四年级奥数-巧数图形教案资料
- 格式:ppt
- 大小:526.50 KB
- 文档页数:12
(四年级)备课教员:第1讲数图形一、教学目标:会数线段、角、长方形的数量。
二、教学重点:掌握数图形的方法:先确定数的顺序,再从左往右依次数。
三、教学难点:较大的图形数的时候需要用手比着从左往右依次数,避免漏掉。
四、教学准备:PPT五、教学过程:第一课时(50分钟)一、导入(5分)师:同学们,请看,这是什么?生:魔方!师:对啦,这是一个三阶魔方,它的主人是卡尔。
你们想玩吗?生:想。
师:嗯,不仅是你们想玩,卡尔的另外两个小伙伴阿派和欧拉也想玩,但是卡尔很为难,不知道要把魔方借给谁。
于是啊,他就出了一个难题,你们知道是什么难题吗?生:不知道。
师:卡尔出的难题是这样的“你们谁要是说出这个魔方的一面有多少个正方形,我就借给谁。
”你们知道正确答案吗?师:嗯,看来你们也有很多不同的答案嘛。
那我就接着往下讲,阿派听到这个难题后,立马就说了,是9个正方形,但是,欧拉却说是14个,你们猜谁说对了?师:最后啊,卡尔把魔方借给了欧拉,因为欧拉说的是对的。
你们知道为什么是14个正方形吗?怎么数的?生:因为有小的正方形,还有小正方形拼成的大正方形。
师:说的很棒,但是太抽象了,我们最好自己动手数一数。
【课件演示数魔方一面的正方形个数的动画,教师配合学生一步步演示过程。
】师:同学们真棒,都很聪明,所以,卡尔最终把魔方借给了欧拉,是明智的吧。
师:这就是我们今天要学习的《数图形》。
【板书课题:数图形。
】二、探索发现授课(40分)(一)例题1:(13分)你能数出下图中共有多少条线段吗?你是怎样做的?师:请问,题目中,最主要的字眼是什么?数一数下图中有多少条线段?分析:由图可知,端点共有7个,但是按顺序相加只能从6开始加,一直加到1即可。
板书:6+5+4+3+2+1=21(条)答:图中一共有21条线段。
(二)例题2:(13分)你能用数线段的方法数出下图中共有多少个角吗?师:做完了简单的数线段的问题,现在我们来了解一下更深层次的问题。
请看例题二。
图形的计数(四年级奥数秋季思维训练教程)教学内容:第二讲图形的计数(四年级秋季思维训练教程)课时:第一、二课时课型:新授课教学目的:知识与技能理解并掌握数线段的两种方法:基本线段法、定端点法。
学会灵活地将数图形(三角形、正方形、长方形等)问题转化为数线段问题。
过程与方法通过引导学生复习旧知,鼓励学生总结归纳数线段的基本方法,培养学生的观察能力、抽象概括能力,增强学生探究问题的本领。
在观察、分析图形的过程中,要逐步培养学生掌握从特殊到一般的研究问题的方法。
情感态度与价值观在观察、总结归纳数线段的基本方法的过程中,体会探索新知的乐趣,养成善于思考,勇于探索,乐于交流的习惯。
在数图形个数时,要求按一定的顺序去做,做到不遗漏,不重复,提高学生的逻辑思维能力,养成严密的数学思维习惯。
教学重、难点:重点:通过观察、分析复杂图形并数出其中基本图形的个数的过程中,促进学生掌握类比转化的方法,培养学生分析和解决问题的能力。
难点:如何将复杂图形的计数问题转化为线段的计数问题教具、学具准备:教学过程:复习旧知,凝疑导入同学们,看看我左手上是什么?(粉笔)数数有几只?(三只)。
再看看老师右手上拿了什么?(纸)瞅瞅它们共有几张呢?我们两三岁时家人就开始教我们数数了,所以刚刚那两个问题对同学们来说都是小菜一碟,有没有?但是,不知,同学们还是否记得我们之前学过一种稍微复杂一点的数数问题---数线段。
下面我们来简单地复习一下:问题一:数一数下面图形中共有多少条线段?(10条)线段:有两个端点的直线组成的图形要求:不遗漏不重复展示与总结:定端点法:4+3+2+1=10(条)基本线段法:有4条基本线段由两条基本线段组成的线段:3条由三条基本线段组成的线段:2条由四条基本线段组成的线段:1条共有4+3+2+1=10(条)这道题有没有唤起同学们对以前学过知识的记忆呢?同学们应该都知道,学习是一个连续且不断发展的过程,随着我们年龄和年级的不断增加,我们会对同一个大问题进行更深入的研究,所以,理所当然,数数问题也需要我们对它进行更深一步的探究。
巧数图形(二等奖)临安市石镜小学周小萍教学内容:自编活动课教学内容,适合四年级下册学生。
教学目标:1、通过数图形的实践活动,使学生能按一定规律去数,做到不重复不遗漏;2、通过动手数、猜测验证、交流讨论等方法,自主地发现并掌握有序地数图形的基本规律及基本方法,灵活运用规律解决问题;3、让学生体验有序的数法的优越性,养成有序思考的习惯。
4、在教学中渗透由简单到复杂,从特殊到一般的思想方法,使学生感受学习数学的乐趣,提高学习积极性。
教学重点:发展学生的有序思维。
教学难点:让学生掌握数图形的方法,做到不重复,不遗漏。
设计理念:本课从学生熟悉的基本图形——“线段”入手,通过数线段的活动,让学生初步体会有序思考的必要性。
利用线段这一基本图形为素材组织教学,使学生感到不陌生而显得亲切、乐于学习。
教学时可先让学生自主地数,由于图形中的线比较多,学生在初次数线段的条数时容易多数或少数,从而出现不同的答案引发学生的认知冲突,使学生产生探究的欲望,有一定的挑战性。
素材中隐藏着一种数学方法与策略,在数图形的过程中按一定的规律去数就会不重不漏,数数尤其是数大数更要讲究方法。
本课通过讨论从“一个端点出发有序地数线段”与“根据间隔不同有序地数线段”两种数法,体会有条理有顺序数法的多样性,并归纳出有序地数的基本规律及基本方法。
并且能发散学生的思维,把发现的规律巧妙地“转嫁”到数角、数三角形、数长方形等其他领域的问题中去,渗透事物是相互联系的辨证思想,提高学生的数学思维能力。
预设教学过程:一、课前游戏,激发兴趣1、出示一个谜语“图形王国里某一个家族有三兄弟,说他们不像,他们一眼看去几乎长得一样,说他们像,各自性格却完全不同。
老大做事有始有终,老二做事有始无终,老三做事更没有规律,可以说是无始无终。
”让学生猜一猜这三兄弟是几何家族里的哪三个成员。
2、简要说说线段的特征,并介绍一般描述线段的方式是读出两个端点的字母,说成“线段AB”这样的形式。
第17讲数数图形一、知识要点我们已经认识了线段、角、三角形、长方形等基本图形,当这些图形重重叠叠地交错在一起时就构成了复杂的几何图形.要想准确地计数这类图形中所包含的某一种基本图形的个数,就需要仔细地观察,灵活地运用有关的知识和思考方法,掌握数图形的规律,才能获得正确的结果.要准确、迅速地计数图形必须注意以下几点:1.线段上有n个端点,那么线段的条数为n+(n-1)+(n-2)+…+3+2+12.从一个顶点引n条射线,那么锐角的个数为n+(n-1)+(n-2)+…+3+2+13. 由相同的n×n个小方格组成的几行几列的正方形其中所含的正方形总数为:1×1+2×2+…+n×n.4. 如果一个长方形的长被分成m等份,宽被分成n等份(长和宽的每一份都是相等的)那么正方形的总数为:mn+(m-1)(n-1)+(m-2)(n-2)+…+(m-n+1)n.二、精讲精练【例题1】数出下面图中有多少条线段.练习1:数出下列图中有多少条线段.(2)【例题2】数一数下图中有多少个锐角.练习2::下列各图中各有多少个锐角?【例题3】数一数下图中共有多少个三角形.练习3::数一数下面图中各有多少个三角形.【例题4】数一数下图中共有多少个三角形.练习4::数一数下面各图中各有多少个三角形.【例题5】数一数下图中有多少个长方形.练习5::数一数下面各图中分别有多少个长方形.【例题6】数一数下图中有多少个长方形?练习6:数一数,下面各图中分别有几个长方形?【例题7】数一数,下图中有多少个正方形?(每个小方格是边长为1的正方形)练习7::数一数下列各图中分别有多少个正方形?(每个小方格为边长是1的小正方形)【例题8】数一数下图中有多少个正方形?(其中每个小方格都是边长为1个长度单位的正方形)练习8:数一数下列各图中分别有多少个正方形.【例题9】从广州到北京的某次快车中途要停靠8个大站,铁路局要为这次快车准备多少种不同车的车票?这些车票中有多少种不同的票价?练习9:1.从上海到武汉的航运线上,有9个停靠码头,航运公司要为这段航运线准备多少种不同的船票?2.从上海至青岛的某次直快列车,中途要停靠6个大站,这次列车有几种不同票价?3.从成都到南京的快车,中途要停靠9个站,有几种不同的票价?【例题10】求下列图中线段长度的总和.(单位:厘米)上式中的5是线段上的5个点,如果设线段上的点数为n,基本线段分别为a1、a2、…a(n-1).以上各线段长度的总和为L,那么L= a1×(n-1)×1+ a2×(n-2)×2+ a3×(n-3)×3+…+ a(n-1)×1×(n-1).练习10:1.一条线段上有21个点(包括两个端点),相邻两点的距离都是4厘米,所有线段长度的总和是多少?2.求下图中所有线段的总和.(单位:米)3.求下图中所有线段的总和.(单位:厘米)三、课后作业1、数一数共有多少条线段?(1)(2)2、数一数共有多少个锐角?EA B C D EDO CBA3、数出下图中有多少个长方形?4、数出下图中有多少个正方形?5、下图中有多少个长方形,其中有多少个是正方形?DC B A。
四年级奥数-数数图形-教案第一章:认识图形教学目标:1. 让学生了解和认识常见的平面图形,如三角形、四边形、五边形、六边形等。
2. 培养学生观察、描述和分类图形的能力。
教学内容:1. 介绍各种平面图形的名称和特征。
2. 通过实物或图片,让学生观察和描述图形的形状、大小、位置等。
3. 让学生通过折纸、拼图等活动,亲身体验图形的变换和组合。
教学活动:1. 教师展示各种平面图形,引导学生说出图形的名称和特征。
2. 学生分组讨论,观察和描述给定图形的形状、大小、位置等。
3. 学生进行折纸、拼图等活动,体验图形的变换和组合。
第二章:数图形教学目标:1. 培养学生数图形的能力,提高学生的逻辑思维和观察能力。
2. 让学生掌握数图形的规律和方法。
教学内容:1. 介绍数图形的规律和方法。
2. 通过实例,让学生练习数图形,找出规律。
教学活动:1. 教师讲解数图形的规律和方法,引导学生理解并掌握。
2. 学生分组练习,数给定图形的个数,找出规律。
3. 教师选取一些学生的作品进行展示和讲解,帮助学生巩固所学知识。
第三章:拼图游戏教学目标:1. 培养学生的动手操作能力和观察能力。
2. 让学生学会用简单的图形拼出复杂的图形。
教学内容:1. 介绍拼图游戏的基本方法和技巧。
2. 通过实例,让学生练习拼图游戏,学会用简单的图形拼出复杂的图形。
教学活动:1. 教师讲解拼图游戏的基本方法和技巧,引导学生理解并掌握。
2. 学生分组进行拼图游戏,用简单的图形拼出复杂的图形。
3. 教师选取一些学生的作品进行展示和讲解,帮助学生巩固所学知识。
第四章:图形变换教学目标:1. 培养学生对图形变换的理解和应用能力。
2. 让学生学会用语言描述图形的变换过程。
教学内容:1. 介绍图形变换的基本概念和类型,如平移、旋转、翻转等。
2. 通过实例,让学生观察和描述图形的变换过程。
教学活动:1. 教师讲解图形变换的基本概念和类型,引导学生理解并掌握。
2. 学生分组讨论,观察和描述给定图形的变换过程。
第18讲数数(shù shù)图形一、知识(zhī shi)要点在解决数图形问题时,首先要认真分析图形的组成规律,根据图形特点选择适当的方法,既可以逐个(zhúgè)计数,也可以把图形分成若干个部分,先对每部分按照各自构成的规律数出图形的个数,再把他们的个数合起来。
二、精讲精练(jīngliàn)【例题(lìtí)1】数一数下图中有多少个长方形?【思路导航】图中的AB边上有线段1+2+3=6条,把AB边上的每一条线段作为长,AD边上的每一条线段作为宽,每一个长配一个宽,就组成一个长方形,所以,图中共有6×3=18个长方形。
数长方形可以用下面的公式:长边上的线段×短边上的线段=长方形的个数练习1::数一数,下面各图中分别有几个长方形?【例题2】数一数,下图中有多少个正方形?(每个小方格是边长为1的正方形)【思路导航】图中边长为1个长度单位的正方形有3×3=9个,边长为2个长度单位的正方形有2×2=4个,边长为3个长度单位的正方形有1×1=1个。
所以图中的正方形总数为:1+4+9=14个。
经进一步分析可以发现,由相同的n×n个小方格组成的几行几列的正方形其中所含的正方形总数为:1×1+2×2+…+n×n。
练习2::数一数下列各图中分别有多少个正方形?(每个小方格为边长是1的小正方形)【例题(lìtí)3】数一数下图中有多少个正方形?(其中(qízhōng)每个小方格都是边长为1个长度(chángdù)单位的正方形)【思路(sīlù)导航】边长是1个长度(chángdù)单位的正方形有3×2=6个,边长是2个长度单位的正方形有2×1=2个。
所以,图中正方形的总数为:6+2=8个。
专题一 数图形
【例题1】数出下图中有多少条线段?
练习1:
(1)数出下图中有多少条线段? (2)数出下图中有几个长方形?
【例题2】数出图中有几个角?
练习2:数出图中有几个角?
(1) (2)
【例题3】
数出右图中共有多少个三角形?
E
A B C D D
A
B
C
O
D
C B A O
C
B
A E
D O
C B
A P
D
C
B
A
练习3:数出图中共有多少个三角形?
(1) (2)
【例题4】数出下图中有多少个长方形?
练习4:
(1)数出下图中有多少个长方形? (2)数出下图中有多少个正方形?
【例题5】有5个同学,每两个人握手一次,一共要握手多少次? 练习5:
(1)银海学校三年级有9个班,每两个班要比赛拔河一次,这样一共要拔河几次?
(2)有1,2,3,4,5,6,7,8等8个数字,能组成多少个不同的两位数?
D
C B A
K
G
I H G
A
D
C
B
A
D
C
B
A
课后习题一
1.下列图形中各有多少条线段?
2.下列图形中各有多少个三角形?
3.数三角形
( )个三角形 ( )个三角形
4.数长方形
( )个长方形 ( )个长方形
( )个长方形 ( )个长方形
5.数正方形
()个正方形()个正方形()个正方形*6. 下图中,包含“*”号的正方形有多少个?长方形呢?。
第17讲数数图形一、知识要点我们已经认识了线段、角、三角形、长方形等基本图形,当这些图形重重叠叠地交错在一起时就构成了复杂的几何图形。
要想准确地计数这类图形中所包含的某一种基本图形的个数,就需要仔细地观察,灵活地运用有关的知识和思考方法,掌握数图形的规律,才能获得正确的结果。
要准确、迅速地计数图形必须注意以下几点:1.弄清被数图形的特征和变化规律。
2.要按一定的顺序数,做到不重复,不遗漏。
二、精讲精练【例题1】数出下面图中有多少条线段。
【思路导航】要正确解答这类问题,需要我们按照一定的顺序来数,做到不重复,不遗漏。
从图中可以看出,从A点出发的不同线段有3条:AB、AC、AD;从B点出发的不同线段有2条:BC、BD;从C点出发的不同线段有1条:CD。
因此,图中共有3+2+1=6条线段。
练习1::数出下列图中有多少条线段。
(2)(3)【例题2】数一数下图中有多少个锐角。
【思路导航】数角的方法和数线段的方法类似,图中的五条射线相当于线段上的五个点,因此,要求图中有多少个锐角,可根据公式1+2+3……(总射线数-1)求得:1+2+3+4=10(个).练习2::下列各图中各有多少个锐角?【例题3】数一数下图中共有多少个三角形。
【思路导航】图中AD边上的每一条线段与顶点O构成一个三角形,也就是说,AD边上有几条线段,就构成了几个三角形,因为AD上有4个点,共有1+2+3=6条线段,所以图中有6个三角形。
练习3::数一数下面图中各有多少个三角形。
【例题4】数一数下图中共有多少个三角形。
【思路导航】与前一个例子相比,图中多了一条线段EF,因此三角形的个数应是AD和EF上面的线段与点O所围成的三角形个数的和。
显然,以AD上的线段为底边的三角形也是1+2+3=6个,所以图中共有6×2=12个三角形。
练习4::数一数下面各图中各有多少个三角形。
【例题5】数一数下图中有多少个长方形。
【思路导航】数长方形与数线段的方法类似。