的需求。
2. 状态压缩:对于某些问题,可以将状态压缩成一个整数,从而大幅减小状态的数量。
例如,当问题中涉及到某些特定的组合或排列时,可以使用二进制位来表示状态。
3. 前缀和与差分数组:对于某些问题,可以通过计算前缀和或差分数组,将问题转化为求解累加或差对应数组中的某个区间的值的问题,从而简化计算过程。
4. 贪心思想:有些动态规划问题可以结合贪心思想,在每个阶段选择局部最优解,然后得到全局最优解。
5. 双重循环与多重循环:在实际解决问题时,可以使用双重循环或多重循环来遍历状态空间,求解问题的最优解。
三、动态规划的实际应用动态规划广泛应用于各个领域,包括但不限于以下几个方面:1. 最短路径问题:例如,求解两点之间的最短路径、最小生成树等。
(二) 动态规划算法目录- 几个动态规划问题中的术语- 阶段- 状态- 无后效性- 决策- 多阶段决策问题- 策略- 状态转移方程- 最优化原理/最优子结构性质- 动态规划引出- 基本思想- 适用情况- 基本步骤- 书面版- 细讲- 个人理解- 备忘录算法- 程序设计- 思维过程- 一般的算法设计模式- 经典运用# 先来说几个动态规划问题中的术语:动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。
20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,利用各阶段之间的关系,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。
多阶段决策问题的图示## 阶段把所给求解问题的过程恰当地分成若干个相互联系的阶段,以便于求解,过程不同,阶段数就可能不同.描述阶段的变量称为阶段变量。
在多数情况下,阶段变量是离散的,用k表示。
此外,也有阶段变量是连续的情形。
如果过程可以在任何时刻作出决策,且在任意两个不同的时刻之间允许有无穷多个决策时,阶段变量就是连续的。
在前面的图中,第一个阶段就是点A,而第二个阶段就是点A 到点B,第三个阶段是点B到点C,而第四个阶段是点C到点D。
## 状态状态表示每个阶段开始面临的不以人的主观意志为转移的自然或客观条件,也叫不可控因素。
在上面的例子中,状态是某个阶段的开始位置,它不仅是该阶段一条道路的起点,也是前一阶段一条分支的终点。
前面的例子(图)中,第一个阶段有一个状态即A,而第二个阶段有两个状态B1和B2,第三个阶段是三个状态C1,C2和C3,而第四个阶段又是一个状态D。
过程的状态通常可以用一个或一组数来描述,称为状态变量。