第2课时 合并同类项的应用
- 格式:ppt
- 大小:1020.00 KB
- 文档页数:11
PPT课件•合并同类项基本概念•一元一次方程中合并同类项•多元一次方程组中合并同类项•分式方程中合并同类项目•拓展应用:在其他数学问题中运用合并同类项•总结回顾与课堂互动录合并同类项基本概念01CATALOGUE同类项定义及性质同类项定义所含字母相同,并且相同字母的指数也相同的项叫做同类项。
同类项性质同类项的系数可以不同,但所含字母和字母的指数必须相同。
写出合并后的结果将合并后的系数与字母部分相乘,得到最终的多项式。
将提取出的公因子与剩余部分相加,得到合并后的系数。
提取公因子将同类项的系数提取出来,作为公因子。
合并同类项原则把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
识别同类项根据同类项的定义,识别出多项式中的同类项。
合并同类项原则与方法示例解析与练习示例解析通过具体例子展示如何识别同类项、提取公因子、合并系数以及写出合并后的结果。
练习提供多个练习题,让学生实践并掌握合并同类项的方法。
注意在扩展内容时,需要确保内容的准确性和专业性,同时尽量丰富内容,以便更好地帮助学生理解和掌握合并同类项的概念和方法。
一元一次方程中合并同类项02CATALOGUE1 2 3只含有一个未知数,且未知数的最高次数为1的整式方程。
一元一次方程定义ax + b = 0(a ≠ 0)。
一元一次方程标准形式去分母、去括号、移项、合并同类项、系数化为1。
解一元一次方程的基本步骤一元一次方程概述03合并同类项在解一元一次方程中的作用简化方程,降低求解难度。
01合并同类项定义把多项式中的同类项合并成一项,叫做合并同类项。
02合并同类项法则同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。
合并同类项在解一元一次方程中应用通过具体的一元一次方程实例,展示如何运用合并同类项的方法解方程。
示例解析提供若干道一元一次方程练习题,让学生运用所学知识进行求解。
练习题目在解一元一次方程时,需要注意移项和合并同类项的步骤,确保计算正确。
合并同类项方法(实用版3篇)目录(篇1)1.合并同类项的定义和规则2.合并同类项的步骤和方法3.合并同类项的实际应用4.合并同类项的重要性和意义正文(篇1)一、合并同类项的定义和规则合并同类项是代数学中的一种基本运算方法,主要用于简化代数式。
所谓“同类项”,是指具有相同字母和相同次数的项。
例如,在代数式3x+2y+4x-y 中,3x 和 4x 是同类项,2y 和-y 也是同类项。
合并同类项的规则是:将同类项的系数相加,字母和字母的指数保持不变。
在上述例子中,3x+2y+4x-y 可以合并为 (3+4)x+(2-1)y,即 7x+y。
二、合并同类项的步骤和方法合并同类项的具体步骤如下:1.识别同类项:观察代数式中的各项,找出具有相同字母和相同次数的项。
2.提取同类项:将识别出的同类项提取出来,例如在上述例子中,将3x 和 4x 提取为 7x,将 2y 和-y 提取为 y。
3.计算同类项的系数和:将提取出的同类项的系数相加,例如 7x 的系数为 7,y 的系数为 1。
4.重新组合同类项:将计算出的系数和与原字母和次数组合,形成新的代数式。
三、合并同类项的实际应用合并同类项在代数学中有广泛的应用,尤其在化简和求解方程中。
例如,在求解方程 2x+3y=7 和 4x-3y=1 时,可以先将两个方程中的同类项合并,得到 6x=8,然后解得 x=4/3。
四、合并同类项的重要性和意义合并同类项是代数学的基本运算之一,掌握合并同类项的方法对于理解和解决代数问题具有重要意义。
通过合并同类项,可以简化代数式,降低问题难度,为后续的求解和分析打下基础。
目录(篇2)一、合并同类项方法的概念二、合并同类项的方法和步骤三、合并同类项的实际应用四、合并同类项的注意事项正文(篇2)一、合并同类项方法的概念合并同类项方法是代数学中的一种基本运算方法,它是将代数式中具有相同字母和相同次数的项合并为一个项,从而简化代数式,便于后续计算。
合并同类项教案小学教案标题:合并同类项教案教学目标:1. 理解合并同类项的概念和重要性。
2. 掌握合并同类项的基本方法和技巧。
3. 能够运用合并同类项的方法简化和计算代数表达式。
教学资源:1. 白板/黑板和彩色粉笔/白板标记笔。
2. 教材中相关的代数练习题。
3. 合并同类项的示例和练习题。
教学步骤:步骤1: 引入合并同类项的概念- 向学生解释合并同类项的定义,即将具有相同字母和指数的代数项相加或相减。
- 给出一些简单的例子来帮助学生理解概念,例如:3x + 2x = 5x。
步骤2: 解释合并同类项的方法- 提供一个基本的合并同类项方法,即将相同字母和指数的系数相加或相减,而字母和指数保持不变。
- 通过示例进行演示以加深学生对此方法的理解。
步骤3: 练习合并同类项- 给出一些练习题,让学生运用所学的合并同类项方法进行简化。
- 逐步增加练习题的复杂度,确保学生能够灵活运用方法。
步骤4: 运用合并同类项计算代数表达式- 引入一些涉及多个变量和多个项的代数表达式。
- 解释如何使用合并同类项的方法简化这些表达式,并计算其值。
步骤5: 总结和复习- 回顾并巩固学生对合并同类项的理解和运用。
- 解决学生提出的问题并强调重要的概念和技巧。
教学提示:1. 在解释合并同类项的概念时,使用具体的实际情境和例子,以帮助学生将其应用到实际问题中。
2. 在练习合并同类项时,逐步增加难度,让学生从简单到复杂地运用所学的方法。
3. 鼓励学生多做练习,以提高他们的技巧和自信心。
4. 鼓励学生互相交流和讨论解题思路,以促进合作学习和深化理解。
评估方法:1. 在课堂上观察学生的参与度和理解程度。
2. 在课堂结束时给学生提供一些合并同类项的练习题,以检验他们是否掌握了相关的概念和技巧。
3. 定期进行单元测试,以评估学生对合并同类项的掌握程度。
拓展活动:1. 鼓励学生通过寻找实际生活中的例子来应用合并同类项的概念,如计算商品折扣、算账等。
人教版合并同类项教案一、教学目标1. 让学生理解合并同类项的概念和意义。
2. 培养学生掌握合并同类项的法则和技巧。
3. 训练学生运用合并同类项解决实际问题。
二、教学内容1. 合并同类项的概念:同类项是指字母相同且相同字母的指数也相同的项。
2. 合并同类项的法则:将同类项的系数相加(或相减),字母和字母的指数不变。
3. 合并同类项的技巧:先找出同类项,按照法则进行合并。
三、教学重点与难点1. 教学重点:合并同类项的概念、法则和技巧。
2. 教学难点:如何快速找出同类项并进行合并。
四、教学方法1. 采用实例教学法,通过具体例子让学生理解合并同类项的概念和意义。
2. 采用分组讨论法,让学生分组练习合并同类项,培养合作能力。
3. 采用问答法,教师提问,学生回答,激发学生的思维。
五、教学步骤1. 导入新课:通过一个实际问题,引入合并同类项的概念。
2. 讲解合并同类项的法则和技巧。
3. 实例演示:教师展示几个合并同类项的例子,引导学生理解并掌握方法。
4. 学生练习:学生分组进行合并同类项的练习,教师巡回指导。
7. 布置作业:布置一些合并同类项的题目,让学生课后巩固。
六、教学评估1. 课堂练习:通过实时解答和反馈,评估学生对合并同类项概念的理解和应用能力。
2. 课后作业:评估学生独立完成合并同类项题目时的准确性和速度。
3. 小组讨论:观察学生在小组内的合作和问题解决过程,评估他们的合作能力和解决问题的能力。
七、教学拓展1. 引入更复杂的代数表达式,让学生练习合并更多同类项。
2. 让学生尝试解决实际生活中的问题,如计算购物时的折扣等,应用合并同类项的知识。
八、教学资源1. PPT演示文稿:包含合并同类项的定义、法则、实例和练习题。
2. 练习册:提供多种类型的练习题,适应不同学生的学习需求。
3. 在线学习平台:提供互动式学习工具和视频教程,帮助学生巩固知识。
九、教学反思1. 教师应在课后反思学生的学习情况,评估教学方法的有效性。
人教版合并同类项教案一、教学目标1. 让学生理解合并同类项的概念和意义。
2. 引导学生掌握合并同类项的法则和技巧。
3. 培养学生解决实际问题的能力,提高他们对数学知识的运用水平。
二、教学内容1. 合并同类项的概念:同类项是指字母相同且相同字母的指数也相同的项。
2. 合并同类项的法则:将同类项的系数相加,字母和字母的指数不变。
3. 合并同类项的技巧:先找出同类项,按照法则进行合并。
三、教学重点与难点1. 教学重点:合并同类项的概念、法则和技巧。
2. 教学难点:如何快速找出同类项并进行合并。
四、教学方法1. 采用讲解法,讲解合并同类项的概念、法则和技巧。
2. 利用例题,展示合并同类项的过程,让学生加深理解。
3. 设计练习题,让学生动手实践,巩固所学知识。
4. 组织小组讨论,让学生相互交流,共同提高。
五、教学步骤1. 引入新课:通过一个实际问题,引入合并同类项的概念。
2. 讲解合并同类项的法则和技巧,并用例题进行演示。
3. 学生练习:设计一些简单的练习题,让学生动手实践。
4. 巩固知识:讲解练习题的答案,让学生理解并掌握合并同类项的方法。
5. 拓展提高:设计一些较复杂的练习题,让学生挑战自我,提高能力。
6. 课堂小结:总结本节课所学内容,强调合并同类项的重要性和应用价值。
7. 布置作业:设计一些课后练习题,让学生巩固所学知识。
六、教学评价1. 课后作业:布置一些有关合并同类项的习题,让学生独立完成,以此评估学生对知识的掌握程度。
2. 课堂练习:课中提供一些实时练习题,让学生独立解答,教师即时评价学生的解答,帮助学生巩固知识。
3. 小组讨论:观察学生在小组讨论中的表现,了解他们对于合并同类项的理解和应用能力。
七、教学拓展1. 同类项在更高级数学中的应用:介绍同类项在高数中的应用,例如在多项式展开、求导数和积分等方面。
2. 同类项与其他数学概念的关联:探讨同类项与函数、方程、不等式等数学概念之间的关系。
八、教学反思1. 课堂讲解:反思教学过程中对于合并同类项概念和法则的讲解是否清晰易懂,是否需要调整讲解方式以提高学生的理解力。
同类项与合并同类项在数学中,同类项指的是具有相同的字母部分的代数式中的各项。
同类项之间可以进行加减运算,从而简化和化简代数式。
合并同类项是指将具有相同字母部分的同类项进行合并,得到更简单的代数式。
本文将介绍同类项的概念以及如何合并同类项。
一、同类项的定义同类项是指具有相同字母部分的代数式中的各项。
例如,在代数式2x + 3x + 4x中,2x、3x和4x都是同类项,因为它们都具有相同的字母部分x。
而2x、3y和4z就不是同类项,因为它们的字母部分不同。
同类项之间可以进行加减运算。
例如,将2x + 3x合并为5x,即把相同字母部分的系数相加。
同样地,将4x - 2x合并为2x。
二、合并同类项的方法合并同类项的方法是将相同字母部分的系数相加,并保留字母部分不变。
下面是一些例子来说明合并同类项的具体步骤:例子1:合并同类项3x + 4x首先,我们将相同字母部分的系数相加。
3x + 4x的系数为3 + 4 = 7。
最终的合并结果为7x。
例子2:合并同类项5y - 2y + y首先,将相同字母部分的系数相加。
5y - 2y + y的系数为5 - 2 + 1 = 4。
最终的合并结果为4y。
例子3:合并同类项2a^2b - ab^2 + 3a^2b首先,将相同字母部分的系数相加。
2a^2b - ab^2 + 3a^2b的系数为2 +3 = 5。
最终的合并结果为5a^2b - ab^2。
通过上述例子,我们可以看出合并同类项只需将相同字母部分的系数相加,并保留字母部分不变。
这样可以将复杂的代数式简化为更简单的形式。
三、合并同类项的应用合并同类项在代数中的应用非常广泛,特别是在化简和解方程过程中。
通过合并同类项,我们可以简化代数式,使得计算更加简便和高效。
在解方程时,合并同类项可以帮助我们整合方程的各项,从而更好地观察和理解方程的性质。
通过整理方程并合并同类项,我们可以更快地找到方程的解。
此外,合并同类项还有助于我们理解和运用多项式的运算规则。
2.2.1 合并同类项教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第二章“整式的加减” 2.2.1 合并同类项,内容包括:同类项的概念、合并同类项的法则、在合并同类项的基础上进行化简、求值运算.2.内容解析本节课是学生进入初中阶段后,在学习了用字母表示数,单项式、多项式以及有理数运算的基础上,对同类项进行合并、探索、研究的一个课题.合并同类项是本章的一个重点,其法则的应用是整式加减的基础,也是以后学习解方程、解不等式的基础.另一方面,这节课与前面所学的知识的联系非常密切:合并同类项的法则是建立在有理数的加减运算的基础之上;在合并同类项过程中,要不断运用有理数的运算.可以说合并同类项是有理数加减运算的延伸与拓展.基于以上分析,确定本节课的教学重点为:知道同类项的概念,会识别同类项,理解和熟练应用合并同类项法则.二、目标和目标解析1.目标(1)知道同类项的概念,会识别同类项.(2)掌握合并同类项的法则,并能准确合并同类项.(3)能在合并同类项的基础上进行化简、求值运算.2.目标解析通过观察、对比、分析,理解同类项的定义,能够识别同类项.根据分配律,类比数的计算进行式的计算,从而理解合并同类项的概念,掌握合并同类项的法则.通过例题学习和习题训练,会利用合并同类项的法则化简多项式,会代入具体的值进行计算.经历概念的形成过程和法则的探究过程,培养观察、归纳、概括能力,发展应用意识.激发学生的求知欲,在独立思考和合作交流的基础上,积极参与讨论,敢于发表自己的观点,从交流中获益,体验成功的喜悦.三、教学问题诊断分析学生前面已经学会了有理数运算,掌握了单项式、多项式的有关概念等知识,为本节课的学习做好了铺垫.七年级的学生思维活跃,求知欲强,有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇.但我所教班级学生受基础知识和思维发展水平的限制,抽象概括能力不强,但学生上进心强,也有强烈的好奇心和好胜心,因而在教学素材的选取与呈现方式以及学习活动的安排上要设置学生感兴趣的并且具有挑战性的内容.学生在找同类项中问题不大,这部分的内容学生自己可以消化,而在合并同类项时对同类项中利用乘法交换律时容易出错,还有在多项式中找同类项时易将单项式的系数找错,特别是系数是负数的,学生容易遗漏,老师要在课堂上加以讲解.基于以上学情分析,确定本节课的教学难点为:能在合并同类项的基础上进行化简、求值运算.四、教学过程设计(一)问题引入1.银行职员数钞票时,把100元票面、50元票面、20元票面、10元票面…的人民币分类来数,在多项式中是否也有类似的情形呢?2.下图中有两个三角形,两个矩形,你能用式子表示这四个图形的面积和吗?四个图形面积和:2a+ab+3a+2ab=___________.(二)合作探究探究一:(1) 运用运算律计算:100×2+252×2=______________;100×(﹣2)+252×(﹣2)=________________;(2) 根据(1)中的方法完成下面的运算,并说明其中的道理:100t+252t=____________.在(1)中,我们知道,根据分配律可得100×2+252×2=(100+252)×2=352×2=704100×(﹣2)+252×(﹣2)=(100+252)×(﹣2)=352×(﹣2)=﹣704在(2)中,式子100t+252t表示100t与252t两项的和.它与(1)中的两个式子有相同的结构,并且字母t代表的是一个因(乘)数,因此根据分配律也应该有100t +252t=(100+252)t=352t.探究二:填空:(1)100t -252t=( )t ;(2)3x 2+2x 2=( )x 2;(3)3ab 2-4ab 2=( )ab 2.上述运算有什么共同特点,你能从中得出什么规律吗?对于上面的(1)(2)(3),利用分配律可得100t -252t=(100-252)t=﹣152t3x 2+2x 2=(3+2)x 2=5x 23ab 2-4ab 2=(3-4)ab 2=﹣ab 2观察:多项式100t -252t 的项100t 和﹣252t ,它们含有相同的字母t ,并且t 的指数都是1;多项式3x 2+2x 2的项3x 2和2x 2,它们含有相同的字母x ,并且x 的指数都是2;多项式3ab 2-4ab 2的项3ab 2和﹣4ab 2,它们含有相同的字母a 、b ,并且a 的指数都是1次,b 的指数都是2次.【归纳】同类项的概念像100t 与﹣252t ,3x 2与2x 2,3ab 2与﹣4ab 2这样,所含字母相同,并且相同字母的指数也相同的项叫做同类项. 几个常数项也是同类项. 例如5与﹣3.(三)考点解析例1.下列各组式子中,是同类项的是( )①2x 3y 5与x 5y 3;①x 6y 7z 与﹣3x 6y 7;①6xy 与53xy ;①x 4与34;①4x 2y 与3yx 2;①﹣100与15A.①①①B.①①①①C.①①①D.只有①【总结提升】同类项的判别方法(1)同类项只与字母及其指数有关,与系数无关,与字母在单项式中的排列顺序无关;(2)抓住“两个相同”:一是所含的字母要完全相同,二是相同字母的指数要相同,这两个条件缺一不可.(3)不要忘记几个单独的数也是同类项.【迁移应用】1.下列单项式中,ab 3的同类项是( )A.a 3b 2B.3a 2b 3C.a 2bD.ab 32.下列各选项中,不是同类项的是( )A.3a 2b 和﹣5ba 2B.12x 2y 和12xy 2C.6和23D.5x n 和﹣3x n 43.在多项式x 3﹣x+4﹣6x 3﹣5+7x 的每一项中,_____与x 3,____与﹣x ,____与4分别是同类项.(四)自学导航因为多项式中的字母表示的是数,所以我们也可以运用交换律、结合律、分配律把多项式中的同类项进行合并.例如,4x 2+2x +7+3x -8x 2-2=4x 2-8x 2+2x +3x +7-2 (交换律)=(4x 2-8x 2)+(2x +3x)+(7-2) (结合律)=(4-8)x 2+(2+3)x +(7-2) (分配律)=-4x 2+5x +5通常我们把一个多项式的各项按照某个字母的指数从大到小(降幂)或者从小到大(升幂)的顺序排列,如-4x 2+5x +5也可以写成5+5x -4x 2.(五)考点解析例2.多项式3x 2y −4x 5y 2+2−xy 3按字母x 的降幂排列正确的是( )A .3x 2y +4x 5y 2+2+xy 3B .−4x 5y 2+3x 2y −xy 3+2C .4x 5y 2+3x 2y −xy 3+2D .2-xy 3+3x 2y -4x 5y 2【分析】把一个多项式按照某一字母的指数从大到小的顺序排列起来,叫做把多项式按照这个字母降幂排列.解:3x 2y −4x 5y 2+2−xy 3按字母x 的降幂排列为−4x 5y 2+3x 2y −xy 3+2【迁移应用】1.代数式3m 2n −4m 3n 2+2mn 3−1按m 的降幂排列,正确的是( )A .−4m 3n 2+3m 2n +2mn 3−1B .2mn 3+3m 2n −4m 3n 2−1C .−1+3m 2n −4m 3n 2+2mn 3D .−1+2mn 3+3m 2n −4m 3n 22.多项式5x2y+y3−3xy2−x3按y的降幂排列是()A.5x2y−3xy2+y3−x3B.y3−3xy2+5x2y−x3C.5x2y−x3−3xy2+y3D.y3−x3+5x2y−3xy2(六)自学导航1.把多项式中的同类项合并成一项叫做合并同类项.2.合并同类项的法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.(七)考点解析例3.合并同类项:(1)4a2﹣9b﹣3a2+8b;(2)x3﹣3x2﹣2+4x2﹣1;(3)﹣4a2b﹣3ab+1+3ab﹣2a2b﹣4.解:(1)4a2﹣9b﹣3a2+8b=(4a2﹣3a2)+(﹣9b+8b) =(4﹣3)a2+(﹣9+8)b=a2﹣b;(2)x3﹣3x2﹣2+4x2﹣1=x3+(﹣3x2+4x2)+(﹣2﹣1)=x3+(﹣3+4)x2+(﹣2﹣1)=x3+x2﹣3;(3)﹣4a2b﹣3ab+1+3ab﹣2a2b﹣4=(﹣4a2b﹣2a2b)+(﹣3ab+3ab)+(1﹣4)=(﹣4﹣2)a2b+(﹣3+3)ab+(1﹣4)=﹣6a2b﹣3.【总结提升】“合并同类项”的方法:一找,找出多项式中的同类项,不同类的同类项用不同的标记标出;二移,利用加法的交换律,将不同类的同类项集中到不同的括号内;三合,将同一括号内的同类项相加即可.【迁移应用】1.﹣4a2b+3ab=(﹣4+3)a2b=﹣a2b,上述运算依据的运算律是( )A.加法交换律B.乘法交换律C.分配律D.乘法结合律2.下列计算正确的是( )A.3x2﹣x2=3B.a+b=abC.3+x=3xD.﹣ab+ab=03.合并同类项:(1)﹣2x2y﹣3x2y+5x2y; (2)3x2+2xy﹣5x﹣3y2﹣6xy.解:(1)原式=(﹣2﹣3+5)x2y=0;(2)原式=(3﹣5)x2+(2﹣6)xy﹣3y2=﹣2x2﹣4xy﹣3y2.例4.求多项式3x2+4x﹣2x2﹣x+x2﹣3x﹣1的值,其中x=﹣3.解:原式=(3x2﹣2x2+x2)+(4x﹣x﹣3x)﹣1=(3﹣2+1)x2+(4﹣1﹣3)x﹣1=2x2﹣1当x=﹣3时,原式=2×(﹣3)2﹣1=17.【迁移应用】1.当x=2025时,3x2+x﹣4x2﹣2x+x2+2024的值为______.2.求多项式a2b﹣6ab﹣3a2b+5ab+2a2b的值,其中a=0.1,b=0.01.解:原式=(a2b﹣3a2b+2a2b)+(﹣6ab+5ab)=(1﹣3+2)a2b+(﹣6+5)ab=﹣ab当a=0.1,b=0.01时,原式=﹣0.1×0.01=﹣0.001.例5.七年级有三个班参加了植树活动,其中一班植树x棵,二班植树棵数比一班的2倍少5,三班植树棵数比一班的一半多10.这三个班一共植树多少棵?x+10)棵,解:根据题意,得二班植树(2x﹣5)棵,三班植树(12所以这三个班一共植树(单位:棵)x+10x+2x﹣5+12)x+(﹣5+10)=(1+2+12=7x+5.2【迁移应用】张老师家住房结构如图所示(图中长度单位:m),他打算在卧室和客厅铺上木地板.请你帮他算一算,他至少需要木地板_____m 2.例6.已知4a 4b m c 与﹣72b 2a n+3c p﹣2的和是单项式,求5m+3n ﹣p 的值. 解:因为4a 4b m c 与﹣72b 2a n+3c p﹣2的和是单项式, 所以4a 4b m c 与﹣72b 2a n+3c p ﹣2是同类项所以4=n+3,m=2,1=p ﹣2,所以m=2,n=1,p=3.当m=2,n=l ,p=3时,5m+3n ﹣p=5×2+3×1﹣3=10.【迁移应用】1.若多项式5a 3b m +a n b 2+1可以进一步合并同类项,则m ,n 的值分别是( )A.m=3,n=1B.m=3,n=2C.m=2,n=1D.m=2,n=32.若13x 3y m+2与12x 1﹣n y 4的差是单项式,则这个差的结果是_________. 3.已知﹣4x a y a+1与mx 5y b ﹣1的和是3x 5y n ,求(m ﹣n)(2a ﹣b)的值.解:因为﹣4x a y a+1与mx 5y b ﹣1的和是3x 5y n ,所以﹣4+m=3,a=5,a+1=b ﹣1=n.所以a=5,b=7,m=7,n=6.所以(m ﹣n)(2a ﹣b)=(7﹣6)×(2×5﹣7)=3.例7.已知关于x ,y 的多项式2x 2+ax ﹣y+6﹣2bx 2+3x ﹣5y ﹣2的值与字母x 的取值无关,求a ,b 的值.解:2x 2+ax ﹣y+6﹣2bx 2+3x ﹣5y ﹣2=(2﹣2b)x 2+(a+3)x+(﹣1﹣5)y+(6﹣2)=(2﹣2b)x2+(a+3)x﹣6y+4因为多项式的值与x的取值无关所以2﹣2b=0,a+3=0,所以a=﹣3,b=1.【迁移应用】1.若关于x的多项式﹣3x2+mx+nx2﹣x+3的值与x的取值无关,则m,n的值分别为( )A.﹣1,﹣3B.1,3C.﹣1,3D.1,﹣32.若关于x,y的多项式mx3+3nxy2﹣2x3﹣xy2+y中不含三次项,则2m+3n的值为______.3.有这样一道题:“当x=1,y=2025时,求多项式7x3﹣6x3y+3x2y+3x3+6x3y﹣3x2y﹣10x3+3的值.”小聪4同学说:“就算不给出x=1,y=2 025,也能求出多项式的值.”他的说法有道理吗?请说明理由.4解:有道理.理由如下:原式=(7+3﹣10)x3+(﹣6+6)x3y+(3﹣3)x2y+3=3.该多项式的值与x,y的取值无关.所以小聪同学的说法有道理.(八)小结梳理五、教学反思。
北师大版数学七年级上册《合并同类项》说课稿一. 教材分析《合并同类项》是北师大版数学七年级上册的一章内容。
本章主要让学生掌握合并同类项的法则,理解同类项的概念,并能够熟练运用合并同类项的方法解决实际问题。
在本章中,学生将学习如何合并同类项,如何简化代数表达式,以及如何解决与同类项相关的应用题。
二. 学情分析面对的是一群刚刚接触初中数学的七年级学生。
他们对代数的基础知识有一定的了解,但对于合并同类项的概念和方法可能还不太熟悉。
因此,在教学过程中需要注重基础知识的讲解和巩固,通过具体的例子和练习题,让学生逐步理解和掌握合并同类项的方法。
三. 说教学目标1.知识与技能目标:学生能够理解同类项的概念,掌握合并同类项的法则,并能够熟练运用合并同类项的方法解决实际问题。
2.过程与方法目标:通过观察、操作和思考,学生能够培养观察和逻辑思维能力,提高解决代数问题的能力。
3.情感态度与价值观目标:学生能够积极参与课堂活动,增强对数学的兴趣和自信心,培养合作和探究的精神。
四. 说教学重难点1.重点:同类项的概念和合并同类项的法则。
2.难点:理解和运用合并同类项的方法解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和合作学习法。
通过提出问题,引导学生思考和探究;通过具体的案例和练习题,让学生理解和掌握合并同类项的方法;通过小组合作学习,培养学生的合作和交流能力。
2.教学手段:使用多媒体课件和黑板进行教学,通过图片、动画和图表等形式,直观地展示合并同类项的过程和方法。
六. 说教学过程1.导入:通过一个简单的例子,引导学生思考如何合并同类项,激发学生的兴趣和好奇心。
2.讲解:讲解同类项的概念和合并同类项的法则,通过具体的例子和练习题,让学生理解和掌握合并同类项的方法。
3.练习:学生进行练习题,巩固和运用合并同类项的方法。
教师进行个别指导和辅导,帮助学生解决问题。
4.应用:学生解决与同类项相关的应用题,运用合并同类项的方法进行计算和推理。