小波分析之泛函分析距离空间
- 格式:ppt
- 大小:271.50 KB
- 文档页数:43
们同意前人的提法,认为线性泛函与无穷维空间上引进坐标的思想有关,而对偶理论则有如无穷维线性空间上的解析几何学。
Chp.1距离线性空间SS1.选择公理,良序定理,佐恩引理有序集的定义:(1)若a在b之先,则b便不在a之先。
(2)若a在b之先,b在c之先,则a在c之先。
这种先后关系记作■-良序集:A的任何非空子集C都必有一个属于C的最先元素。
良序集的超限归纳法:(1)!… 为真,这里「是A中最先的元素。
2)厂'’对一切- ,-',为真,则1;卜;:L亦真那么「对一切a E 4皆真。
选择公理设N={N}是一个非空集合构成的族,则必存在定义在N上的函数f,使得对一切:L N都有「\部分有序称元素族X是部分有序的,如果在其中某些元素对(a,b)上有二元关系& - ,它据有性质:。
Y 心;If a and BY% then a = &; 7/ a band b Y® then呛Y 起例如X中包换关系在部分有序集下,有上界、极大元和完全有序其中完全有序的C:门;.兀心化心強工冷总好宀百例如在复数域中,按大小关系定义两个复数的关系,则复平面是部分有序的,实轴、虚轴是完全有序的。
佐恩引理设X非空的部分有序集,如果X的任何完全有序子集都有一个上界在X中,则X必含有极大元。
从现代观点来看,泛函分析研究的主要是研究实数域或者复数域上的完备赋范线性空间SS2.线性空间,哈迈尔(Hamel )基线性空间的定义:加法交换、加法结合、有零元,有负元、有单位元等。
线性流形:线性空间中的非空子集,如果它加法封闭、数乘封闭。
线性流形的和M+N :所有形如m+n的元素的集合,其中m € M, n € N 线性流形的直和:如果M AN={ 0}则以代替M+N如果.- ?.-■:■■ ■;;.;,则称M与N是代数互补的线性流形。
于是有下述定理:定理2.1设M,N是线性空间X的线性流形,则.< —⑴当且仅当对每个x€ X都有唯一的表达式x=m+n, m € M,n € N.定理 2.2 若上一.:::=:卜,贝Ll dimX=dimM+dimNHamel基的定义:设X是具有非零元的线性空间,X的子集H称为X的Hamel基,如果(1)H是线性无关的。
度量空间:把距离概念抽象化,对某些一般的集合引进点和点之间的距离,使之成为距离空间,这将是深入研究极限过程的一个有效步骤。
泛函分析中要处理的度量空间,是带有某些代数结构的度量空间,例如赋范线性空间,就是一种带有线性结构的度量空间。
一、度量空间的进一步例子1、度量空间设x 是一个集合,若对于x 中任意两个元素x,y ,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1° 的充要条件为x=y2° 对任意的z 都成立,则称 d(x,y) 是 x,y 之间的距离,称 d(x,y)为度量空间或距离空间。
x 中的元素称为点。
2、常见的度量空间(1)离散的度量空间 设 x 是任意的非空集合,对 x 中的任意两点 ,令 称 为离散的度量空间。
(2)序列空间S令S 表示实数列(或复数列)的全体,对S 中的任意两点令 称 为序列空间。
(3)有界函数空间B(A )设A 是一个给定的集合,令B(A)表示A 上有界实值(或复值)函数全体,对B(A)中任意两点x,y ,定义 (4)可测函数空间设M(X)为X 上实值(或复值)的勒贝格可测函数全体,m 为勒贝格测度,若 ,对任意两个可测函数 及 由于 ,所以这是X 上的可积函数。
令 (5)C[a,b]空间令C[a,b] 表示闭区间[a,b]上实值(或复值)连续函数全体,对 C[a,b]中任意两点x,y ,定义二、度量空间中的极限、稠密集、可分空间1、收敛点列设 是(X ,d )中点列,如果存在 ,使 则称点列 是(X ,d ) 中的收敛点列,x 是点列 的极限。
收敛点列性质:(1)在度量空间中,任何一个点列最多只有一个极限,即收敛点列的极限是唯一的。
(2)M 是闭集的充要条件是M 中任何收敛点列的极限都在M 中。
(,)0,(,)0d x y d x y ≥=(,)(,)(,)d x y d x z d y z ≤+,x y X ∈1,(,)0,if x y d x y if x y ≠⎧=⎨=⎩(,)X d 1212(,,...,,...),(,,...,,...),n n x y ξξξηηη==1||1(,)21||i i i i i i d x y ξηξη∞=-=+-∑(,)S d (,)sup |()()|t A d x y x t y t ∈=-()m X <∞()f t ()g t |()()|11|()()|f tg t f t g t -<+-|()()|(,)1|()()|X f t g t d f g dt f t g t -=+-⎰(,)max |()()|a t b d x y x t y t ≤≤=-{}n x x X ∈lim (,)0n n d x x →∞={}n x {}n x2、收敛点列在具体空间中的意义(1)n 维欧式空间中:为 中的点列,即: 按欧式距离收敛于x 的充要条件是 依坐标收敛于(2)序列空间S 中:为 S 中的点列,(3)C[a,b]空间设 及X 分别为C[a,b] 中的点列及点,(4)可测函数空间M(X)设 及 f 分别为可测函数空间中的点列及点,3、稠密集,可分空间(1)设X 是度量空间,E 和M 是X 中的两个子集,令 表示M 的闭包,如果 ,那么称集M 在集E 中稠密。
泛函分析第二章知识点总结
泛函分析知识点总结Baire定理定理(Baire纲定理)完备的距离空间是第二类型集。
解释:完备的距离空间(X,d)(X,d),∀x∈X∀x∈X都是内点,因为XX在XX中是开集。
一个无处稠密(nowhere dense)的集合就是闭包不含内点的集合不会是整个XX,即XX不是第一类型集,所以只能是第二类型集。
注:完备的距离空间是第二类型集,那么它的闭包至少存在一个内点。
这个经常被用来证明。
例如,开映射定理、闭图像定理等。
闭包和导集的区别根据定义,集合的闭包是集合的导集和集合的并。
导集是集合所有聚点组成的集合,不包含孤立点。
所以闭包是集合导集和孤立点组成的集合。
闭集在度量空间中,如果一个集合所有的极限点都是这个集合中的点,那么这个集合是闭集。
不动点定理压缩映射:设(X,d)(X,d)是距离空间,TT是XX到XX的映射,如果存在一个常数θ(0≤θ<1)θ(0≤θ<1),对于所有的x,y∈Xx,y∈X,满足下述不等式:d(Tx,Ty)<θd(x,y)d(Tx,Ty)<θd(x,y)则称TT是XX上的一个压缩映射。
不动点定理:设XX是完备的距离空间,TT是XX到XX的压缩映射,则TT在XX上有唯一的不动点x∗x∗.即Tx∗=x∗Tx∗=x∗是方程Tx=xTx=x在XX上的唯一解。
应用泛函分析总结1.距离空间的定义:设X 是非空集合,若存在一个映射d :X ×X →R ,使得∀x,y,z ∈X,下列距离公理成立:(1)非负性:d(x,y)≥0,d(x,y)=0⇔x=y; (2)对称性:d(x,y)=d(y,x);(3)三角不等式:d(x,y)≤d(x,z)+d(z,y);则称d(x,y)为x 与y 的距离,X 为以d 为距离的距离空间,记作(X ,d ). P37 例题2.1.22.距离空间中的开集与闭集【两个定理的证明会考一个】设A ⊂X ,若0A A =,则称A 为X 中的开集;若A =A ,则称A 为X 中的闭集。
定理2.2.1(开集与闭集的对偶性)开集的余集是闭集,闭集的余集是开集。
证:设A 为开集,则有A ∂⊂C A ;再由'0A A A A A =∂=,有C C C C C C C A A A A A A A A =∂=∂=∂= )()()(0 故C A 为闭集,若A 为闭集,则由A A A A A ∂=∂=\\0,有()()C CC C C C C C C C C A A A A A A A A A A A ==∂=∂=∂=∂=)())(())(()(\0故C A 为开集。
定理2.2.2任意个开集的并集是开集,有限个开集的交集是开集。
证:设αG (α∈I)为开集,令ααG G U I∈=,则∀x ∈G ,I ∈∃β,使得βG x ∈。
由βG 为开集,知∃r >0,使得 G G x B ⊂⊂β)(r 从而x 为G 的内点,故G 为开集;又设k k G G n1==,其中k G (k=1,2,…,n )为开集,则∀x ∈G,有x ∈k G (k=1,2,…,n ).由k G 开,知∃k r >0,使得k r G x B k ⊂)(,故取 }{r min 1k nk r ≤≤=,则有G G x B k nk r =⊂= 1)(,从而有x 为G 的内点,故G 亦为开集。
泛函分析期末复习提要一、距离空间与拓扑空间(一)教学内容1.距离空间的基本概念:定义与例子、收敛性、距离空间的连续映射与等距。
2.距离空间中的点集:开集与闭集、稠密子集,可分距离空间。
3.完备距离空间:Cauc/巧列,完备性、闭球套定理、纲,纲定理、距离空间完备化。
4.压缩映射原理:不动点,压缩映射原理、压缩原理的一些应用。
5.拓扑空间的基本概:拓扑空间的定义、拓扑基、拓扑空间中的连续映射, 同胚、分离公理。
6.紧性和距离空间的紧性:紧性的概念、紧空间的连续映射。
7.距离空间的紧性:列紧集,全有界集、Arzela定理。
重点掌握距离空间的基本概念、距离空间中的点集、完备距离空间、压缩映射原理、拓扑空间的基本概念、紧性和距离空间的紧性。
难点完备距离空间、压缩映射原理。
(-)教学基本要求1・理解距离空间、距离空间中的点集等基木概念。
2•了解完备距离空间的概念,掌握压缩映射原理的证明。
3.理解拓扑空间的基木概念及其运算性质。
二、赋范线性空间(一)教学内容1.赋范空间的基本概念:赋范空间的定义、赋范空间的基本性、凸集、赋范空间的例。
2.空间L p(p>\):Holder不等式与Minkowski不等式、空间r(E)(p>i).空间r(E)o3•赋范空间进一步的性质:赋范空间的子空间、赋范空间的完备化、赋范空间的商空间、赋范空间的乘积、赋范线性空间的基本概念、等价范数。
4.有穷维赋范空间。
重点赋范空间的定义、赋范空间的基本性、凸集、赋范空间的例、Holder 不等式与Minkowski不等式、空间(£)(/?> 1) >空间匕(E)、赋范空间的子空间、赋范空间的完备化、赋范空间的商空间、赋范空间的乘积、赋范线性空间的基本概念、等价范数。
难点Holder不等式与Minkowski不等式、赋范空间的完备化、空间r(E)(p>i).空间r(E)o(-)教学基本要求1•理解赋范空间的定义、赋范空间的基本性、凸集、赋范空间的子空间、赋范线性空间的基本概念、等价范数。
泛函分析中的八大空间泛函分析绪论总结参考教材是孙炯老师的《泛函分析》❞泛函分析学习目标1、了解和掌握空间理论(距离、赋范、内积空间)和线性算子理论(线性算子空间、线性算子谱分析)中基本概念和理论。
2、运用全新的、现代数学的视点审视、处理数学基础课程中的一些问题。
3、将分析中的具体问题抽象到一种更加纯粹的代数、拓扑形式中加以研究,综合运用分析、代数、几何手段处理问题。
❞泛函分析研究对象与方法泛函分析综合分析、代数、几何的观点和方法来研究无穷维空间上的函数、算子和极限理论,处理和解决数学研究中最关心的一些基本问题。
泛函分析的特点是把古典分析的基本概念和方法一般化、并将这些概念和方法几何化。
解析几何的创立,将代数问题几何化、几何问题代数化,那么这种模式可类比的推广到泛函分析的研究中。
❞(1)建立一个新的空间框架,空间中元素包括函数、运算。
「注」:空间中的元素?空间的结构(距离、范数、内积)(2)在新的空间框架下,研究解决分析、代数、几何中的问题,把分析中的问题结合几何、代数的方法加以处理。
「注」:泛函分析主要研究无穷维空间到无穷维空间的映射、运算,因此关注无穷维空间的性质,收敛性问题(如加法与无穷级数的区别)一些个人思考在三维实向量空间中进行了坐标分解,这样可以更清楚的表示这个向量的相关一些信息,那么空间的几何结构变得非常明了;另外将一个矩阵映射进行了分解,那么它的作用效果,也变得很明了。
所以自然联想到,无穷维空间能否有这样的几何结构(坐标系、正交性、元素能否分解?)、其中的映射又能否分解?但是在这其中就会遇到新的问题,也就是无穷项相加,就会有收敛性的问题。
❞泛函分析主要内容(1)空间、极限的概念,讨论他们的性质.包括:距离空间、赋范空间、内积空间、Hilbert空间.(2)研究线性算子(线性算子空间).包括:有界线性算子、有界线性算子的重要性质、共轭空间。
其中:一致有界原则、开映射定理、闭图像定理、Hahn-Banach定理.(3)线性算子的谱理论.线性算子的谱分解从结构上展示了线性算子的基本运算特征,特别是自共轭算子的谱分解,与有限维空间对称矩阵的分解很类似.❞定义1:设有集合,且存在映射,使得对任意的都有:1.非负性:;2.对称性:;3.三角不等式:映射称为集合上的一个度量,称为度量空间.度量函数有时也用表示.下边我们给出一些常用的度量空间:1.,度量函数为经典度量.这样的实空间就称为欧式空间.2.(平凡度量)在任何一个集合上,我们都可以定义上述度量,因此任何一个集合上都可以让其变为一个度量空间.1.(空间) 所有的方勒贝格可积函数,定义度量:1.(空间) 所有的在可测的本性有界的函数,定义度量:表示它的本性上界.1.(空间和空间) 元素是数列:.2.3.(连续函数空间) 如果不做声明时,我们的定义的度量是:4.当然还可以有其他度量:有了度量函数后,我们可以定义收敛性:定义2:设为距离空间中的一个点列(或称序列), 这里如果存在中的点, 使得当时, , , 则称点列收敛于, 记为有时也简记为称为的极限.注意到,这里一定要要求在集合中!命题1:设是距离空间中的收敛点列,则下列性质成立:(i) 的极限唯一;(ii) 对任意的, 数列有界.(iii) 如果收敛,那么它的任意子列也收敛.定义3:距离空间中的点列叫做基本点列或柯西点列,若对任给的, 存在, 使得当时,如果中的任一基本点列必收敛于中的某一点,则称为完备的距离空间.注意到:一个空间是否完备与它的集合和度量都有关系,比如:按照最大值定义的度量是完备的,但是按照积分定义的度量不完备,在比如上配备欧式度量,点列是基本列但是不收敛,因为不在集合中.一个不完备的空间,我们可以想方设法的添加一些元素使其完备,然而是否任何的不完备空间都能这样做使其完备呢?这就要需要我们的完备化定理了!在此之前,我们需要引入一些其他有必要的东西!定义4设是两个度量空间, 如果存在映射:满足:(1):是满射;(2):.则称和是等距同构的, 称为等距同构映射, 有时简称等距同构。
泛函分析知识点知识体系概述(一)、度量空间与赋范线性空间第一节 度量空间的进一步例子1.距离空间的定义:设X 就是非空集合,若存在一个映射d:X ×X →R,使得∀x,y,z ∈X,下列距离公理成立:(1)非负性:d(x,y)≥0,d(x,y)=0⇔x=y;(2)对称性:d(x,y)=d(y,x);(3)三角不等式:d(x,y)≤d(x,z)+d(z,y);则称d(x,y)为x 与y 的距离,X 为以d 为距离的距离空间,记作(X,d)2、几类空间例1 离散的度量空间例2 序列空间S例3 有界函数空间B(A)例4 可测函数空M(X)例5 C[a,b]空间 即连续函数空间例6 l 2第二节 度量空间中的极限,稠密集,可分空间1. 开球定义 设(X,d)为度量空间,d 就是距离,定义U(x 0, ε)={x ∈X | d(x, x 0) <ε}为x 0的以ε为半径的开球,亦称为x 0的ε一领域、2. 极限定义 若{x n }⊂X, ∃x ∈X, s 、t 、 ()lim ,0n n d x x →∞= 则称x 就是点列{x n }的极限、 3. 有界集定义 若()(),sup ,x y Ad A d x y ∀∈=<∞,则称A 有界4. 稠密集定义 设X 就是度量空间,E 与M 就是X 中两个子集,令M 表示M 的闭包,如果E M ⊂,那么称集M 在集E 中稠密,当E=X 时称M 为X 的一个稠密集。
5. 可分空间定义 如果X 有一个可数的稠密子集,则称X 就是可分空间。
第三节 连续映射1、定义 设X=(X,d),Y=(Y , ~d )就是两个度量空间,T 就是X 到Y 中映射,x0X ∈,如果对于任意给定的正数ε,存在正数0δ>,使对X 中一切满足()0,d x x δ< 的x,有()~0,d Tx Tx ε<,则称T 在0x 连续、2、定理1 设T 就是度量空间(X,d)到度量空间~Y,d ⎛⎫ ⎪⎝⎭中的映射,那么T 在0x X ∈连续的充要条件为当()0n x x n →→∞时,必有()0n Tx Tx n →→∞3、定理2 度量空间X 到Y 中的映射T 就是X 上连续映射的充要条件为Y 中任意开集M 的原像1T M -就是X 中的开集、第四节 柯西(cauchy)点列与完备度量空间1、定义 设X=(X,d)就是度量空间,{}n x 就是X 中点列,如果对任意给定的正数0ε>,存在正整数()N N ε=,使当n,m>N 时,必有(),n m d x x ε<,则称{}n x 就是X 中的柯西点列或基本点列。