(完整)四年级奥数第17讲数数图形
- 格式:doc
- 大小:71.01 KB
- 文档页数:3
小学四年级奥数举一反三第1讲至第40讲全目录第1讲找规律(一)第2讲找规律(二)第3讲简单推理第4讲应用题(一)第5讲算式谜(一)第6讲算式谜(二)第7讲最优化问题第8讲巧妙求和(一)第9讲变化规律(一)第10讲变化规律第11讲错中求解第12讲简单列举第13讲和倍问题第14讲植树问题第15讲图形问题第16讲巧妙求和第17讲数数图形第18讲数数图形第19讲应用题第20讲速算与巧算第21讲速算与巧算(二)第22讲平均数问题第23讲定义新运算第24讲差倍问题第25讲和差问题第26周巧算年龄第二十七周较复杂的和差倍问题第二十八周周期问题第二十九周行程问题(一)第三十周用假设法解题第三十一周还原问题第三十二周逻辑推理第三十三周速算与巧算(三)第三十四周行程问题(二)第三十五周容斥原理第三十六周二进制第三十七周应用题(三)第三十八周应用题(四)第三十九周盈亏问题第四十周数学开放题第1讲找规律(一)一、知识要点观察是解决问题的根据。
通过观察,得以揭示出事物的发展和变化规律,在一般情况下,我们可以从以下几个方面来找规律:1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;2.根据相隔的每两个数的关系,找出规律,推断出所要填的数;3.要善于从整体上把握数据之间的联系,从而很快找出规律;4.数之间的联系往往可以从不同的角度来理解,只要言之有理,所得出的规律都可以认为是正确的。
二、精讲精练【例题1】先找出下列数排列的规律,并根据规律在括号里填上适当的数。
1,4,7,10,(),16,19【思路导航】在这列数中,相邻的两个数的差都是3,即每一个数加上3都等于后面的数。
根据这一规律,括号里应填的数为:10+3=13或16-3=13。
像上面按照一定的顺序排列的一串数叫做数列。
练习1:先找出下列各列数的排列规律,然后在括号里填上适当的数。
(1)2,6,10,14,(),22,26(2)3,6,9,12,(),18,21(3)33,28,23,(),13,(),3(4)55,49,43,(),31,(),19(5)3,6,12,(),48,(),192(6)2,6,18,(),162,()(7)128,64,32,(),8,(),2(8)19,3,17,3,15,3,(),(),11,3..【例题2】先找出下列数排列的规律,然后在括号里填上适当的数。
第17講數數圖形一、知識要點我們已經認識了線段、角、三角形、長方形等基本圖形,當這些圖形重重疊疊地交錯在一起時就構成了複雜的幾何圖形。
要想準確地計數這類圖形中所包含的某一種基本圖形的個數,就需要仔細地觀察,靈活地運用有關的知識和思考方法,掌握數圖形的規律,才能獲得正確的結果。
要準確、迅速地計數圖形必須注意以下幾點:1.線段上有n個端點,那麼線段的條數為n+(n-1)+(n-2)+…+3+2+12.從一個頂點引n條射線,那麼銳角的個數為n+(n-1)+(n-2)+…+3+2+13. 由相同的n×n個小方格組成的幾行幾列的正方形其中所含的正方形總數為:1×1+2×2+…+n×n。
4. 如果一個長方形的長被分成m等份,寬被分成n等份(長和寬的每一份都是相等的)那麼正方形的總數為:mn+(m-1)(n-1)+(m-2)(n-2)+…+(m-n+1)n.二、精講精練【例題1】數出下麵圖中有多少條線段。
練習1:數出下列圖中有多少條線段。
(2)【例題2】數一數下圖中有多少個銳角。
練習2::下列各圖中各有多少個銳角?【例題3】數一數下圖中共有多少個三角形。
練習3::數一數下麵圖中各有多少個三角形。
【例題4】數一數下圖中共有多少個三角形。
練習4::數一數下麵各圖中各有多少個三角形。
【例題5】數一數下圖中有多少個長方形。
練習5::數一數下麵各圖中分別有多少個長方形。
【例題6】數一數下圖中有多少個長方形?練習6:數一數,下麵各圖中分別有幾個長方形?【例題7】數一數,下圖中有多少個正方形?(每個小方格是邊長為1的正方形)練習7::數一數下列各圖中分別有多少個正方形?(每個小方格為邊長是1的小正方形)【例題8】數一數下圖中有多少個正方形?(其中每個小方格都是邊長為1個長度單位的正方形)練習8:數一數下列各圖中分別有多少個正方形。
【例題9】從廣州到北京的某次快車中途要停靠8個大站,鐵路局要為這次快車準備多少種不同車的車票?這些車票中有多少種不同的票價?練習9:1.從上海到武漢的航運線上,有9個停靠碼頭,航運公司要為這段航運線準備多少種不同的船票?2.從上海至青島的某次直快列車,中途要停靠6個大站,這次列車有幾種不同票價?3.從成都到南京的快車,中途要停靠9個站,有幾種不同的票價?【例題10】求下列圖中線段長度的總和。
第十七讲图形计数进阶一、乘法原理我们在完成一件事时往往要分为多个步骤,每个步骤又有多种方法,当计算一共有多少种完成方法时就要用到乘法原理.乘法原理:一般地,如果完成一件事需要n个步骤,其中,做第一步有m1种不同的方法,做第二步有m2种不同的方法,…,做第n步有m n种不同的方法,则完成这件事一共有N=m1×m2×…×m n种不同的方法.乘法原理运用的范围:这件事要分几个彼此互不影响....来完成,这几步是完....的独立步骤成这件任务缺一不可的.....,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”.二、乘法原理解题三部曲1、完成一件事分N个必要步骤;2、每步找种数(每步的情况都不能单独完成该件事);3、步步相乘三、乘法原理的考题类型1、路线种类问题——比如说从A地到B地有三种交通方式,从B地到C地有2种交通方式,问从A地到C地有多少种乘车方案;2、字的染色问题——比如说要3个字,然后有5种颜色可以给每个字然后,问3个字有多少种染色方法;3、地图的染色问题——同学们可以回家看地图,比如中国每个省的染色情况,给你几种颜色,问你一张包括几个部分的地图有几种染色的方法;4、排队问题——比如说6个同学,排成一个队伍,有多少种排法;5、数码问题——就是对一些数字的排列,比如说给你几个数字,然后排个几位数的偶数,有多少种排法.1.掌握加法乘法原理2.熟练运用加乘方法3.解决加乘及计数综合性题目1.联欢会上有一则数字谜语,谜底是一个八位数。
现已猜出:□54□7□39,主持人提示:“这个无重复数字的八位数中,最小的数是2。
”要猜出这个谜语,最多还要猜次。
解析:根据题意三个方框只能从2,6,8中选,根据乘法原理最多还要猜3×2×1=6答案:62.在右面每个方格中各放1枚围棋子(黑子或白子),有()种放法.解析:由于每个方格有2种填法,依此根据乘法原理进行解答。
学习奥数的优点1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。
2、训练学生良好的数学思维习惯和思维品质。
要使经过奥数训练的学生,思维更敏捷,考虑问题比别人更深层次。
3、锻炼学生优良的意志品质。
可以培养持之以恒的耐心和克服困难的信心,以及战胜难题的勇气。
可以养成坚韧不拔的毅力4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。
第17讲数数图形一、知识要点我们已经认识了线段、角、三角形、长方形等基本图形,当这些图形重重叠叠地交错在一起时就构成了复杂的几何图形。
要想准确地计数这类图形中所包含的某一种基本图形的个数,就需要仔细地观察,灵活地运用有关的知识和思考方法,掌握数图形的规律,才能获得正确的结果。
要准确、迅速地计数图形必须注意以下几点:1.线段上有n个端点,那么线段的条数为n+(n-1)+(n-2)+…+3+2+12.从一个顶点引n条射线,那么锐角的个数为n+(n-1)+(n-2)+…+3+2+13. 由相同的n×n个小方格组成的几行几列的正方形其中所含的正方形总数为:1×1+2×2+…+n×n。
4. 如果一个长方形的长被分成m等份,宽被分成n等份(长和宽的每一份都是相等的)那么正方形的总数为:mn+(m-1)(n-1)+(m-2)(n-2)+…+(m-n+1)n.二、精讲精练【例题1】数出下面图中有多少条线段。
练习1:数出下列图中有多少条线段。
(2)【例题2】数一数下图中有多少个锐角。
练习2::下列各图中各有多少个锐角?【例题3】数一数下图中共有多少个三角形。
练习3::数一数下面图中各有多少个三角形。
【例题4】数一数下图中共有多少个三角形。
练习4::数一数下面各图中各有多少个三角形。
【例题5】数一数下图中有多少个长方形。
练习5::数一数下面各图中分别有多少个长方形。
【例题6】数一数下图中有多少个长方形?练习6:数一数,下面各图中分别有几个长方形?【例题7】数一数,下图中有多少个正方形?(每个小方格是边长为1的正方形)练习7::数一数下列各图中分别有多少个正方形?(每个小方格为边长是1的小正方形)【例题8】数一数下图中有多少个正方形?(其中每个小方格都是边长为1个长度单位的正方形)练习8:数一数下列各图中分别有多少个正方形。
第17讲数数图形一、知识要点我们已经认识了线段、角、三角形、长方形等基本图形,当这些图形重重叠叠地交错在一起时就构成了复杂de几何图形。
要想准确地计数这类图形中所包含de某一种基本图形de个数,就需要仔细地观察,灵活地运用有关de知识和思考方法,掌握数图形de规律,才能获得正确de结果。
要准确、迅速地计数图形必须注意以下几点:1.线段上有n个端点,那么线段de条数为n+(n-1)+(n-2)+…+3+2+12.从一个顶点引n条射线,那么锐角de个数为n+(n-1)+(n-2)+…+3+2+13. 由相同den×n个小方格组成de几行几列de正方形其中所含de正方形总数为:1×1+2×2+…+n×n。
4. 如果一个长方形de长被分成m等份,宽被分成n等份(长和宽de每一份都是相等de)那么正方形de总数为:mn+(m-1)(n-1)+(m-2)(n-2)+…+(m-n+1)n.二、精讲精练【例题1】数出下面图中有多少条线段。
练习1:数出下列图中有多少条线段。
(2)【例题2】数一数下图中有多少个锐角。
练习2::下列各图中各有多少个锐角?【例题3】数一数下图中共有多少个三角形。
练习3::数一数下面图中各有多少个三角形。
【例题4】数一数下图中共有多少个三角形。
练习4::数一数下面各图中各有多少个三角形。
【例题5】数一数下图中有多少个长方形。
练习5::数一数下面各图中分别有多少个长方形。
【例题6】数一数下图中有多少个长方形?练习6:数一数,下面各图中分别有几个长方形?【例题7】数一数,下图中有多少个正方形?(每个小方格是边长为1de正方形)练习7::数一数下列各图中分别有多少个正方形?(每个小方格为边长是1de小正方形)【例题8】数一数下图中有多少个正方形?(其中每个小方格都是边长为1个长度单位de正方形)练习8:数一数下列各图中分别有多少个正方形。
【例题9】从广州到北京de某次快车中途要停靠8个大站,铁路局要为这次快车准备多少种不同车de车票?这些车票中有多少种不同de票价?练习9:1.从上海到武汉de航运线上,有9个停靠码头,航运公司要为这段航运线准备多少种不同de船票?2.从上海至青岛de某次直快列车,中途要停靠6个大站,这次列车有几种不同票价?3.从成都到南京de快车,中途要停靠9个站,有几种不同de票价?【例题10】求下列图中线段长度de总和。
四年级数学奥数培训资料姓名:__________________小学四年级奥数举一反三第1讲至第40讲全目录第1讲找规律(一)第2讲找规律(二)第3讲简单推理第4讲应用题(一)第5讲算式谜(一)第6讲算式谜(二)第7讲最优化问题第8讲巧妙求和(一)第9讲变化规律(一)第10讲变化规律第11讲错中求解第12讲简单列举第13讲和倍问题第14讲植树问题第15讲图形问题第16讲巧妙求和第17讲数数图形第18讲数数图形第19讲应用题第20讲速算与巧算第二十一周速算与巧算(二)第二十二周平均数问题第二十三周定义新运算第二十四周差倍问题第二十五周和差问题第二十六周巧算年龄第二十七周较复杂的和差倍问题第二十八周周期问题第二十九周行程问题(一)第三十周用假设法解题第三十一周还原问题第三十二周逻辑推理第三十三周速算与巧算(三)第三十四周行程问题(二)第三十五周容斥原理第三十六周二进制第三十七周应用题(三)第三十八周应用题(四)第三十九周盈亏问题第四十周数学开放题第1讲找规律(一)一、知识要点观察是解决问题的根据。
通过观察,得以揭示出事物的发展和变化规律,在一般情况下,我们可以从以下几个方面来找规律:1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;2.根据相隔的每两个数的关系,找出规律,推断出所要填的数;3.要善于从整体上把握数据之间的联系,从而很快找出规律;4.数之间的联系往往可以从不同的角度来理解,只要言之有理,所得出的规律都可以认为是正确的。
二、精讲精练【例题1】先找出下列数排列的规律,并根据规律在括号里填上适当的数。
1,4,7,10,(),16,19【思路导航】在这列数中,相邻的两个数的差都是3,即每一个数加上3都等于后面的数。
根据这一规律,括号里应填的数为:10+3=13或16-3=13。
像上面按照一定的顺序排列的一串数叫做数列。
练习1:先找出下列各列数的排列规律,然后在括号里填上适当的数。
(1)2,6,10,14,(),22,26(2)3,6,9,12,(),18,21(3)33,28,23,(),13,(),3(4)55,49,43,(),31,(),19(5)3,6,12,(),48,(),192(6)2,6,18,(),162,()(7)128,64,32,(),8,(),2(8)19,3,17,3,15,3,(),(),11,3..【例题2】先找出下列数排列的规律,然后在括号里填上适当的数。
第17讲数数图形
一、知识要点
我们已经认识了线段、角、三角形、长方形等基本图形,当这些图形重重叠叠地交错在一起时就构成了复杂的几何图形。
要想准确地计数这类图形中所包含的某一种基本图形的个数,就需要仔细地观察,灵活地运用有关的知识和思考方法,掌握数图形的规律,才能获得正确的结果。
要准确、迅速地计数图形必须注意以下几点:
1.弄清被数图形的特征和变化规律。
2.要按一定的顺序数,做到不重复,不遗漏。
二、精讲精练
【例题1】数出下面图中有多少条线段。
【思路导航】要正确解答这类问题,需要我们按照一定的顺序来数,做到不重复,不遗漏。
从图中可以看出,从A点出发的不同线段有3条:AB、AC、AD;从B点出发的不同线段有2条:BC、BD;从C点出发的不同线段有1条:CD。
因此,图中共有3+2+1=6条线段。
练习1::数出下列图中有多少条线段。
(2)
(3)
【例题2】数一数下图中有多少个锐角。
【思路导航】数角的方法和数线段的方法类似,图中的五条射线相当于线段上的五个点,因此,要求图中有多少个锐角,可根据公式1+2+3……(总射线数-1)求得:1+2+3+4=10(个).
练习2::下列各图中各有多少个锐角?
【例题3】数一数下图中共有多少个三角形。
【思路导航】图中AD边上的每一条线段与顶点O构成一个三角形,也就是说,AD边上有几条线段,就构成了几个三角形,因为AD上有4个点,共有1+2+3=6条线段,所以图中有6个三角形。
练习3::数一数下面图中各有多少个三角形。
【例题4】数一数下图中共有多少个三角形。
【思路导航】与前一个例子相比,图中多了一条线段EF,因此三角形的个数应是AD和EF上面的线段与点O所围成的三角形个数的和。
显然,以AD上的线段为底边的三角形也是1+2+3=6个,所以图中共有6×2=12个三角形。
练习4::数一数下面各图中各有多少个三角形。
【例题5】数一数下图中有多少个长方形。
【思路导航】数长方形与数线段的方法类似。
可以这样思考,图中的长方形的个数取决于AB或CD边上的线段,AB边上的线段条数是1+2+3=6条,所以图中有6个长方形。
练习5::数一数下面各图中分别有多少个长方形。