振动理论及其应用:第4章_多自由度系统振动(d)
- 格式:ppt
- 大小:1.65 MB
- 文档页数:43
第四章多自由度系统的振动4.1多自由度系统运动方程的建立4.2 耦合与坐标变换4.3 固有频率和主振型4.4振型矩阵、主坐标和正则坐标4.5 固有频率相等的情况4.6 固有频率为零的情况4.7 无阻尼系统对初始条件的响应4.8 无阻尼系统对任意激励的响应4.9 多自由度系统的阻尼4.10 有阻尼系统的响应4.11 一般粘性阻尼系统的响应一般粘性阻尼系统的响应i nj nj j j i j j i nj j j i ==•=••111i n j n j j j i j j i n j j j i Q q k q c q m =++∑∑∑==•=••111•••[][]{}[]{}{}Q q k q c q m =++⎭⎬⎫⎩⎨⎧•••nn n n n n 212222111211212222111211nn n n n n 212222111211212222111211nn n n n n 212222111211212222111211••••••n 11•••n 11n 11n 11inj nj j j i j j i nj j j i ==•=••111i n j n j j j i j j i n j j j i P x k x c x m =++∑∑∑==•=••111•••[][]{}[]{}{}P x k x c x m =++⎭⎬⎫⎩⎨⎧•••n 2121•i ••i1m 12m 23m 3ii •i i Q q Dq T =∂∂+∂∂•1m 12m 23m 32222)2221k +2222•2221⎟⎠⎞+•x c jjj j q W δδ11x δ11P 111x P δ1x δ22P 33P 2⎟⎠⎞21221212212111••••122121221211123323212332321222•••••2332321233232122233323332333••••33323332333•••••••••321333322221321321321333322221321321000000003213213333222213213213333222210•1•1θv ••2θv •1•=1θ•2•=2θ22θ−+mg l 22θl +k Oθ222yk+=•••[][]{}[]{}{}P x k x c x m =++⎭⎬⎫⎩⎨⎧•••••••••n n i j j i i 1111•••nn i j j i i 1111in n i j j i i 1111i j刚度影响系数k i j 若系统各自由度的广义速度和广义加速度为零,除j i i j i 。
第4章 多自由度系统振动分析的数值计算方法用振型叠加法确定多自由度系统的振动响应时,必须先求得系统的固有频率和主振型。
当振动系统的自由度数较大时,这种由代数方程求解系统固有特性的计算工作量很大,必须利用计算机来完成。
在工程中,经常采用一些简单的近似方法计算系统的固有频率及主振型,或将自由度数较大的复杂结构振动问题简化为较少阶数的振动问题求解,以得到实际振动问题的近似分析结果。
本章将介绍工程上常用的几种近似解法,适当地选用、掌握这类实用方法,无论对设计研究或一般工程应用都将是十分有益的。
§4.1 瑞利能量法瑞利(Rayleigh )能量法又称瑞利法,是估算多自由系统振动基频的一种近似方法。
该方法的特点是:①需要假定一个比较合理的主振型;②基频的估算结果总是大于实际值。
由于要假设主振型,因此,该方法的精度取决于所假设振型的精度。
§4.1.1 第一瑞利商设一个n 自由度振动系统,其质量矩阵为[]M 、刚度矩阵为[]K 。
多自由度系统的动能和势能一般表达式为{}[]{}{}[]{}/2/2TTT x M x U x K x ⎫=⎪⎬=⎪⎭&& (4.1.1)当系统作某一阶主振动时,设其解为{}{}(){}{}()sin cos x A t x A t ωαωωα=+⎫⎪⎬=+⎪⎭&(4.1.2)将上式代入式(4.1.1),则系统在作主振动时其动能最大值max T 和势能最大值max U 分别为{}[]{}{}[]{}2max max /2/2TTT A M A U A K A ω⎫=⎪⎬=⎪⎭(4.1.3)根据机械能守恒定律,max max T U =,即可求得{}[]{}{}[]{}()2I TTA K A R A A M A ω== (4.1.4)其中,()I R A 称为第一瑞利商。
当假设的位移幅值列向量{}A 取为系统的各阶主振型{}i A 时,第一瑞利商就给出各阶固有频率i ω的平方值,即{}[]{}{}[]{}2(1,2,,)Ti i i Ti i A K A i n A M A ω==L(4.1.5)在应用上式时,我们并不知道系统的各阶主振型{}i A ,只能以假设的振型{}A 代入式(4.1.4),从而求出的相应固有频率i ω的估计值。
第四章多自由度体系无阻尼自由振动主要内容1 多自由度体系的自振振型和自振频率2 振型的正交性3 位移的振型展开和能量的振型展开1 多自由度体系的自振振型和自振频率所谓振型就是结构体系在无外荷载作用时的自由振动时的位移形态,N个自由度体系有N个不同的振型。
当结构按某一振型振动时,自振频率是与之相对应的常量。
因此对N个自由度体系,一般情况下有个N个自振频率。
多自由度结构的振型和自振频率是结构的固有特性,和单自由度一样是反映结构动力特性的主要量。
因此在讲到结构动力特性时,首先想到的就是结构的自振振型和频率。
结构的自振振型和频率,可通过分析结构的无阻尼自由振动方程获得。
多自由度体系无阻尼自由振动的方程为:其中[M ]、[K ]为N ×N 阶的质量和刚度矩阵,{u }和{ü}是N 阶位移和加速度(或广义坐标)向量,{0}是N 阶零向量。
上式是体系作自由振动时必须满足的控制方程,下面分析当位移向量{u }是什么形式时可以满足此式要求。
[]{}[]{}{}0=+u K uM根据前面经验,多自由度体系的振动形式可写为:{φ}—表示体系位移形状向量,它仅与坐标位置有关,不随时间变化,称为振型。
ω—简谐振动的频率,θ—相位角。
上式对时间求两次导数可得{}{}{})sin()(θωφ+==t t u u {}{}{})sin()(2θωφω+−==t t u u对于稳定结构体系,其质量阵与刚度阵具有实对称性和正定性,所以相应的频率方程的根都是正实根。
对于N 个自由度的体系,频率方程是关于ω2的N 次方程,由此可以解得N 个根(ω12<ω22<ω32…<ωN 2)。
ωn (n =1, 2, …, N )即为体系的自振频率。
其中量值最小的频率ω1叫基本频率(相应的周期T 1=2π/ω1叫基本周期)从以上分析可知,多自由度体系只能按一些特定的频率即按自振频率做自由振动。
按某一自振频率振动时,结构将保持一固定的形状,称为自振振型,或简称振型。