_实验2动态规划法
- 格式:pdf
- 大小:187.54 KB
- 文档页数:3
TSP问题算法实验报告指导教师:****名:***学号:**********提交日期:2015年11月目录总述 (2)动态规划法 (3)算法问题分析 (3)算法设计 (3)实现代码 (3)输入输出截图 (6)OJ提交截图 (6)算法优化分析 (6)回溯法 (6)算法问题分析 (6)算法设计 (7)实现代码 (7)输入输出截图 (9)OJ提交截图 (9)算法优化分析 (10)分支限界法 (10)算法问题分析 (10)算法设计 (10)实现代码 (10)输入输出截图 (15)OJ提交截图 (15)算法优化分析 (15)总结 (16)总述TSP问题又称为旅行商问题,是指一个旅行商要历经所有城市一次最后又回到原来的城市,求最短路程或最小花费,解决TSP可以用好多算法,比如蛮力法,动态规划法…具体的时间复杂的也各有差异,本次实验报告包含动态规划法,回溯法以及分支限界法。
动态规划法算法问题分析假设n个顶点分别用0~n-1的数字编号,顶点之间的代价存放在数组mp[n][n]中,下面考虑从顶点0出发求解TSP问题的填表形式。
首先,按个数为1、2、…、n-1的顺序生成1~n-1个元素的子集存放在数组x[2^n-1]中,例如当n=4时,x[1]={1},x[2]={2},x[3]={3},x[4]={1,2},x[5]={1,3},x[6]={2,3},x[7]={1,2,3}。
设数组dp[n][2^n-1]存放迭代结果,其中dp[i][j]表示从顶点i经过子集x[j]中的顶点一次且一次,最后回到出发点0的最短路径长度,动态规划法求解TSP问题的算法如下。
算法设计输入:图的代价矩阵mp[n][n]输出:从顶点0出发经过所有顶点一次且仅一次再回到顶点0的最短路径长度1.初始化第0列(动态规划的边界问题)for(i=1;i<n;i++)dp[i][0]=mp[i][0]2.依次处理每个子集数组x[2^n-1]for(i=1;i<n;i++)if(子集x[j]中不包含i)对x[j]中的每个元素k,计算d[i][j]=min{mp[i][k]+dp[k][j-1]};3.输出最短路径长度。
实验一分治与递归算法的应用一、实验目的1.掌握分治算法的基本思想(分-治-合)、技巧和效率分析方法。
2.熟练掌握用递归设计分治算法的基本步骤(基准与递归方程)。
3.学会利用分治算法解决实际问题。
二 . 实验内容金块问题老板有一袋金块(共n块,n是2的幂(n≥2)),最优秀的雇员得到其中最重的一块,最差的雇员得到其中最轻的一块。
假设有一台比较重量的仪器,希望用最少的比较次数找出最重和最轻的金块。
并对自己的程序进行复杂性分析。
三.问题分析:一般思路:假设袋中有n 个金块。
可以用函数M a x(程序1 - 3 1)通过n-1次比较找到最重的金块。
找到最重的金块后,可以从余下的n-1个金块中用类似法通过n-2次比较找出最轻的金块。
这样,比较的总次数为2n-3。
分治法:当n很小时,比如说,n≤2,识别出最重和最轻的金块,一次比较就足够了。
当n 较大时(n>2),第一步,把这袋金块平分成两个小袋A和B。
第二步,分别找出在A和B中最重和最轻的金块。
设A中最重和最轻的金块分别为HA 与LA,以此类推,B中最重和最轻的金块分别为HB 和LB。
第三步,通过比较HA 和HB,可以找到所有金块中最重的;通过比较LA 和LB,可以找到所有金块中最轻的。
在第二步中,若n>2,则递归地应用分而治之方法程序设计据上述步骤,可以得出程序1 4 - 1的非递归代码。
该程序用于寻找到数组w [ 0 : n - 1 ]中的最小数和最大数,若n < 1,则程序返回f a l s e,否则返回t r u e。
当n≥1时,程序1 4 - 1给M i n和M a x置初值以使w [ M i n ]是最小的重量,w [ M a x ]为最大的重量。
首先处理n≤1的情况。
若n>1且为奇数,第一个重量w [ 0 ]将成为最小值和最大值的候选值,因此将有偶,数个重量值w [ 1 : n - 1 ]参与f o r循环。
当n 是偶数时,首先将两个重量值放在for 循环外进行比较,较小和较大的重量值分别置为Min和Max,因此也有偶数个重量值w[2:n-1]参与for循环。
算法设计与分析课程教学大纲【适用专业】计算机科学与技术【课时】理论课时:32【学分】 2【课程性质、目标和要求】《算法设计与分析》是计算机科学与技术专业的专业课。
无论是计算科学还是计算实践,算法都在其中扮演着重要角色。
本课程的教学目的是讲授在计算机应用中常常遇到的实际问题的解法,讲授设计和分析各种算法的基本原理、方法和技术,培养学生对算法复杂性进行正确分析的能力。
课程基本要求是⑴掌握算法分析的基本概念和理论。
⑵掌握算法设计技术和分析算法以及算法复杂性。
【教学时间安排】本课程计 2 学分,理论课时32, 学时分配如下:【教学内容要点】第一章算法引论一、学习目的要求1.了解算法的计算复杂性分析方法2.理解算法分析的基本理论3.掌握算法分析的基本概念二、主要教学内容1. 算法的基本概念2. 表达算法的抽象机制3. 采用Java语言与自然语言相结合的方式描述算法的方法4. 算法的计算复杂性分析方法第二章递归与分治策略一、学习目的要求1.理解典型范例中递归与分治策略应用技巧2.掌握递归与分治策略3.掌握数学归纳法证明算法正确性方法二、主要教学内容1. 递归的概念2. 分治法的基本思想3. 二分搜索技术4. 大整数的乘法5. Strassen阵乘法6. 棋盘覆盖7. 合并排序8. 快速排序9. 线性时间选择10. 最接近点对问题11. 循环赛日程表第三章动态规划一、学习目的要求1.理解典型范例中动态规划算法的设计思想2.掌握动态规划算法的基本要求以及算法的设计要点二、主要教学内容1. 矩阵连乘问题2. 动态规划算法的基本要素3. 最长公共子序列4. 最大子段和5. 凸多边形最优三角剖分6. 多边形游戏7. 图像压缩8. 电路布线9. 流水作业调度10. 0—l背包问题11. 最优二叉搜索树12. 动态规划加速原理三、课堂讨论选题1. 最长公共子序列2. 0—l背包问题第四章贪心算法一、学习目的要求1.了解贪心算法的理论基础及基本要素2. 理解典型范例中贪心算法的设计思想3. 掌握贪心算法的设计要点二、主要教学内容1. 活动安排问题2. 贪心算法的基本要素3. 最优装载4. 哈夫曼编码5. 单源最短路径6. 最小生成树7. 多机调度问题8. 贪心算法的理论基础三、课堂讨论选题1. 最优装载2. 单源最短路径第五章回溯法一、学习目的要求1.理解回溯法的效率分析方法2.掌握回溯法的算法框架和应用技巧二、主要教学内容1. 回溯法的算法框架2. 装载问题3. 批处理作业调度4. 符号三角形问题5. n后问题6. 0—l背包问题7. 最大团问题8. 图的m着色问题9. 旅行售货员问题10. 圆排列问题11. 电路板排列问题12. 连续邮资问题13. 回溯法的效率分三、课堂讨论选题1. 0—l背包问题2. 图的m着色问题第六章分支限界法一、学习目的要求1.理解分支限界法的基本思想2.掌握典型范例中分支限界法的应用技巧二、主要教学内容1. 分支限界法的基本思想2. 单源最短路径问题3. 装载问题4. 布线问题5. 0-1背包问题6. 最大团问题7. 旅行售货员问题8. 电路板排列问题9. 批处理作业调度三、课堂讨论选题1. 0-1背包问题2. 批处理作业调度第七章概率算法一、学习目的要求1.理解概率算法的基本思想2.掌握典型范例中概率算法的应用技巧二、主要教学内容1. 随机数2. 数值概率算法3. 舍伍德算法4. 拉斯维加斯算法5. 蒙特卡罗算法第八章 NP完全性理论一、学习目的要求1.了解P类与NP类问题2.了解典型的NP完全问题二、主要教学内容1. 计算模型2. P类与NP类问题3. NP完全问题4. 一些典型的NP完全问题第九章近似算法一、学习目的要求1.掌握近似算法的基本思想2.掌握常用近似算法的应用二、主要教学内容1. 近似算法的性能2. 顶点覆盖问题的近似算法3. 旅行售货员问题近似算法4. 集合覆盖问题的近似算法5. 子集和问题的近似算法第十章算法优化策略一、学习目的要求1.掌握算法优化策略2.掌握算法优化的基本方法二、主要教学内容1. 算法优化策略的比较与选择2. 动态规划加速原理3. 问题的算法特征4. 优化数据结构5. 优化搜索策略【教学(实验)内容要点】算法设计与分析实验是算法设计与分析课的一个实践性教学环节。
实验二动态规划算法一、实验目旳与规定1、熟悉最长公共子序列问题旳算法;2、初步掌握动态规划算法;二、实验题若给定序列X={x1,x2,…,xm},则另一序列Z={z1,z2,…,zk},是X旳子序列是指存在一种严格递增下标序列{i1,i2,…,ik}使得对于所有j=1,2,…,k有:zj=xij。
例如,序列Z={B,C,D,B}是序列X={A,B,C,B,D,A,B}旳子序列,相应旳递增下标序列为{2,3,5,7}。
给定2个序列X和Y,当另一序列Z既是X旳子序列又是Y旳子序列时,称Z 是序列X和Y旳公共子序列。
给定2个序列X={x1,x2,…,xm}和Y={y1,y2,…,yn},找出X和Y旳最长公共子序列。
三.(1)实验源代码://最长公共子序问题://问题描述: 若给定序列X={x1,x2,…,xm},则另一序列Z={z1,z2,…,zk},//是X旳子序列是指存在一种严格递增下标序列{i1,i2,…,ik}使得对于所有j=1,2,…,k有:zj=xij。
//例如,序列Z={B,C,D,B}是序列X={A,B,C,B,D,A,B}旳子序列,相应旳递增下标序列为{2,3,5,7}。
//给定2个序列X和Y,当另一序列Z既是X旳子序列又是Y旳子序列时,称Z 是序列X和Y旳公共子序列。
//给定2个序列X={x1,x2,…,xm}和Y={y1,y2,…,yn},找出X和Y旳最长公共子序列。
#include<bits/stdc++.h>using namespace std;#define max 1000//注意:这里使用旳char数组,可以按字符输出,若改为string类型,//执行printf("%c",A[m-1])就会报错;char A[100],B[100]; //输入旳两个串a和b//这里定义全局变量可以不赋值0,由于全局变量自动赋值0;int c[max][max]; //记录最长公共子序旳长度;int b[max][max]; //记录状态号;void LCS(int m,int n){if(m==0||n==0){return;}else if(b[m][n]==1){LCS(m-1,n-1);printf("%c",A[m-1]);}else if(b[m][n]==2){m=m-1;LCS(m,n);}else if(b[m][n]==3){n=n-1;LCS(m,n);}}void LCS_length(int m,int n){for(int i=1;i<=m;i++){for(int j=1;j<=n;j++){if(A[i-1]==B[j-1]){c[i][j]=c[i-1][j-1]+1;b[i][j]=1;}else if(c[i-1][j]>=c[i][j-1]){c[i][j]=c[i-1][j];b[i][j]=2;}else{c[i][j]=c[i][j-1];b[i][j]=3;}}}}int main(){printf("请输入两个待测旳字符串:\n");scanf("%s",&A);scanf("%s",&B);int m=strlen(A); //m为A串长度;int n=strlen(B); //n为B串长度;LCS_length(m,n);printf("其最长公共子序旳长度为:%d\n",c[m][n]);printf("其最长公共子序为:");LCS(m,n);return 0;}(2)运营成果为:(3)算法思路:最长公共子序列旳构造有如下表达:设序列X=<x1, x2, …, x m>和Y=<y1, y2, …, y n>旳一种最长公共子序列Z=<z1, z2, …, z k>,则:1.若x m=y n,则z k=x m=y n且Z k-1是X m-1和Y n-1旳最长公共子序列;2.若x m≠y n且z k≠x m ,则Z是X m-1和Y旳最长公共子序列;3.若x m≠y n且z k≠y n,则Z是X和Y n-1旳最长公共子序列。
一、实验背景动态规划是一种重要的算法设计方法,广泛应用于解决优化问题。
本次实验旨在通过实际操作,加深对动态规划算法的理解,掌握其基本思想,并学会运用动态规划解决实际问题。
二、实验内容本次实验主要包括以下几个内容:1. 动态规划算法概述首先,我们对动态规划算法进行了概述,学习了动态规划的基本概念、特点、应用领域等。
动态规划是一种将复杂问题分解为若干个相互重叠的子问题,并存储已解决子问题的解,以避免重复计算的方法。
2. 矩阵连乘问题矩阵连乘问题是动态规划算法的经典问题之一。
通过实验,我们学会了如何将矩阵连乘问题分解为若干个相互重叠的子问题,并利用动态规划方法求解。
实验过程中,我们分析了问题的最优子结构、子问题的重叠性,以及状态转移方程,从而得到了求解矩阵连乘问题的动态规划算法。
3. 0-1背包问题0-1背包问题是另一个典型的动态规划问题。
在实验中,我们学习了如何将0-1背包问题分解为若干个相互重叠的子问题,并利用动态规划方法求解。
实验过程中,我们分析了问题的最优子结构、子问题的重叠性,以及状态转移方程,从而得到了求解0-1背包问题的动态规划算法。
4. 股票买卖问题股票买卖问题是动态规划在实际应用中的一个例子。
在实验中,我们学习了如何将股票买卖问题分解为若干个相互重叠的子问题,并利用动态规划方法求解。
实验过程中,我们分析了问题的最优子结构、子问题的重叠性,以及状态转移方程,从而得到了求解股票买卖问题的动态规划算法。
三、实验心得1. 动态规划算法的思维方式通过本次实验,我深刻体会到了动态规划算法的思维方式。
动态规划算法的核心是将复杂问题分解为若干个相互重叠的子问题,并存储已解决子问题的解。
这种思维方式有助于我们更好地理解和解决实际问题。
2. 状态转移方程的重要性在动态规划算法中,状态转移方程起着至关重要的作用。
它描述了子问题之间的关系,是求解问题的关键。
通过本次实验,我学会了如何分析问题的最优子结构,以及如何建立合适的状态转移方程。
南京信息工程大学滨江学院实验(实习)报告1.实验目的动态规划通常用来求解最优化问题。
通过本次实验掌握动态规划算法。
通过矩阵连乘问题和0-1背包问题实现动态规划算法。
学会刻画问题的最优结构特征,并利用最优化问题具有的重叠子问题性质,对每个子问题求解一次,将解存入表中,当再次需要这个子问题时直接查表,每次查表的代价为常量时间。
2.实验内容及分析设计过程1.矩阵链乘法问题矩阵链乘法问题可描述如下:给定个矩阵的链,矩阵的规模为,求完全括号方案,使得计算乘积所需的标量乘法次数最少。
令m[i,j]表示计算矩阵所需标量乘法次数的最小值,那么,原问题的最优解计是m[1,n]。
最小代价括号化方案的递归求解公式为采用自底向上表格法代替上述递归算法来计算最优代价。
为了实现自底向上方法,我们必须确定计算m[i,j]时需要访问哪些其他表项。
上述公式显示,j-i+l 个矩阵链相乘的最优计算代价m[i,j] 只依赖于那些少于j-i+l 个矩阵链相乘的最优计算代价。
因此,算法应该按长度递增的顺序求解矩阵链括号化问题,并按对应的顺序填写表m。
对如下输入A1 A2 A3 A4 A5 A630⨯35 35⨯15 15⨯5 5⨯10 10⨯20 20⨯25程序运行结果为2.背包问题给定n 个重量为价值为的物品和一个承重为W 的背包。
求这些物品中最有价值的一个子集,并且要能装到背包中。
设V[i,j]是能够放进承重量为j 的背包的前i 个物品中最有价值子集的总价值。
则递推关系为初始条件V[0,j]=0(j>=0),V[i,0]=0(i>=0) 我们的目标是求V[n ,W]。
递归式给出了V[i,j]的计算顺序,V[i,j]只依赖与前一行的那些项。
故可以逐行计算V[i,j].对于物品数量n=5,w[n]={2,2,6,5,4},v[n]={6,3,5,4,6},背包总重量c=10 程序运行结果为3. 实验小结通过本次实验加深了我对动态规划算法的理解。
动态规划算法实现多段图的最短路径问题算法设计与分析实验报告算法设计与分析实验报告实验名称 动态规划算法实现多段图的最短路径问题 评分 实验日期 年 月 日 指导教师 姓名 专业班级 学号一.实验要求1. 理解最优子结构的问题。
有一类问题的活动过程可以分成若干个阶段,而且在任一阶段后的行为依赖于该阶段的状态,与该阶段之前的过程如何达到这种状态的方式无关。
这类问题的解决是多阶段的决策过程。
在50年代,贝尔曼(Richard Bellman )等人提出了解决这类问题的“最优化原理”,从而创建了最优化问题的一种新的算法设计方法-动态规划。
对于一个多阶段过程问题,是否可以分段实现最优决策,依赖于该问题是否有最优子结构性质,能否采用动态规划的方法,还要看该问题的子问题是否具有重叠性质。
最优子结构性质:原问题的最优解包含了其子问题的最优解。
子问题重叠性质:每次产生的子问题并不总是新问题,有些子问题被反复计算多次。
问题的最优子结构性质和子问题重叠性质是采用动态规划算法的两个基本要素。
2.理解分段决策Bellman 方程。
每一点最优都是上一点最优加上这段长度。
即当前最优只与上一步有关。
U s 初始值,u j 第j 段的最优值。
⎪⎩⎪⎨⎧+==≠}.{min ,0ijiji js w u u u3.一般方法1)找出最优解的性质,并刻画其结构特征;2)递归地定义最优值(写出动态规划方程);3)以自底向上的方式计算出最优值;4)根据计算最优值时得到的信息,构造一个最优解。
步骤1-3是动态规划算法的基本步骤。
在只需要求出最优值的情形,步骤4可以省略,步骤3中记录的信息也较少;若需要求出问题的一个最优解,则必须执行步骤4,步骤3中记录的信息必须足够多以便构造最优解。
二.实验内容1.编程实现多段图的最短路径问题的动态规划算法。
2.图的数据结构采用邻接表。
3.要求用文件装入5个多段图数据,编写从文件到邻接表的函数。
4.验证算法的时间复杂性。
实验二最长公共子序列(动态规划算法)班级:08计算机科学与技术(1)班学号:E08620113 姓名:戴斌江机器号:实验二最长公共子序列问题一、实验目的:1、理解动态规划算法的概念;2、掌握动态规划算法的基本要素;3、掌握设计动态规划算法的步骤;4、通过应用范例学习动态规划算法的设计技巧与策略;二、实验内容及要求:1、使用动态规划算法解决最长公共子序列问题:给定两个序列X={x1,x2,…,xm}和Y={y1,y2,…,yn},找出X和Y的最长公共子序列。
2、通过上机实验进行算法实现。
3、保存和打印出程序的运行结果,并结合程序进行分析,上交实验报告。
三、实验原理:动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。
20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,利用各阶段之间的关系,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。
1957年出版了他的名著Dynamic Programming,这是该领域的第一本著作。
算法总体思想:1)动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。
2)与分治法不同的是,适合于用动态规划法求解的问题,经分解得到的子问题往往不是独立的。
子问题中存在大量的公共子问题,在分治求解过程中被多次重复计算,保存计算结果,为后面的计算直接引用,减少重复计算次数这就是动态规划的基本思想。
3)用动态规划算法求解问题,可依据其递归式以自底向上的方式进行计算。
在计算过程中,保存已解决的子问题的答案。
每个子问题只计算一次,而在后面需要时只要简单查一下,从而避免大量重复计算,最终得到多项式时间算法。
动态规划算法——租用游艇问题(一)实验目的:理解动态规划思想,掌握用动态规划设计算法的方法来解决游艇租用问题。
(二)实验内容:长江游艇俱乐部在长江上设置了n个游艇出租站1,2,…,n。
游客可在这些游艇出租站租用游艇,并在下游的任何一个游艇出租站归还游艇。
游艇出租站i到游艇出租站j之间的租金为r(i,j).设计一个算法,计算出从游艇出租站1到游艇出租站n所需要的最少租金。
(三)实验要求:对于给定的游艇出租站i到游艇出租站j之间的租金为r(i,j),编程计算从游艇出租站1到游艇出租站n所需要的最少租金。
上机调试并测试,记录调试和测试的情况,结合程序进行分析。
(四)实验环境:Vc++编译环境(五)实验主要源代码:(1)用dyna()函数计算最少租金void dyna(int &n,int f[N][N]){for(int k=2;k<n;k++)for(int i=0;i<n-k;i++){int j=i+k;for(int p=i+1;p<j;p++){int tmp=f[i][p]+f[p][j];if(f[i][j]>tmp)f[i][j]=tmp;}}}(2)在主函数中实现输出结果。
int main(){ifstream fin("050501103in.txt");ofstream fout("050501103out.txt");if (fin.fail()) {cout<<"fin(\"050501103in.txt\")文件出错!请先建立050501103in文本!"<<endl;return 1;}if (fout.fail()) {cout<<"fout(\"050501103out.txt\")文件出错!";return 2;}int f[N][N];int n;int i,j;fin>>n;if(n<=0){ cout<<"请在050501103in文本的第一行中输入游艇出租站的个数:"<<endl;cout<<"请在050501103in文本的第二行开始输入n(n-1)/2个站与站之间的租金数:"<<endl;}else if(n>N){cout<<"请修改N的值,使N大于n:"<<endl;}else {for(i=0;i<n;i++)for(j=0;j<n;j++)if(j>i)fin>>f[i][j];cout<<"请在050501103out文本中看输出结果(从出租站1到n的最少租金):"<<endl;dyna(n,f);fout<<f[0][n-1]<<endl;}}(六)实验结果:050501103in.txt 050501103out.txt3 125 157(七)实验总结:此程序的设计思想:利用dyna()函数计算最少租金。
实验报告2.2(递归法)学号:201208070103 姓名:陈明班级:智能1201第16 周课程名称算法设计与分析实验课时 2实验项目整数因子分解问题实验时间2015年1月10日实验目的对于给定的正整数n,计算n共有多少种不同的分解式。
实验环境Eclipse Luna, Java JDK1.7, Windows 8.1实验内容(算法、程序、步骤和方法)一、算法策略动态规划法。
把1~number的约数预先存起来,需要用得时候,直接在前面取得。
二、算法设计(步骤)1)把number的约数全部计算出来,存储在factor数组里面。
2)使用快速排序法QuickSort把factor按升序排序3)使用动态规划法。
把0~number的分解式的个数存在recordNum数组里面。
三、复杂度分析1)时间复杂度:首先时计算约数因子,其次是快速排序,最后是动态规划,这三步伟主要耗时。
故时间复杂T(n)=O(n)+O(n*log n)+O(k) (其中k为number 的约数个数,故为常数级别)。
故T(n)<O(n*log n)+ O(n*log n)=2 O(n*log n)故该算法的时间复杂度为 O(n*log n)2)空间复杂度:O(n)1)从控制台console输入数字,java封装类Scanner获得输入流;2)获得的数字,赋值给number数据记录和计算1)number=12时:2)number=11时:结论(结果)3)number=888888时:小结1)动态规划法相对于递归法来说,当输入规模很大时,应该考虑动态规划法;2)进行两个种方法的对比:Number=888888动态规划法:递归法:T(动态规划)=30毫秒,T(递归策略)=263毫秒显然,从耗时上来看,动态规划法要优于递归策略!指导老师评议成绩评定:指导教师签名:。
第1篇一、实验目的1. 理解背包问题的基本概念和分类。
2. 掌握不同背包问题的解决算法,如0-1背包问题、完全背包问题、多重背包问题等。
3. 分析背包问题的复杂度,比较不同算法的效率。
4. 通过实验验证算法的正确性和实用性。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.73. 开发工具:PyCharm4. 实验数据:随机生成的背包物品数据三、实验内容1. 0-1背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。
求将哪些物品装入背包,使得背包内物品的总价值最大。
(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个二维数组dp[n+1][C+1],其中dp[i][j]表示前i个物品在容量为j 的背包中的最大价值。
b. 遍历每个物品,对于每个容量,根据物品的重量和价值计算dp值。
c. 返回dp[n][C],即为最大价值。
2. 完全背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。
求将哪些物品装入背包,使得背包内物品的总价值最大,且每个物品可以重复取。
(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个一维数组dp[C+1],其中dp[j]表示容量为j的背包的最大价值。
b. 遍历每个物品,对于每个容量,根据物品的重量和价值更新dp值。
c. 返回dp[C],即为最大价值。
3. 多重背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。
每个物品有无限个,求将哪些物品装入背包,使得背包内物品的总价值最大。
(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个一维数组dp[C+1],其中dp[j]表示容量为j的背包的最大价值。
b. 遍历每个物品,对于每个容量,根据物品的重量和价值更新dp值。
c. 返回dp[C],即为最大价值。
四、实验结果与分析1. 0-1背包问题实验结果显示,在背包容量为100时,最大价值为298。
竭诚为您提供优质文档/双击可除动态规划法实验心得篇一:动态规划法实验报告数学与计算机学院实验报告一、实验项目信息项目名称:动态规划法实验实验时间:20XX/04/27实验学时:03学时实验地点:工科楼二、实验目的及要求理解动态规划法的设计思想、掌握动态规划法的求解步骤、掌握用动态规划法解题的算法框架。
三、实验环境计算机windows7myeclipseprofessional20XXJAVA8四、实验内容及实验步骤动态规划法求解最大子段和问题:划分:先对规模k的问题求解然后再求k+1问题(既k=1然后k=2......)代码:#Adder.javapackagecom.chanheng;publicclassAdder{int[]b=newint[100];//定义辅助数组intmax;//从辅助数组里面找出最大的值的变量publicintadd(int[]a){b[0]=a[0];max=b[0];for(inti=1;i if(b[i-1]>0)b[i]=b[i-1]+a[i];elseb[i]=a[i];if(b[i]>max)max=b[i];}returnmax;}/***找出组成最大字段和的段*@parama*/publicvoidgetArray(int[]a){inti,j,k,sum=0;int[]c=ne wint[100];for(i=0;i while(j>=0){sum+=a[j];if(sum==max)break;j--;}k=i-j;for(intx=0;x }for(intx=0;x system.out.print(c[x]+"");}}}#Tester.javapackagecom.chanheng;importjava.util.scanner;publicclassTester{publicstaticvoidmain(string[]args ){//ToDoAuto-generatedmethodstubnewscanner(system.in);int[]a=newint[10];system.out.println("pleaseinput10number:");for(inti =0;i }(:动态规划法实验心得) Adderad=newAdder();system.out.println("最大字段和是:"+ad.add(a));system.out.println("**最大字段和的组成数组*******");ad.getArray(a);}}五、实验结果分析结果正确并能找出最大字段和的部分。