第2课时 合并同类项
- 格式:docx
- 大小:13.22 KB
- 文档页数:3
编制人: __________________审核人: __________________审批人: __________________编制学校: __________________编制时间: ____年____月____ 日下载提示:该文档是本店铺精心编制而成的,希翼大家下载后,能够匡助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如幼儿教案、小学教案、中学教案、教学活动、评语、寄语、发言稿、工作计划、工作总结、心得体味、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as preschool lesson plans, elementary school lesson plans, middle school lesson plans, teaching activities, comments, messages, speech drafts, work plans, work summary, experience, and other sample essays, etc. Iwant to knowPlease pay attention to the different format and writing styles of sample essays!这是合并同类项微课教学设计,是优秀的数学教案文章,供老师家长们参考学习。
《合并同类项》教案教学目标课题4.2 第1课时合并同类项授课人素养目标1.理解多项式中同类项的概念,会识别同类项.2.掌握合并同类项的法则.3.体会合并同类项给计算求值带来的简化作用,提升运算能力.教学重点同类项的概念,合并同类项的法则.教学难点找出同类项并合并.教学活动教学步骤师生活动活动一:创设情境,引入新知【情境引入】数能进行加减运算,整式中的每个字母都表示数,这样,整式与数一样,也可以进行加减运算.我们来看本章引言中的问题(2).汽车从香港口岸到西人工岛包含两段路程,一段为香港口岸到东人工岛,另一段为海底隧道.如果汽车通过海底隧道需要a`h,那么从香港口岸到东人工岛所需时间是1.25a h,香港口岸到西人工岛的全长(单位:km)是72a+96×1.25a,即72a+120a.如何计算72a+120a呢?下面我们类比数的运算,讨论整式72a,120a的加法运算.【教学建议】这里明确指出“类比数的运算”,教学中要注意落实,使学生体会“数式通性”.设计意图引入合并同类项的课题.活动二:类比探究,学习新知探究点1同类项问题1(教材P95探究(1))运用运算律计算:72×2+120×2=(72+120)×2=192×2=384 ;72×(-2)+120×(-2)=(72+120)×(-2)=192×(-2)=-384 .可以用分配律简便计算,计算过程及结果如上.问题2 (教材P95探究(2))根据问题1中的方法完成下面的运算,并说明其中的道理:72a+120a=(72+120)a=192a .运算过程及结果如上,道理如下:问题3(教材P96探究)填空:(1)72a-120a=(72-120)a=-48a ;(2)3m2+2m2=(3+2)m2=5m2;(3)3xy2-4xy2=(3-4)xy2=-xy2 .【教学建议】(1)可以给学生说明,问题1中的两个式子,是72a+120a,a取2和-2时的算式.(2)教学时要注意引导学生:类比数的运算进行式的运算.让学生体会由数到式、由具体到一般的思想方法.设计意图类比数的运算,得出式的运算方法,强化运算能力.教学步骤师生活动设计意图问题4在问题3中,每一组算式中的两项,它们含有的字母有什么特点?概念引入:像72a与-120a,3m2与2m2,3xy2与-4xy2这样,所含字母相同,并且相同字母的指数也相同的项叫作同类项.几个常数项也是同类项.【对应训练】判断每一组是不是同类项,不是则为前者配一个同类项.(1)2x2y与-3x2y;是(3)-3pq与3pq;是(2)2abc与3ab;不是,3abc (4)-4m2n与5mn2. 不是,5m2n 【教学建议】对于问题3及对应训练,教师可向学生强调:同类项只与字母及其指数有关,与系数无关,与字母在单项式中的排列顺序也无关.引出同类项的概念.设计意图探究点2 合并同类项问题1 观察探究点1中问题3中的三组式子,它们的系数在运算中有什么规律?你能从中得到什么启示?规律:等号左边各项的系数的和等于运算结果的系数.启示:多项式中的字母表示的是数,所以我们也可以利用交换律、结合律、分配律把多项式中的同类项进行合并.问题2对于式子4x2+2x+7+3x-8x2-2,你认为如何进行同类项的合并?4x2+2x+7+3x-8x2-2=4x2-8x2+2x+3x+7-2 (交换律)=(4x2-8x2)+(2x+3x)+(7-2)(结合律)=(4-8)x2+(2+3)x+(7-2)(分配律)=-4x2+5x+5. (合并同类项)知识引入:合并同类型的概念:把多项式中的同类项合并成一项,叫作合并同类项.合并同类项的法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,字母连同它的指数不变.例(教材P96例1)合并下列各式的同类项:(1)xy2-15xy2;(2)4a2+3b2+2ab-4a2-4b2.解:(1)xy2-15xy2=(1-15)xy2=45xy2;(2)4a2+3b2+2ab-4a2-4b2……找=(4a2-4a2)+(3b2-4b2)+2ab……移=(4-4)a2+(3-4)b2+2ab……合=-b2+2ab.……排【对应训练】教材P98练习第1题. 【教学建议】(1)交换多项式中项的位置时,要提醒学生注意项的符号.(2)教师适时带着学生总结合并同类项的步骤:一找:找出同类项,当项数较多时,通常在同类项的下面画相同的标记,画标记时要连同该项前面的符号一起画;二移:运用加法交换律、结合律将多项式中的同类项结合;三合:利用合并同类项法则,合并同类项;四排:合并后的结果按某一个字母降幂(或升幂)的顺序排列.(3)合并同类项时,只能把同类项合并成一项,在问题2中,原式子化为-4x2+5x+5后,不再有同类项,就不能再合并了.【教学建议】4a2-4a2=(4-4)a2=0·a2=0.教学时可以向学生解释0·a2=0的原因(a表示数,对于0·a2,无论a取何有理数,0·a2都等于0).根据运算律,得出合并同类项的法则.设计意图加强对合并同类项法则的掌握,强化运算能力.教学步骤师生活动活动三:熟练运用,巩固提升例1 (教材P97例2)(1)求多项式2x2-5x+x2+4x-3x2-2的值,其中x=12;(2)求多项式3a+abc-13c2-3a+13c2的值,其中a=-16,b=2,c=-3.分析:在求多项式的值时,可以先将多项式中的同类项合并,然后再求值,这样做往往可以简化计算.解:(1)2x2-5x+x2+4x-3x2-2=(2+1-3)x2+(-5+4)x-2=-x-2.当x=12时,原式=-12-2=-52.(2)3a+abc-13c2-3a+13c2=(3-3)a+abc+(-13+13)c2=abc.当a=-16,b=2,c=-3时,原式=(-16)×2×(-3)=1.例2 (教材P97例3)(1)水库水位第一天连续下降了a h,平均每小时下降2 cm;第二天连续上升了a h,平均每小时上升0.5 cm,这两天水位总的变化情况如何?(2)某商店原有5袋大米,每袋大米为x kg.上午售出3袋,下午又购进同样包装的大米4袋.进货后这个商店有大米多少千克?解:(1)把下降的水位变化量记为负,上升的水位变化量记为正,则第一天水位的变化量是-2a cm,第二天水位的变化量是0.5a cm.由-2a+0.5a=(-2+0.5)a=-1.5a可知,这两天水位总的变化情况为下降了1.5a`cm.(2)把进货的数量记为正,售出的数量记为负,则上午大米质量的变化量是-3x kg,下午大米质量的变化量是4x kg.由5x-3x+4x=(5-3+4)x=6x可知,进货后这个商店有大米6x kg.【对应训练】教材P98练习第2,3题.【教学建议】教学时,可让学生直接代入求值,并与例题的解答方法比较,使学生对“先化简,再求值,可以简化计算”有深刻印象.【教学建议】让学生注意题中用负数表示了相反意义的量.设计意图进一步巩固对合并同类项的掌握,并体会它在简化计算方面的作用设计意图通过合并同类项解决实际问题,强化应用意识.活动四:随堂训练,课堂总结【随堂训练】见《创优作业》“随堂小练”册子相应课时随堂训练.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.什么是同类项?2.合并同类项的法则是怎样的?3.合并同类项依据的运算律是什么?4.合并同类项可以简化计算吗?【知识结构】.教学步骤师生活动【作业布置】1.教材P102习题4.2第1,8,9,10,11题.2.《创优作业》主体本部分相应课时训练.板书设计教学反思合并同类项是从具体的数字运算发展到代数式运算的一个转折,教学中需要学生通过本节课内容的学习,初步了解代数式运算的特点,体会代数式运算与数字运算的异同,初步完成由数字运算到代数式运算的思维转变;同时合并同类项又是今后其他代数式运算及解方程、解不等式的不可或缺的一个环节,因此要特别重视.教学时要让学生通过探索,充分理解合并同类项的运算法则,并在应用时互相纠偏补缺.解题大招一对合并同类项的理解如果两个单项式能合并成一项,那么这两个单项式必为同类项.再根据同类项的特征解题即可.例1请写出一个能与-5x3y合并成一项的单项式:6x3y(答案不唯一).解析:因为所求单项式能与-5x3y合并成一项,所以这个单项式与-5x3y是同类项.根据同类项的概念,观察单项式-5x3y含有的字母及各个字母的指数,那么这个单项式可以是6x3y(答案不唯一).例2 若单项式-2a1+m b2与5a3b n-1的和仍是单项式,求m n的值.解:因为单项式-2a1+m b2与5a3b n-1的和仍是单项式,所以-2a1+m b2与5a3b n-1是同类项.所以1+m=3,2=n-1,所以m=2,n=3,所以m n=23=8.解题大招二合并同类项的应用准确找出题中的数量关系,用字母表示相关量列算式,再合并同类项求解.例3李明家住房的结构如图所示(图中长度单位:m),李明打算把卧室和客厅铺上木地板.(1)请你帮他算一算,他至少需买多少平方米的木地板?(2)如果他选用的木地板的价格是m元/m2,那么购买所需的木地板需要多少钱?解:(1)客厅的面积为:4b·2a=8ab(m2).卧室的面积为:(4a-2a)·2b=4ab(m2).所以需买木地板的面积为:8ab+4ab=12ab(m2).(2)如果他选用的木地板的价格是m元/m2,那么购买所需的木地板需要12abm元.培优点多项式中的“无关”问题例刘伟和李明同学在解这样一道题:“当x=12024,y=2025时,求多项式8x3-5x3y+3x2y+2x3+5x3y-3x2y-10x3+9的值.”刘伟认为条件“x=12024,y=2025”是多余的,李明却认为题中的多项式含有x,y,不给出x,y的值无法计算,你认为谁说得对?请说明理由.分析:首先找出待求多项式中的同类项,然后合并同类项,若合并后的结果不含x,y,则原多项式的值与x,y无关.解:刘伟说得对.理由:因为原式=(8x3+2x3-10x3)+(-5x3y+5x3y)+(3x2y-3x2y)+9=9,所以结果与x,y的取值无关,所以刘伟说得对.课后·知能演练一、基础巩固1.已知关于a,b的单项式3a2b y与单项式2a x b3相加的结果还是一个单项式,则下列说法一定正确的是()A.a的值为2,b的值为3B.x的值为2,y的值为3C.a的值为2,y的值为3D.b的值为3,x的值为22.在多项式y3-2y+5-2y3-3+12y-8y2中,________与________,________与________,________与________是同类项,合并结果为________________________.3.合并下列各式的同类项:(1)4m+3m;(2)0.12x2y+0.15x2y2-0.1y2x+yx2.4.先化简,再求值:(1)y-y+y,其中y=2;(2)0.8a2b-6ab-3.2a2b+5ab+a2b,其中a=2,b=3.二、能力提升5.若关于x,y的多项式xy2+2x2y2的次数与关于a,b的单项式a n b3的次数相同,则下列选项中,与单项式a n b3是同类项的是()A.a2b3B.a3bC.-ab3D.ab6.阅读材料:我们知道,4x-2x+x=(4-2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)-2(a+b)+(a+b)=(4-2+1)(a+b)=3(a+b).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a-b)2看成一个整体,化简:3(a-b)2+6(a-b)2-2(a-b)2;(2)已知a=3,b=4,求3(a-b)2+6(a-b)2-2(a-b)2的值.三、思维拓展7.下面是小乐同学进行整式化简的过程,请认真阅读并完成相应任务.解:2m2+2m2n-2m2+mn2=2m2-2m2+2m2n+mn2(第一步)=3m2n(第二步)任务1:填空.以上化简过程中,第________步开始出现错误,具体错误是________;任务2:请写出正确的化简过程,并计算当m=-4,n=-时代数式的值.【课后·知能演练】1.B2.y3-2y3-2y12y5-3-y3-8y2+10y+23.解:(1)4m+3m=(4+3)m=7m.(2)0.12x2y+0.15x2y2-0.1y2x+yx2=+0.15x2y2-0.1y2x=0.62x2y+0.15x2y2-0.1xy2.4.解:(1)y-y+y=y=y.当y=2时,原式=×2=.(2)0.8a2b-6ab-3.2a2b+5ab+a2b=(0.8a2b-3.2a2b+a2b)+(-6ab+5ab)=-1.4a2b-ab.当a=2,b=3时,原式=-1.4×22×3-2×3=-22.8.5.C解析:由题意,知3+n=2+2,则n=1,故与单项式a n b3是同类项的是-ab3.6.解:(1)3(a-b)2+6(a-b)2-2(a-b)2=(3+6-2)(a-b)2=7(a-b)2.(2)当a=3,b=4时,原式=7×(3-4)2=7.7.解:任务1:二把“2m2n”与“mn2”当成同类项合并成了一项任务2:2m2+2m2n-2m2+mn2=2m2-2m2+2m2n+mn2=2m2n+mn2.当m=-4,n=-时,原式=2×(-4)2×+(-4)×=-16+(-1)=-17.。
3.2 解一元一次方程(一)——合并同类项与移项/人教版 数学 七年级 上册3.2 解一元一次方程(一)——合并同类项与移项(第2课时)希腊数学家丢番图(公元3~4世纪)的墓碑上记载着: 根据以上信息,你知道丢番图活了多少岁吗?“他的生命的六分之一是幸福童年;再活了他生命的十二分之一,两颊长起了细细的胡须;他结了婚,又度过了一生的七分之一;再过五年,他有了儿子,感到很幸福;可是儿子只活了他父亲年龄的一半;儿子死后,他在极悲痛中度过了四年,也与世长辞了.”3. 能通过分析问题找到相等关系并通过列方程解决问题.2. 会用移项、合并同类项解ax+b=cx+d型的方程.1. 进一步认识解方程的基本变形——移项,感悟解方程过程中的转化思想.3.2 解一元一次方程(一)——合并同类项与移项/1. 解方程:2. 观察下列一元一次方程,与上题的类型有什么区别?【想一想】怎样才能使它向 x =a (a 为常数)的形式转化呢?知识点利用移项解一元一次方程探究新知把一些图书分给某班同学阅读,如果每人3本,则剩余20本;若每人4本,则还缺少25本,这个班的学生有多少人?分析:设这个班有x名学生.这批书共有(3x+20)本.这批书共有(4x-25)本.表示同一个量的两个不同的式子相等.(即:这批书的总数是一个定值)3x+20=4x-25盈不足问题思考:怎样解这个方程呢?请运用等式的性质解下列方程:(1) 4x-15 = 9;解:两边都加15,得4x -15+15 = 9 +15合并同类项,得4x = 24.系数化为1,得x = 6.即 4x = 9 +15.你有什么发现?“-15”这项移动后,从方程的左边移到了方程的右边.(1) 4x -15 = 9 ① 4x = 9 +15 ②-15 观察方程①到方程②的变形过程,说一说有改变的是哪一项?它有哪些变化?“-15”这一项符号由“-”变“+”.(2) 2x = 5x -21.解:两边都减5x ,得2x = 5x -21 -5x -5x 2x -5x = -21.你能说说由方程③到方程④的变形过程中有什么变化吗?合并同类项,得-3x = -21.系数化为1,得 x = 7.(2) 2x = 5x -21 ③ 2x - 5x = -21 ④ 53.2 解一元一次方程(一)——合并同类项与移项/一般地,把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项.注意事项:移项一定要变号.移项的依据及注意事项移项实际上是利用等式的性质1.探究新知移项的定义3.2 解一元一次方程(一)——合并同类项与移项/下列方程的变形,属于移项的是( )A.由 -3x =24得x =-8B.由 3x +6-2x =8 得 3x -2x +6=8C.由4x +5=0 得-4x -5=0D.由2x +1=0得 2x =-1D 试一试易错提醒移项是方程中的某一项从方程的一边移到另一边,不要将其与加法的交换律或等式的性质2弄混淆.探究新知下列移项正确的是 ( )A. 由2+x =8,得到x =8+2B. 由5x =-8+x ,得到5x +x = -8C. 由4x =2x +1,得到4x -2x =1D. 由5x -3=0,得到5x =-3C 移项一定要变号.做一做例1 解下列方程: 解:移项,得合并同类项 ,得系数化为1,得素养考点 1利用移项解一元一次方程移项时需要移哪些项?为什么?(1)(2) .解:移项,得合并同类项,得系数化为1,得解一元一次方程ax +b =cx +d (a ,b ,c ,d 均为常数,且a ≠c )的一般步骤:ax -cx =d -b 移项合并同类项系数化为1(a -c )x =d -b 归纳总结3.2 解一元一次方程(一)——合并同类项与移项/解下列方程:(1) 5x-7=2x-10;(2) -0.3x+3=9+1.2x.解:移项,得5x-2x=-10+7,合并同类项,得3x=-3,系数化为1, 得x=-1.解:移项,得-0.3x-1.2x=9-3,合并同类项,得-1.5x=6,系数化为1,得x=-4.巩固练习例2 某制药厂制造一批药品,如果用旧工艺,则废水排量要比环保限制的最大量还多200 t ;如果用新工艺,则废水排量要比环保限制的最大量少100 t.新旧工艺的废水排量之比为2:5,两种工艺的废水排量各是多少?旧工艺废水排量-200吨=新工艺排水量+100吨列方程解答实际问题素养考点 2思考:①如何设未知数? ②你能找到等量关系吗?解:若设新工艺的废水排量为2x t ,则旧工艺的废水排量为5x t .由题意得移项,得5x -2x =100+200,系数化为1,得x =100,合并同类项,得3x =300,答:新工艺的废水排量为 200 t ,旧工艺的废水排量为 500 t.5x -200=2x +100,所以2x =200,5x=500.我区期末考试一次数学阅卷中,阅B 卷第28题(简称B28)的教师人数是阅A 卷第18题(简称A18)教师人数的3倍,在阅卷过程中,由于情况变化,需要从阅B28题中调12人到A18阅卷,调动后阅B28剩下的人数比原先阅A18人数的一半还多3人,求阅B28题和阅A18题的原有教师人数各为多少?变式训练等量关系调动前:阅B28题的教师人数=3×阅A18题的教师人数调动后:阅B28题的教师人数-12=原阅A18题的教师人数÷2+3解:设原有教师x 人阅A18题,则原有教师3x 人阅B28题,依题意,得所以 3x =18.移项,得合并同类项,得系数化为1,得答:阅A18题原有教师6人,阅B28题原有教师18人.下面是两种移动电话计费方式:方式一方式二月租费50元/月10元/月本地通话费0.30元/分0.5元/分问:一个月内,通话时间是多少分钟时,两种移动电话计费方式的费用一样?巩固练习3.2 解一元一次方程(一)——合并同类项与移项/解:设通话时间t分钟,则按方式一要收费(50+0.3t)元,按方式二要收费(10+0.4t). 如果两种移动电话计费方式的费用一样,则50+0.3t= 10+0.4t.移项,得0.3t-0.4t =10-50.合并同类项,得-0.1t =-40.系数化为1,得t =400.答:一个月内通话400分钟时,两种计费方式的费用一样.连接中考3.2 解一元一次方程(一)——合并同类项与移项/列方程解应用题《九章算术》中有“盈不足术”的问题,原文如下:“今有共買羊,人出五,不足四十五;人出七,不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊,每人出5元,则差45元;每人出7元,则差3元.求人数和羊价各是多少?解:设买羊为x人,则羊价为(5x+45)元,5x+45=7x+3,x=21,5×21+45=150(元),答:买羊人数为21人,羊价为150元.1.下列变形属于移项且正确的是( )A .由2x -3y +5=0,得5-3y +2x =0B .由3x -2=5x +1,得3x -5x =1+2C .由2x -5=7x +1,得2x +7x =1-5D .由3x -5=-3x ,得-3x -5-3x =0B基础巩固题2. 对方程4x -5=6x -7-3x 进行变形正确的是( )A .4x =6x +5+7-3xB .4x -6x +3x =5-7C .4x -6x -3x =5-7D .4x -6x +3x =-5-7B5. 当x =_____时,式子 2x -1 的值比式子 5x +6 的值小1.3. 已知 2m -3=3n +1,则 2m -3n = .4. 如果 与 互为相反数,则m 的值为.4-2解下列一元一次方程:解: (1) x =-2; (3) x =-4; 能力提升题(2) t =20;(4) x =2.有一些分别标有3,6,9,12…的卡片,后一张卡片上的数比前一张卡片上的数大3,从中任意拿相邻的三张卡片,若它们上面的数之和为108,则拿到的是哪三张卡片?解:设这张卡片中最小的一个数为x ,则另两个数分别为x +3、x +6,依题意列方程,得 x +x +3+x +6=108,解得 x =33,所以 x +3=36,x +6=39.故这三张卡片上面的数分别是33,36,39.拓广探索题移项解一元一次方程定义步骤应用注意:移项一定要变号移项合并同类项系数化为1作业内容教材作业从课后习题中选取自主安排配套练习册练习。
3.2 解一元一次方程(一)——合并同类项与移项情景导入归纳导入类比导入悬念激趣问题1:上节课我们学习了利用等式的基本性质解方程,哪位同学能叙述一下等式的基本性质呢?问题2:上周在我校举办了全市的数学优质课评选,共有50名教师听课,已知男教师比女教师的4倍少5人,请问听课的教师中有多少名男教师,多少名女教师?(要求:只列方程)[说明与建议] 说明:此环节为本节课新知的学习做好铺垫,体会等式的基本性质在解方程的过程中的作用.同时让学生体会到数学来源于生活,激发学生探究新知的兴趣.建议:学生叙述等式的基本性质要准确,问题2可引导学生发散思维,一题多解.通过上节课的学习,同学们知道:可以利用等式的基本性质解方程,比如:5x -2=8.方程两边同时加上2,得5x -2+2=8+2. 也就是5x =10.方程两边同时除以5,得x =2.此种解法过程比较繁琐,还有没有更加简便的方法呢?[说明与建议] 说明:本环节既回顾了上节所学:等式的基本性质及解方程,又引出了新的问题,为下面的学习设置了疑问,激发学生的学习兴趣.建议:此方程可由学生独立完成,回顾上节课解题过程,让学生总结此种方法的不便之处,教师适时提出问题,引出新课.教材母题——教材第89页例3 解下列方程:(1)3x +7=32-2x ;(2)x -3=32+1.【模型建立】利用合并同类项与移项解一元一次方程,要注意以下几点:(1)移项时,从方程的一边移到另一边的项要变号.(2)方程中的项包括它前面的符号.(3)不要把移项和加法交换律混淆.(4)在解方程时,习惯上把含有未知数的项放在等号的左边,不含未知数的项放在等号的右边.【变式变形】1.下列变形符合移项法则的是(C )A .由5+3x =2,得3x =2+5B .由-10x -5=-2x ,得-10x -2x =5C .由7x +9=4x -1,得7x -4x =-1-9D .由5x +2=9,得5x =9+22.一元一次方程t -3=12t 化为t =a 的形式为__t =6__.3.当k =__-12__时,方程5x -k =3x +8的解是x =-2.4.如果5a 3b -m 与a 3b 6m -7是同类项,那么m 的值为( D ) A .-1 B .2 C .-2 D .15.解方程:(1)-9x -4x +8x =-3-7; (2)3x -4=8-x ; (3)-3m +1=9-m ; (4)0.6x -4.1=3.9-1.4x.[答案:(1)x =2 (2)x =3 (3)m =-4 (4)x =4][命题角度1] 用合并同类项解一元一次方程用合并同类项法解一元一次方程的步骤:(1)合并同类项;(2)系数化为1.如素材二变式变形第5(1)题.[命题角度2] 用合并同类项与移项解一元一次方程利用合并同类项与移项解一元一次方程,要注意以下几点:(1)移项时,从方程的一边移到另一边的项要变号.(2)方程中的项包括它前面的符号.(3)不要把移项和加法交换律混淆.(4)在解方程时,习惯上把含有未知数的项放在等号的左边,不含未知数的项放在等号的右边.如素材二变式变形第5(2)(3)(4)题.[命题角度3] 利用一元一次方程解决和差倍分问题解这类题的关键是根据题意找出题目中的和差倍分的等量关系.增长量=原有量×增长率.注意:要恰当地设未知数,这样可以简化运算.题目中等量关系可能不止一个,有时会有多个,要根据具体情况恰当地选择等量关系.解完方程后要检验,避免出现不符合实际的答案.例 如果甲、乙、丙三个村合修一条水渠,计划出工60人,甲村出工人数是乙村出工人数的13,丙村出工人数是乙村出工人数的2倍,求乙村出工人数.解:设乙村出工人数为x ,则甲村出工人数为13x ,丙村出工人数为2x.根据题意,得x +13x +2x =60.合并同类项,得103x =60.系数化为1,得x =18.答:乙村出工的人数为18.[命题角度4] 利用一元一次方程解决盈亏问题 盈亏问题的等量关系:(1)“盈”是分配中的多余情况,“亏”是分配中的缺少情况; (2)一般会给出两个条件:什么情况下会“盈”,盈多少?什么情况下会“亏”,亏多少?这两个条件都可以用来列式子,然后利用相等关系列方程.例 某小组计划做一批“中国结”,如果每人做5个,那么比计划多做了9个;如果每人做4个,那么比计划少做了15个.小组成员共有多少名?解:设小组成员共有x 名,由题意,得5x -9=4x +15. 移项,得5x -4x =15+9. 合并同类项,得x =24. 答:小组成员共有24名.[命题角度5] 利用一元一次方程解决比例分配问题甲∶乙∶丙=a∶b∶c,设其中一份为x ,由已知部分量在总量中的比例,可得表示各部分份量的式子,相等关系:各部分量之和=总量.例 已知a∶b∶c=2∶3∶4,a +b +c =27,求a -2b -2c 的值. 解:因为a∶b∶c=2∶3∶4,所以设a =2m ,b =3m ,c =4m. 代入a +b +c =27,得2m +3m +4m =27, 即9m =27,所以m =3. 所以a =6,b =9,c =12.所以a -2b -2c =6-2×9-2×12=-36. [命题角度6] 利用一元一次方程解决日历问题 日历中的相等关系:(1)日历中同一行中相邻的两数相差1,同一列中相邻的两数相差7.(2)用字母表示相邻三个数时,有多种表示方法,一般设中间一个数为a ,利用相反数的性质,能使计算过程简便.例 [利川校级一模] 图3-2-2是2014年6月的日历表,在日历表上可以用一个方框圈出3×3个位置相邻的数(如11,12,13,18,19,20,25,26,27),若圈出的9个数的和为99,则方框中心的数为( A )图3-2-2A .11B .12C .16D .18P88练习1.解下列方程:(1)5x -2x =9; (2)x 2+3x2=7;(3)-3x +0.5x =10; (4)7x -4.5x =2.5×3-5.[答案] (1)x =3;(2)x =3.5;(3)x =-4;(4)x =1.2.某工厂的产值连续增长,去年是前年的1.5倍,今年是去年的2倍,这三年的总产值为550万元.前年的产值是多少?解:设前年的产值是x 万元,根据题意,得 x +1.5x +1.5x ×2=550. x +1.5x +3x =550.合并同类项得5.5x =550. 系数化为1.得x =100.答:前年的产值是100元. P90练习1.解下列方程:(1)6x -7=4x -5; (2)12x -6=34x .[答案] (1)x =1;(2)x =-24.2.王芳和李丽同时采摘樱桃,王芳平均每小时采摘8 kg ,李丽平均每小时采摘7 kg.采摘结束后王芳从她采摘的樱桃中取出0.25 kg 给了李丽,这时两人的樱桃一样多.她们采摘用了多少时间?解:设她们采摘用了x 小时,根据题意,得8x -0.25=7x +0.25. 8x -7x =0.25+0.25. x =0.5.答:他们采摘用了0.5小时. P91习题3.2 复习巩固1.解下列方程: (1)2x +3x +4x =18; (2)13x -15x +x =-3;(3)2.5y +10y -6y =15-21.5;(4)12b -23b +b =23×6-1. [答案] (1)x =2;(2)x =3;(3)y =-1;(4)b =3.6.2.举例说明解方程时怎样“移项”,你知道这样做的根据吗?[答案] 例如解方程5x +3=2x ,把2x 改变符号后移到方程左边,同时3改变符号移到方程右边,即5x -2x =-3.移项的根据是等式的基本性质.3.解下列方程: (1)x +3x =-16;(2)16y -2.5y -7.5y =5; (3)3x +5=4x +1; (4)9-3y =5y +5.[答案] (1)x =-4;(2)y =56;(3)x =4;(4)y =12.4.用方程解答下列问题:(1)x 的5倍与2的和等于x 的3倍与4的差,求x ; (2)y 与-5的积等于y 与5的和,求y . [答案] (1)x =-3;(2)y =-56.5.小新出生时父亲28岁,现在父亲的年龄是小新年龄的3倍,求现在小新的年龄. 解:设小新现在的年龄是x 岁,根据题意,得 3x -x =28;合并同类项,得2x =28. 系数化为1,得x =14.答:现在小新的年龄是14岁.6.洗衣机厂今年计划生产洗衣机25 500台,其中Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数量比为1∶2∶14,计划生产这三种洗衣机各多少台?[答案] Ⅰ型,Ⅱ型,Ⅲ型各1500台,3000台,21 000台.7.用一根长60 m的绳子围出一个长方形,使它的长是宽的1.5倍,长和宽各应是多少?[答案] 长18 m,宽12 m.综合运用8.随着农业技术的现代化,节水型灌溉得到逐步推广.喷灌和滴灌是比漫灌节水的灌溉方式.灌溉三块同样大的实验田,第一块用漫灌方式,第二块用喷灌方式,第三块用滴灌方式.后两种方式用水量分别是漫灌的25%和15%.(1)设第一块实验田用水x t,则另两块实验田的用水量各如何表示?(2)如果三块实验田共用水420 t,每块实验田各用水多少吨?解:(1)设第一块实验田用水x t,第二块实验田的用水量为0.25x t,第三块实验田用水0.15x t;(2)根据题意,得x+0.25x+0.15x=420,1.4 x=420,x=300.300×0.25=75(t),300×0.15=45(t).答:三块实验田用水各300 t,75 t,45 t.9.某造纸厂为节约木材,大力扩大再生纸的生产.它去年10月生产再生纸2050 t,这比它前年10月再生纸产量的2倍还多150 t.它前年10月生产再生纸多少吨?[答案] 950吨.10.把一根长100 cm的木棍锯成两段,要使其中一段长比另一段长的2倍少5 cm,应该在木棍的哪个位置锯开?[答案] 35 cm处.11.几个人共同种一批树苗,如果每人种10棵,则剩下6棵树苗未种;如果每人种12棵,则缺6棵树苗.求参与种树的人数.[答案] 6人.拓广探索12.在一张普通的月历中,相邻三行里同一列的三个日期数之和能否为30?如果能,这三个数分别是多少?[答案] 3,10,17.13.一个两位数的个位上的数的3倍加1是十位上的数,个位上的数与十位上的数的和等于9,这个两位数是多少?[答案] 72.[当堂检测]第1课时用合并同类项解一元一次方程1.下面由(1)到(2)的变形是合并同类项的是()A.(1)3x-2=6,(2)3x=82B.(1)-12x=8 ,(2)x=-3C.(1)2x–4x –3x = 6 ,(2)-5x = 6D.(1)2(3x+2) =4x,(2)6x+4 =4x2.下面变形正确的是()A. 由3x- x +4x= 8 得:3+4x=8B. 由2x – 4x –x = 8+2 得:-3x =10C. 由– 6x-3x = 5 得: -3x = 5D. 13x +2x -8x = -3 -5 得:7x = -23. 方程4x-m=3的解是x=m,则:m 的值是( )A .m=-1B .m=1C .m=-2D .m=2 4. 小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张.设所用的1元纸币为x 张,根据题意,请你能帮小悦列出方程为__________________(不需要求解). 5. 用合并同类项解方程: (1)4x –7x=4+2×3;(2)4x -2.5x +5x –1.5x=-8-7.参考答案: 1. C 2. B 3. B4. x+5(12-x )=48 ;5. 解:(1)-3x=10,x=310 ; (2)5x=-15,x= -3 .第2课时 用移项、合并同类项解一元一次方程 1.列变形中属于移项的是( )A .由5x -7y =2,得-2=-7y +5xB .由6x -3=x +4,得6x -3=4+xC .由8-x =x -5,得-x -x =-5-8D .由x +9=3x -1,得3x -1=x +92. 在解方程3x+5=-2x-1的过程中,移项正确的是( )C A .3x-2x=-1+5 B .-3x-2x=5-1 C .3x+2x= -1-5 D .-3x-2x=-1-53. 请把下列解方程:5x-2=7x+8的过程补完整. 解:移项得:5x-7x =___ 合并同类项得:___=10 系数化为一得:x =____4. 练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好用去14元.如果设水性笔的单价为x 元,那么由题意列方程是___________ .5. 解方程:(1)3x+3-4=6x+1 ; (2)12x-4-3x+3=12x+17. 参考答案: 1. C ; 2. C ;3. 8+2 -2x -54. 5(x-2)+3x=145.(1)x =-32 (2)x = -6[能力培优]专题一 利用合并同类项与移项解方程 1.解下列方程(1)12884x x +=-;(2)233234x x +=-.2. 已知方程4x +2m =3x +1和方程3x +2m =6x +1的解相同,求这个相同的解.3.规定新运算符号*的运算过程为b a b a 4131*-=,则求: (1)求5*(-5);(2)解方程2*(2*x )=1*x .4.关于x 的方程kx +2=4x +5 ()4≠k 有正整数解,求满足条件的k 的正整数值.专题二 列方程解和、差、倍分问题5.小明编了这样一道题:我是四月出生的,我的年龄的2倍加上8,正好是我出生那一月的总天数,那么你认为小明是几岁 ( )A.18岁B.11岁C.19岁D.21岁6.某会议厅主席台上方有一个长12.8m 的长条形(矩形)会议横标框,铺红色衬底.开会前将会议名称用白色厚纸或不干胶纸刻出来贴于其上.但会议名称不同,字数一般每次都多少不等,为了制作及贴字时方便美观,会议厅工作人员对有关数据作了如下规定:边空:字宽:字距=9:6:2,如图所示.根据这个规定,求会议名称的字数为18时,边空、字宽、字距各是多少?7.(2012·长沙)以“开放崛起,绿色发展”为主题的第七届“中博会”已于2012年5月20日在湖南长沙圆满落幕,作为东道主的湖南省一共签订了境外与省外境内投资合作项目共348个,其中境外投资合作项目个数的2倍比省外境内投资合作项目多51个. (1)求湖南省签订的境外、省外境内的投资合作项目分别有多少个?(2)若境外、省外境内投资合作项目平均每个项目引进资金分别为6亿元,7.5亿元,求在这次“中博会”中,东道主湖南省共引进资金多少亿元? 专题三 列方程解盈余不足问题8.(2012·铜仁)铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是()A.5(x+21-1)=6(x-1) B.5(x+21)=6(x-1)C. 5(x+21-1)=6xD. 5(x+21)=6x9.在“读书月”活动中,学校把一些图书分给某班学生阅读,若每个人分3本,则剩余20本;若每个人分4本,则还缺少25本.这个班有多少名学生?10.某学校组织学生春游,如果租用若干辆45座的客车,则有15个人没有座位,如果租用同数量的60座的客车,则多出1辆,其余车恰好坐满,已知租用45座的客车日租金为每辆车250元,60座的客车日租金为300元,问租用哪种客车更合算,租几辆车?专题四日历中的方程11.如图是某月的日历表,在此日历表上可以用一个长方形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数的和为144,那么最小的一个数为()A.7 B.8 C.9 D.1012日历表中,任意圈出的同一竖列上相邻的3个数的和能否是21?如果能,请求出这三个数,如果不能,请说明理由?13.日历表中,小亮圈出同一竖列上相邻的4个数的和是50,这四天分别是几号?知识要点:1.把等式一边的某项变号后移到另一边,叫做移项.2.移项的目标:将方程中的所有含未知数的项都集中到方程的左边,常数项都集中到方程的右边,便于合并同类项.3.移项的理论依据:移项相当于利用等式性质1,方程两边同时加上或减少同一个数或式.4.“表示同一个量的两个不同的式子相等”是一个基本的相等关系,常用来列方程.方法技巧:1.两个方程同解问题解题思路:如果两个方程中只有一个方程含有参数,那么我们先求出不含参数的方程的解,然后将方程的解代入另一个方程得到一个关于参数的方程,从而求出参数的值;如果两个方程都含有参数,那么我们将参数看作已知数,分别解出这两个方程,然后根据两个解相等,列出一个关于参数的方程,从而求出参数的值.2.日历中同一竖列上相邻的两个日期之间相差7天;日历中同一横行上相邻的两个日期之间相差1天;日历中2×2个数之间交叉相加和相等.3.盈余不足问题常常利用“表示同一个量的两个不同的式子相等”来列方程.4.新定义运算的题目只要将新定义的符号按照题目指明的运算进行就ok,其他的运算不变.答案:1. 解:(1)12884x x +=-, 移项,得:12848x x -=--, 合并同类项,得:412x =-, 系数化为1,得:x =-3.(2)233234x x +=-,移项,得:232334x x -=--,合并同类项,得:1512x -=-, 系数化为1,得:x =60.2. 解:4x +2m =3x +1的解为:x =1-2m , 3x +2m =6x +1的解为:x =213m -, 所以1-2m =213m -, 解得m =12, 把m =12代入x =1-2m ,得x =0. 3. 解析:(1)5*(-5)=115(5)34⨯-⨯-=1235;(2)因为2*x =2134x -,所以2*(2134x -)=2121()3434x --,1*x =1134x -.所以2121()3434x --=1134x -,解得:158-=x .4. 解析:移项,得kx -4x =5-2,合并同类项,得(k -4)x =3, 因为k -4≠0,所以系数化为1,得34x k =-. 因为34k -为正整数,所以k -4=1或者k -4=3.解得75==k k 和. 5. B 解析:设小明x 岁,由题意得2x +8=30, 解得x =11.6. 解析:设边空、字宽、字距分别为9x (cm )、6x (cm )、2x (cm ),则: 9x ×2+6x ×18+2x (18﹣1)=1280, 解得:x =8.答:边空为72cm ,字宽为48cm ,字距为16cm .7. 解析:(1)设湖南省签订的境外投资合作项目有x 个,那么省外境内投资合作项目 (512-x )个,由题意得: 348512=-+x x ,解得133=x ,512-x =215; (2)215×7.5+133×6=2410.5(亿元).答:(1)湖南省签订的境外、省外境内的投资合作项目分别有133个、215个. (2)在这次“中博会”中,东道主湖南省共引进资金2410.5亿元.8.A 解析:如果每隔5米栽1棵,则树苗缺21棵,故道路长为5(x +21-1);如果每隔6米栽1棵,则树苗正好用完,故道路长为6(x -1).因路长相等,所以5(x +21-1)=6(x -1).9. 解析:设这个班有x 名学生,由题意得320425x x +=-,解得45x =, 答:这个班有45名学生.10. 解析:设租45座的客车x 辆,根据题意得:45x+15=60(x-1),解得:x=5,所以租45座的客车的租金应为:250×(5+1)=1500(元), 租60座的客车的租金应为:300×(5-1)=1200(元), 所以租用60座的客车更合算,租4辆.11.B 解析:根据图可以得出,圈出的9个数中最大数与最小数的差为16,设最中间一个数为x ,则其他各数为x ±1,x ±7,x ±8,x ±6.这9个数的和为9x,由题意得9x=144,所以x=16,所以最小的数是16-8=8.12. 解:设圈出的三个数中中间日期为x 号,由题意得: (x-7)+x+(x+7)=21.解得x=7, x-7=7-7=0,x+7=7+7=14.因为日历中最小日期为0号,所以不符合题意,不存在这样的情况. 答:不可能存在三天日期和为21的情况.13. 解:设从前面数第二个日期是x 号,则另三个日期为(x-7)、(x+7)、(x+14)号,由题意得:(x-7)+x+(x+7)+(x+14)=50,解得 x=9, x-7=9-7=2,x+7=9+7=16,x+14=9+14=23. 答:这四天分别是2号,9号,16号,23号.解一元一次方程的“八项注意”革命歌曲<<三大纪律,八项注意>>想必同学们都知道吧,尤其是”八项注意”可以说是耳熟能详了.那么在学习解一元一次方程时,为了避免同学们在解方程时发生错误,特提出以下八个注意点:第一,注意解方程的格式.解方程的每一步都必须是方程,因此同学们在初学时出现的“连等式”或“解原式=”这些解题格式均是错误的。
《合并同类项》教学设计教学目标知识与技能1、在具体情境中感受合并同类项的必要性,理解合并同类项的概念。
2、理解合并同类项的法则,能正确合并同类项。
数学思考通过具体情境导入同类项以及合并同类项的概念,经历合并同类项的过程,培养学生的观察、归纳等能力。
问题解决通过大量的练习巩固,培养学生的计算能力,帮助学生形成解题经验。
情感态度与价值观在学习中培养学生分类、化繁为简等数学思想、方法,鼓励学生敢于发表自己的观点,从交流中获益。
教学重难点重点:同类项的概念,合并同类项。
难点:判断同类项和正确合并同类项。
教学流程:一、导入新课:1、将下列物品分类2、将下列整式进行分类,并与同伴交流一下你为什么这么分类?8a -7a2b -3xy 5a 2a2b 6xy3、同类项概念:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
几个常数项也是同类项。
例如:4、同类项概念:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
几个常数项也是同类项。
例如:(1) 2x2y 与 5x2y (2) 2ab3 与 6b3 a(3) 4ab与 2ab (4) 3mn 与 -nm(5)5a3与a3(6)-5与+35、如何判断同类项?(1)同类项有两个标准:所含字母相同;相同字母的指数分别相同(2)同类项与系数大小无关;(3)同类项与它们所含相同字母的顺序无关。
6、辨一辩:下列各组中的两项是不是同类项?为什么?(1)2x2y与-3x2y (√ )(2)2abc与2ab (某)(3)-某某某q与3qp (√ )(4) -4x2y与5xy2 (某)第一种方法:100a+200a+240b+60b第二种方法:(100+200)a+(240+60)b则100a+200a+240b+60b=(100+200)a+(240+60)b由此我们知道,计算100a+200a,可以先把它们的系数相加,再乘a;计算240b+60b,可以先把它们的系数相加,再乘b。
第2课时合并同类项
教学目标
【知识与技能】
理解合并同类项的概念,掌握合并同类项的法则.
【过程与方法】
经历概念的形成过程和法则的探究过程,渗透分类和类比的思想方法。
培养观察、归纳、概括能力,发展应用意识。
教学重难点
【重点】正确合并同类项.
【难点】找出同类项并正确的合并.
教学过程
一、情境引入
师:为了搞好班会活动,李明和张强去购买一些水笔和软面抄作为奖品.他们首先购买了15本软面抄和20支水笔,经过预算,发现这么多奖品不够用,然后他们又去购买了6本软面抄和5支水笔.问:
(1)他们两次共买了多少本软面抄和多少支水笔?
(2)若设软面抄的单价为每本x元,水笔的单价为每支y元,则这次活动他们支出的总金额是多少元?
学生完成,教师点评.
二、讲授新课
合并同类项的定义.
学生讨论问题(2)可根据购买的时间次序列出代数式,也可根据
购买物品的种类列出代数式,再运用加法的交换律与结合律将同类项结合在一起,将它们合并起来,化简整个多项式,所得结果都为(21x +25y)元.
由此可得:把多项式中的同类项合并成一项,叫做合并同类项.三、例题讲解
【例1】找出多项式3x2y-4xy2-3+5x2y+2xy2+5中的同类项,并合并同类项.
【答案】原式=3x2y+5x2y-4xy2+2xy2+5-3=(3+5)x2y+(-4+2)xy2+(5-3)=8x2y-2xy2+2.
根据以上合并同类项的实例,让学生讨论归纳,得出合并同类项的法则:
把同类项的系数相加,所得的结果作为系数,字母和字母指数保持不变.
【例2】下列各题合并同类项的结果对不对?若不对,请改正.
(1)2x2+3x2=5x4;(2)3x+2y=5xy;
(3)7x2-3x2=4; (4)9a2b-9ba2=0.
(通过这一组题的训练,进一步熟悉法则)
【例3】求多项式3x2+4x-2x2-x+x2-3x-1的值,其中x =-3.
【答案】3x2+4x-2x2-x+x2-3x-1=(3-2+1)x2+(4-1-3)x-1=2x2-1,当x=-3时,原式=2×(-3)2-1=17.
试一试:把x=-3直接代入例4这个多项式,可以求出它的值
吗?与上面的解法比较一下,哪个解法更简便?
(通过比较两种方法,使学生认识到在求多项式的值时,常常先合并同类项,再求值,这样比较简便)
课堂练习.
课本P71练习第1~4题.
【答案】略
四、课堂小结
1.要牢记法则,熟练正确的合并同类项,以防止2x2+3x2=5x4的错误.
2.从实际问题中类比概括得出合并同类项法则并能运用法则正确地合并同类项.。