七年级数学上册合并同类项(第2课时)教案人教版
- 格式:doc
- 大小:58.50 KB
- 文档页数:3
3.2.1 解一元一次方程—合并同类项【教学目标】1.会根据实际问题找相等关系列一元一次方程,会利用合并同类项解一元一次方程。
2.体会方程中的化归思想,会用合并同类项解决“ax+bx=c”型方程,进一步认识如何用方程解决实际问题。
3.通过对实际问题的分析,体会一元一次方程作为实际问题的数学模型的作用。
【教学重、难点】会列一元一次方程解决实际问题,并会合并同类项解一元一次方程。
【教学准备】课本、练习本、练习册【教学过程】一、忆旧识新再设疑——新课导入1.复习回顾(1)同类项:所含字母____,并且_____的指数也分别相同的项叫____。
(2)合并同类项:合并同类项时,只把_____相加减,字母与字母的指数_____。
2.创设情境,提出问题约公元820年,中亚细亚数学家阿尔—花拉子米写了一本代数书,重点论述怎样解方程。
这本书的拉丁文译本取名为《对消与原》。
“对消”与“还原”是什么意思呢?【设计意图】学生通过复习旧知识,进一步巩固了同类项的相关概念,为准备本课的学习做好铺垫。
二、曲径通幽细探寻——问题探究某校近三年共购买计算机140台,去年的购买量是前年的2倍,今年的购买量又是去年的2倍,前年这个学校购买了多少台计算机? 活动1:推理验证问题1:可以怎样设未知数?【学生活动】独立思考,同桌交流归纳。
分析:设前年购买计算机x台。
则去年购买计算机2x台,今年购买计算机4x台。
问题2:题目中的等量关系是什么?【学生活动】独立思考,小组交流归纳。
前年购买量+去年购买量+今年购买量=140台问题3:如何根据等量关系列方程?由题意得,x+2x+4x=140活动2:集思广益,寻找解一元一次方程的办法问题1:怎样解这个方程?如何将这个方程转化为x=a的形式?合并同类项,得7x=140系数化为1,得x=20答:所以前年这个学校购买了20台计算机。
思考:以上解方程中的“合并”起了什么作用?它把含未知数的项合并为一项,从而向x=a的形式迈进了一步,起到了化简的作用。
2.2.1 合并同类项教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第二章“整式的加减” 2.2.1 合并同类项,内容包括:同类项的概念、合并同类项的法则、在合并同类项的基础上进行化简、求值运算.2.内容解析本节课是学生进入初中阶段后,在学习了用字母表示数,单项式、多项式以及有理数运算的基础上,对同类项进行合并、探索、研究的一个课题.合并同类项是本章的一个重点,其法则的应用是整式加减的基础,也是以后学习解方程、解不等式的基础.另一方面,这节课与前面所学的知识的联系非常密切:合并同类项的法则是建立在有理数的加减运算的基础之上;在合并同类项过程中,要不断运用有理数的运算.可以说合并同类项是有理数加减运算的延伸与拓展.基于以上分析,确定本节课的教学重点为:知道同类项的概念,会识别同类项,理解和熟练应用合并同类项法则.二、目标和目标解析1.目标(1)知道同类项的概念,会识别同类项.(2)掌握合并同类项的法则,并能准确合并同类项.(3)能在合并同类项的基础上进行化简、求值运算.2.目标解析通过观察、对比、分析,理解同类项的定义,能够识别同类项.根据分配律,类比数的计算进行式的计算,从而理解合并同类项的概念,掌握合并同类项的法则.通过例题学习和习题训练,会利用合并同类项的法则化简多项式,会代入具体的值进行计算.经历概念的形成过程和法则的探究过程,培养观察、归纳、概括能力,发展应用意识.激发学生的求知欲,在独立思考和合作交流的基础上,积极参与讨论,敢于发表自己的观点,从交流中获益,体验成功的喜悦.三、教学问题诊断分析学生前面已经学会了有理数运算,掌握了单项式、多项式的有关概念等知识,为本节课的学习做好了铺垫.七年级的学生思维活跃,求知欲强,有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇.但我所教班级学生受基础知识和思维发展水平的限制,抽象概括能力不强,但学生上进心强,也有强烈的好奇心和好胜心,因而在教学素材的选取与呈现方式以及学习活动的安排上要设置学生感兴趣的并且具有挑战性的内容.学生在找同类项中问题不大,这部分的内容学生自己可以消化,而在合并同类项时对同类项中利用乘法交换律时容易出错,还有在多项式中找同类项时易将单项式的系数找错,特别是系数是负数的,学生容易遗漏,老师要在课堂上加以讲解.基于以上学情分析,确定本节课的教学难点为:能在合并同类项的基础上进行化简、求值运算.四、教学过程设计(一)问题引入1.银行职员数钞票时,把100元票面、50元票面、20元票面、10元票面…的人民币分类来数,在多项式中是否也有类似的情形呢?2.下图中有两个三角形,两个矩形,你能用式子表示这四个图形的面积和吗?四个图形面积和:2a+ab+3a+2ab=___________.(二)合作探究探究一:(1) 运用运算律计算:100×2+252×2=______________;100×(﹣2)+252×(﹣2)=________________;(2) 根据(1)中的方法完成下面的运算,并说明其中的道理:100t+252t=____________.在(1)中,我们知道,根据分配律可得100×2+252×2=(100+252)×2=352×2=704100×(﹣2)+252×(﹣2)=(100+252)×(﹣2)=352×(﹣2)=﹣704在(2)中,式子100t+252t表示100t与252t两项的和.它与(1)中的两个式子有相同的结构,并且字母t代表的是一个因(乘)数,因此根据分配律也应该有100t +252t=(100+252)t=352t.探究二:填空:(1)100t -252t=( )t ;(2)3x 2+2x 2=( )x 2;(3)3ab 2-4ab 2=( )ab 2.上述运算有什么共同特点,你能从中得出什么规律吗?对于上面的(1)(2)(3),利用分配律可得100t -252t=(100-252)t=﹣152t3x 2+2x 2=(3+2)x 2=5x 23ab 2-4ab 2=(3-4)ab 2=﹣ab 2观察:多项式100t -252t 的项100t 和﹣252t ,它们含有相同的字母t ,并且t 的指数都是1;多项式3x 2+2x 2的项3x 2和2x 2,它们含有相同的字母x ,并且x 的指数都是2;多项式3ab 2-4ab 2的项3ab 2和﹣4ab 2,它们含有相同的字母a 、b ,并且a 的指数都是1次,b 的指数都是2次.【归纳】同类项的概念像100t 与﹣252t ,3x 2与2x 2,3ab 2与﹣4ab 2这样,所含字母相同,并且相同字母的指数也相同的项叫做同类项. 几个常数项也是同类项. 例如5与﹣3.(三)考点解析例1.下列各组式子中,是同类项的是( )①2x 3y 5与x 5y 3;①x 6y 7z 与﹣3x 6y 7;①6xy 与53xy ;①x 4与34;①4x 2y 与3yx 2;①﹣100与15A.①①①B.①①①①C.①①①D.只有①【总结提升】同类项的判别方法(1)同类项只与字母及其指数有关,与系数无关,与字母在单项式中的排列顺序无关;(2)抓住“两个相同”:一是所含的字母要完全相同,二是相同字母的指数要相同,这两个条件缺一不可.(3)不要忘记几个单独的数也是同类项.【迁移应用】1.下列单项式中,ab 3的同类项是( )A.a 3b 2B.3a 2b 3C.a 2bD.ab 32.下列各选项中,不是同类项的是( )A.3a 2b 和﹣5ba 2B.12x 2y 和12xy 2C.6和23D.5x n 和﹣3x n 43.在多项式x 3﹣x+4﹣6x 3﹣5+7x 的每一项中,_____与x 3,____与﹣x ,____与4分别是同类项.(四)自学导航因为多项式中的字母表示的是数,所以我们也可以运用交换律、结合律、分配律把多项式中的同类项进行合并.例如,4x 2+2x +7+3x -8x 2-2=4x 2-8x 2+2x +3x +7-2 (交换律)=(4x 2-8x 2)+(2x +3x)+(7-2) (结合律)=(4-8)x 2+(2+3)x +(7-2) (分配律)=-4x 2+5x +5通常我们把一个多项式的各项按照某个字母的指数从大到小(降幂)或者从小到大(升幂)的顺序排列,如-4x 2+5x +5也可以写成5+5x -4x 2.(五)考点解析例2.多项式3x 2y −4x 5y 2+2−xy 3按字母x 的降幂排列正确的是( )A .3x 2y +4x 5y 2+2+xy 3B .−4x 5y 2+3x 2y −xy 3+2C .4x 5y 2+3x 2y −xy 3+2D .2-xy 3+3x 2y -4x 5y 2【分析】把一个多项式按照某一字母的指数从大到小的顺序排列起来,叫做把多项式按照这个字母降幂排列.解:3x 2y −4x 5y 2+2−xy 3按字母x 的降幂排列为−4x 5y 2+3x 2y −xy 3+2【迁移应用】1.代数式3m 2n −4m 3n 2+2mn 3−1按m 的降幂排列,正确的是( )A .−4m 3n 2+3m 2n +2mn 3−1B .2mn 3+3m 2n −4m 3n 2−1C .−1+3m 2n −4m 3n 2+2mn 3D .−1+2mn 3+3m 2n −4m 3n 22.多项式5x2y+y3−3xy2−x3按y的降幂排列是()A.5x2y−3xy2+y3−x3B.y3−3xy2+5x2y−x3C.5x2y−x3−3xy2+y3D.y3−x3+5x2y−3xy2(六)自学导航1.把多项式中的同类项合并成一项叫做合并同类项.2.合并同类项的法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.(七)考点解析例3.合并同类项:(1)4a2﹣9b﹣3a2+8b;(2)x3﹣3x2﹣2+4x2﹣1;(3)﹣4a2b﹣3ab+1+3ab﹣2a2b﹣4.解:(1)4a2﹣9b﹣3a2+8b=(4a2﹣3a2)+(﹣9b+8b) =(4﹣3)a2+(﹣9+8)b=a2﹣b;(2)x3﹣3x2﹣2+4x2﹣1=x3+(﹣3x2+4x2)+(﹣2﹣1)=x3+(﹣3+4)x2+(﹣2﹣1)=x3+x2﹣3;(3)﹣4a2b﹣3ab+1+3ab﹣2a2b﹣4=(﹣4a2b﹣2a2b)+(﹣3ab+3ab)+(1﹣4)=(﹣4﹣2)a2b+(﹣3+3)ab+(1﹣4)=﹣6a2b﹣3.【总结提升】“合并同类项”的方法:一找,找出多项式中的同类项,不同类的同类项用不同的标记标出;二移,利用加法的交换律,将不同类的同类项集中到不同的括号内;三合,将同一括号内的同类项相加即可.【迁移应用】1.﹣4a2b+3ab=(﹣4+3)a2b=﹣a2b,上述运算依据的运算律是( )A.加法交换律B.乘法交换律C.分配律D.乘法结合律2.下列计算正确的是( )A.3x2﹣x2=3B.a+b=abC.3+x=3xD.﹣ab+ab=03.合并同类项:(1)﹣2x2y﹣3x2y+5x2y; (2)3x2+2xy﹣5x﹣3y2﹣6xy.解:(1)原式=(﹣2﹣3+5)x2y=0;(2)原式=(3﹣5)x2+(2﹣6)xy﹣3y2=﹣2x2﹣4xy﹣3y2.例4.求多项式3x2+4x﹣2x2﹣x+x2﹣3x﹣1的值,其中x=﹣3.解:原式=(3x2﹣2x2+x2)+(4x﹣x﹣3x)﹣1=(3﹣2+1)x2+(4﹣1﹣3)x﹣1=2x2﹣1当x=﹣3时,原式=2×(﹣3)2﹣1=17.【迁移应用】1.当x=2025时,3x2+x﹣4x2﹣2x+x2+2024的值为______.2.求多项式a2b﹣6ab﹣3a2b+5ab+2a2b的值,其中a=0.1,b=0.01.解:原式=(a2b﹣3a2b+2a2b)+(﹣6ab+5ab)=(1﹣3+2)a2b+(﹣6+5)ab=﹣ab当a=0.1,b=0.01时,原式=﹣0.1×0.01=﹣0.001.例5.七年级有三个班参加了植树活动,其中一班植树x棵,二班植树棵数比一班的2倍少5,三班植树棵数比一班的一半多10.这三个班一共植树多少棵?x+10)棵,解:根据题意,得二班植树(2x﹣5)棵,三班植树(12所以这三个班一共植树(单位:棵)x+10x+2x﹣5+12)x+(﹣5+10)=(1+2+12=7x+5.2【迁移应用】张老师家住房结构如图所示(图中长度单位:m),他打算在卧室和客厅铺上木地板.请你帮他算一算,他至少需要木地板_____m 2.例6.已知4a 4b m c 与﹣72b 2a n+3c p﹣2的和是单项式,求5m+3n ﹣p 的值. 解:因为4a 4b m c 与﹣72b 2a n+3c p﹣2的和是单项式, 所以4a 4b m c 与﹣72b 2a n+3c p ﹣2是同类项所以4=n+3,m=2,1=p ﹣2,所以m=2,n=1,p=3.当m=2,n=l ,p=3时,5m+3n ﹣p=5×2+3×1﹣3=10.【迁移应用】1.若多项式5a 3b m +a n b 2+1可以进一步合并同类项,则m ,n 的值分别是( )A.m=3,n=1B.m=3,n=2C.m=2,n=1D.m=2,n=32.若13x 3y m+2与12x 1﹣n y 4的差是单项式,则这个差的结果是_________. 3.已知﹣4x a y a+1与mx 5y b ﹣1的和是3x 5y n ,求(m ﹣n)(2a ﹣b)的值.解:因为﹣4x a y a+1与mx 5y b ﹣1的和是3x 5y n ,所以﹣4+m=3,a=5,a+1=b ﹣1=n.所以a=5,b=7,m=7,n=6.所以(m ﹣n)(2a ﹣b)=(7﹣6)×(2×5﹣7)=3.例7.已知关于x ,y 的多项式2x 2+ax ﹣y+6﹣2bx 2+3x ﹣5y ﹣2的值与字母x 的取值无关,求a ,b 的值.解:2x 2+ax ﹣y+6﹣2bx 2+3x ﹣5y ﹣2=(2﹣2b)x 2+(a+3)x+(﹣1﹣5)y+(6﹣2)=(2﹣2b)x2+(a+3)x﹣6y+4因为多项式的值与x的取值无关所以2﹣2b=0,a+3=0,所以a=﹣3,b=1.【迁移应用】1.若关于x的多项式﹣3x2+mx+nx2﹣x+3的值与x的取值无关,则m,n的值分别为( )A.﹣1,﹣3B.1,3C.﹣1,3D.1,﹣32.若关于x,y的多项式mx3+3nxy2﹣2x3﹣xy2+y中不含三次项,则2m+3n的值为______.3.有这样一道题:“当x=1,y=2025时,求多项式7x3﹣6x3y+3x2y+3x3+6x3y﹣3x2y﹣10x3+3的值.”小聪4同学说:“就算不给出x=1,y=2 025,也能求出多项式的值.”他的说法有道理吗?请说明理由.4解:有道理.理由如下:原式=(7+3﹣10)x3+(﹣6+6)x3y+(3﹣3)x2y+3=3.该多项式的值与x,y的取值无关.所以小聪同学的说法有道理.(八)小结梳理五、教学反思。
3.2 解一元一次方程(一) --合并同类项与移项第 2课时教课目标:1、经过解析实质问题中的数目关系,建立方程解决问题,进一步认识方程模型的重要性。
2、掌握移项方法,学会解“ax+b=cx+d ”种类的一元一次方程,理解解方程的目标,领悟解法中蕴涵的化归思想。
3、经过学生观察、独立思虑等过程,培育学生概括、概括的能力,进一步让学生感觉到并试试找寻不一样的解决问题的方法,初步领悟一元一次方程的应用价值,感觉数学文化。
教课重难点:要点:建立列方程解决实质问题的思想方法,学会移项,会解“ax+b=cx+d ”种类的一元一次方程。
难点:解析实质问题中的已经量和未知量,找出相等关系,列出方程,使使学生逐渐建立列方程解决实质问题的思想方法教课过程:一、创建情境,引入新课问题:课本问题 2:把一些图书分给某班学生阅读,假如每人分 3 本,则节余 20 本;假如每人分 4 本,则还缺 25 本,这个班有多少学生?学生思虑,而后谈论合作。
二、讲解新课问题 1:列方程解决实质问题的基本思路是什么?学生谈论、解析1、设未知数:设这个班有x 名学生2、找相等关系:这批书的总数是一个定值,表示它的两个等式相等3、列方程: 3x+20=4x-25问题 2:怎么解这个方程?它与上节课遇到的议程有什么不一样?学生谈论后发现:方程的两边都有含x 的项和常数项问题 3:如何才能使它向x=a 的形式转变?4x,为使方程的左侧没有学生思虑、探究:为使方程右侧没有含x 的项,等号两边同减去常数项,等号两边同减去20,即 3x-4x=- 25- 20问题 4:以上变形的依照是什么?学生:等式的性质1概括:像上边那样把等式一边的某项变号后移到另一边,叫做移项。
师生共同完成这道题的解题过程。
问题 5:以上解方程中的“移项”起了什么作用?学生谈论、回答,师生共同整理。
经过移项,含未知数的项与常数项分别位于方程左右两边,使方程更凑近于 x=a 的形式。
第24课时 第3章第4节 合并同类项(2)[学习目标]1、会合并同类项,并将数值代入求值.2、知道合并同类项所依据的运算律.[学习过程]活动一 合并同类项并求值〖自主先学〗阅读课本P81例2和P82做一做,完成下列问题:1、求代数式的值时,如果代数式中含有同类项,通常先____________再进行计算。
2、合并同类项(求值)(1)(2)6438322-+-+-a a a a ,其中2-=a〖展示交流〗学习小组内部相互交流形成统一答案后,小组推荐代表进行板演。
〖合作互学〗各小组讨论完成下列问题(1)322223573245x xy y x xy y x x ---+-22222254834ab a b ab ab a b a b -++-+,其中x=-2,y=14〖展示交流〗 学习小组内部同学之间相互说一说你对问题的看法,并形成统一答案。
老师随机抽取两组的同学到讲台上阐述你组答案,并接受同学质疑。
活动二 整体合并求值〖自主先学〗阅读课本P82议一议,完成下列问题。
1、将)(y x +,)(b a -分别看成一个整体,合并同类项(求值):(1)1)(6)(8)(9)(322-+++-+-+y x y x y x y x(2)求代数式2)(33)(2)(85)(222+-+-----a b b a b a b a 的值,其中2,14==b a〖展示交流〗同位置相互交流形成统一答案,小组推荐代表准备板书。
222222332742x y xy x y xy x y +--+(2)〖合作互学〗各小组讨论完成下列问题1、若52=-xy ,求代数式60)2(3)2(52-+---y x y x2、有这样一道题,“当a= 0.35,b=-0.28时,求代数式7a 2-6a 3b +3a 3+6a 3b -3a 2b -10a 3+3a 2b -2的值”.小明同学说题目中给出的条件a= 0.35,b=-0.28是多余的,你觉得他的说法对吗?试说明理由.〖展示交流〗组内同学之间说一说你对问题的看法,组内形成统一答案。
《解一元一次方程---合并同类项》教学设计引言教研活动其实是教师与学生、教师与教师之间的心灵互动,匠心独具的课前预设、赏心悦目的课堂互动和的课后研讨,能让参与者忘却工作带给我们的一切烦恼,在愉悦中接受洗礼,于执教者而言,更是无与伦比的释放和满足,毕竟,这是他辛勤劳动的结晶,最大的受益者当然仍是受教学生。
这便是教研的魔力,让它沐浴我成长。
前几天,在我校数学组的课题《“三五三”问题导学法》研讨中,执教了了《解一元一次方程---合并同类项》一课,针对课题研讨目标“如何在数学课堂教学中实施《“三五三”问题导学法》教学模式?”进行了精心的预设和思考,近一周的琢磨之后,带着些许忐忑和期待,走进了熟悉又似乎全新的课堂……教学设计教学目标:1、会利用合并同类项解一元一次方程,掌握在解方程的过程中如何“合并”和系数化1。
2、通过对实例的分析,体会一元一次方程作为实际问题的数学模型的作用,认识用方程解决实际问题的关键是建立相等关系。
3、促进学生积极参与合作探讨,初步体会一元一次方程的应用价值;4、引导学生在解决实际问题的过程中分析数量关系、探寻列方程的方法、归纳解方程的步骤,同时渗透数学建模的思想。
教学重点、难点:重点:会列一元一次方程解决实际问题,并会用合并同类项的方法解“ax+bx=c”类型的一元一次方程难点:建立方程时寻找“相等关系”,合并时“x”前面的系数为“1”、“-1”。
一、激学导思:1、问题激思:粉笔分类;(师:这是老师每节课都要用到的粉笔,请同学们通过认真的观察与分析,能否从老师两手所抓的粉笔得到一些具体的信息?)针对上述“粉笔分类”引出合并同类项的铺垫训练:① 2a+a= ;② 2b -3b= ;③ 4c-c= ;(师:今天我们就一起来探讨如何运用“合并同类项”解一元一次方程。
)2、引探导学:猜粉笔支数。
(师:今天我们就拿讲台上的粉笔来做点文章,老师的面前有三盒粉笔,老师分别对三盒粉笔的数量做了一定的调整,如果我提供给你们一定的信息,你能猜出每盒粉笔的数量吗?)创设问题,引入探究,导入本节学习内容。
2.2 整式的加减第1课时 合并同类项1.使学生理解多项式中同类项的概念,会识别同类项;(重点)2.使学生掌握合并同类项法则,能进行同类项的合并.(重点,难点)一、情境导入周末,你和爸爸妈妈要外出游玩,中午决定在外面用餐,爸爸、妈妈和你各自选了要吃的东西,爸爸选了一个汉堡和一杯可乐,妈妈选了一个汉堡和一个冰淇淋,你选了一对蛋挞和一杯可乐,买的时候你该怎么向服务员点餐?生活中处处有数学的存在.可以把具有相同特征的事物归为一类,在多项式中也可以把具有相同特征的单项式归为一类.自主探索:把下列单项式归归类,并说说你的分类依据.-7ab 、2x 、3、4ab 2、6ab .二、合作探究探究点一:同类项 【类型一】 同类项的识别指出下列各题的两项是不是同类项,如果不是,请说明理由.(1)-x 2y 与12x 2y ; (2)23与-34;(3)2a 3b 2与3a 2b 3;(4)13xyz 与3xy . 解析:根据同类项的定义:所含字母相同,并且相同字母的指数也相同,对各式进行判断即可.解:(1)是同类项,因为-x 2y 与12x 2y 都含有x 和y ,且x 的指数都是2,y 的指数都是1; (2)是同类项,因为23与-34都不含字母,为常数项.常数项都是同类项;(3)不是同类项,因为2a 3b 2与3a 2b 3中,a 的指数分别是3和2,b 的指数分别为2和3,所以不是同类项;(4)不是同类项,因为13xyz 与3xy 中所含字母不同,13xyz 含有字母x 、y 、z ,而3xy 中含有字母x 、y .所以不是同类项.方法总结:(1)判断几个单项式是否是同类项的条件:所含字母相同;相同字母的指数分别相同.(2)同类项与系数无关,与字母的排列顺序无关.(3)常数项都是同类项. 【类型二】 已知两个单项式是同类项,求字母指数的值若-5x 2y m 与x n y 是同类项,则m +n 的值为( )A .1B .2C .3D .4解析:∵-5x 2y m 和x ny 是同类项,∴n =2,m =1,m +n =1+2=3,故选C.方法总结:注意掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,解题时易混淆,因此成了中考的常考点.探究点二:合并同类项将下列各式合并同类项.(1)-x -x -x ;(2)2x 2y -3x 2y +5x 2y ;(3)2a 2-3ab +4b 2-5ab -6b 2;(4)-ab 3+2a 3b +3ab 3-4a 3b .解析:逆用乘法的分配律,再根据合并同类项的法则“把同类项的系数相加,所得结果作为系数,字母和字母的指数不变”进行计算.解:(1)-x -x -x =(-1-1-1)x =-3x ;(2)2x 2y -3x 2y +5x 2y =(2-3+5)x 2y =4x 2y ;(3)2a 2-3ab +4b 2-5ab -6b 2=2a 2+(4-6)b 2+(-3-5)ab =2a 2-2b 2-8ab ;(4)-ab 3+2a 3b +3ab 3-4a 3b =(-1+3)ab 3+(2-4)a 3b =2ab 3-2a 3b .方法总结:合并同类项的时候,为了不漏项,可用不同的符号(如直线、曲线、圆圈)标记不同的同类项.探究点三:化简求值化简求值:2a 2b -2ab +3-3a 2b +4ab ,其中a =-2,b =12. 解析:原式合并同类项得到最简结果,把a 与b 的值代入计算即可求出值.解:2a 2b -2ab +3-3a 2b +4ab =(2-3)a 2b +(-2+4)ab +3=-a 2b +2ab +3.将a =-2,b =12代入得原式=-(-2)2×12+2×(-2)×12+3=-1.方法总结:对多项式化简求值时,一般先化简,即先合并同类项,再代入值计算结果,在算式中代入负数时,要注意添加负号.探究点四:合并同类项的应用有一批货物,甲可以3天运完,乙可以6天运完,若共有x 吨货物,甲乙合作运输一天后还有________吨没有运完.解析:甲每天运货物的13,乙每天运货物的16,则两个人合作运输一天后剩余的货物为x -13x -16x =12x 吨,故填12x . 方法总结:体现了数学在生活中的运用.解决问题的关键是读懂题意,找到所求的量之间的关系.三、板书设计1.同类项:所含字母相同,并且相同的字母指数也分别相同.判断同类项的条件:两相同,两无关2.合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变.数学教学要紧密联系学生的生活实际,本节课从学生已有的知识和经验出发,从实际问题入手,引出合并同类项的概念.通过独立思考、讨论交流等方式归纳出合并同类项的法则,通过例题教学、练习等方式巩固相关知识.教学中应激发学生主动参与的学习动机,培养学生思维的灵活性.作者留言:非常感谢!您浏览到此文档。
合并同类项(第2课时)
教学目标:
知识与技能:
1.掌握合并同类项的法则,正确进行合并同类项;
2.正确进行化简后再求代数式的值的计算。
过程与方法: 通过对比体会化简求值较为简便。
情感态度与价值观: 在亲身体会化简求值的过程中培养学生的思维能力。
教学重点:合并同类项及化简求值。
教学难点:合并同类项及化简求值。
教具:电脑,实物展示台。
教材分析:在学习了同类项、合并同类项的概念以及正确进行合并同类项的方法后,借助本节内容进一步巩固合并同类项的知识;提高学生的运算技能和技巧。
并在此基础上引入代数式求值,使学生亲身感悟求值时先化简可以使计算更简单。
通过本节的学习,使学生的思维方法和解题策略在自身的实践中得到升华。
教学方法:讲练结合法
教学过程
引导,改变了传统的教学模式,使学生真正成了课堂学习的主人。
让学生在“做中学”,经过学生的亲身体会,使他们感悟到代数式求值时,一般应先化简再求值。
这样计算简单。
学生的思维方法、解题策略在自身的实践中得到了升华。