四年级奥数思维训练专题-数数图形
- 格式:docx
- 大小:21.43 KB
- 文档页数:4
四年级奥数思维训练专题-图形问题专题简析:解答“图形面积”问题时,应注意以下几点:1、根据题意,画出图形。
2、合理地进行切拼。
3、掌握图形本质,结合必要的分析推理和计算,使隐蔽的数量关系明朗化。
例1:人民路小学操场长90米,宽45米。
改造后,长增加10米,宽增加5米。
现在操场面积比原来增加了多少平方米?分析:用操场现在的面积减去操场原来的面积,就得到增加的面积。
现在面积:(90+10)×(45+5)=5000平方米原来面积:90×45=4050平方米现在比原来增加:5000-4050=950平方米试一试1:一块长方形铁板,长18分米,宽13分米。
如果长和宽各减少2分米,面积比原来减少多少平方分米?例2:一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米;如果长不变,宽减少3米,那么它的面积减少36平方米。
这个长方形原来的面积是多少平方米?分析:由“宽不变,长增加6米,面积增加54平方米”可知,它的宽为54÷6=9米;由“长不变,宽减少3米,面积减少36平方米”可知,它的长为36÷3=12米。
所以,这个长方形原来的面积是12×9=108平方米。
试一试2:一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米;如果长不变,宽增加4米,那么它的面积增加60平方米。
这个长方形原来的面积是多少平方米?例3:一个养禽专业户用一段16米的篱笆围成的一个长方形养鸡场(如下图),求养鸡场的占地面积。
分析:因为一面利用着墙,所以两条长加一条宽等于16米。
而宽是4米,那么长是(16-4)÷2=6米,占地面积是6×4=24平方米。
试一试3:下图是某个养禽专业户用一段长13米的篱笆围成的一个长方形养鸡场,求养鸡场的占地面积。
例4:街心花园中一个正方形的花坛四周有1米宽的水泥路,如果水泥路的总面积是12平方米,中间花坛的面积是多少平方米?分析:把水泥路分成四个同样大小的长方形(如下图)。
小学四年级奥数思维训练-数数图形数数图形专题简析:当线段、角、三角形、长方形等图形重重叠叠地交错在一起时就构成了复杂的几何图形.要想准确地计数这类图形中所包含的某一种基本图形的个数,必须注意以下几点:1,弄清被数图形的特征和变化规律.2,要按一定的顺序数,做到不重复,不遗漏.例1:数一数下图中共有多少个三角形.分析:以AD上的线段为底边的三角形也是1+2+3=6个;以EF上的线段为底边的三角形也是1+2+3=6个.所以图中共有6×2=12个三角形..()个三角形()个三角形例2:数一数下图中有多少个长方形.·分析:数长方形与数线段的方法类似.可以这样思考,图中的长方形的个数取决于AB或CD 边上的线段,AB边上的线段条数是1+2+3=6条,所以图中有6个长方形.试一试2:数一数下面各图中分别有多少个长方形.()个长方形数数图形(二)专题简析:“数图形”时,既可以逐个计数,也可以把图形分成若干个部分,先对每部分按照各自构成的规律数出图形的个数,再把他们的个数合起来.例1:数一数下图中有多少个长方形?分析:AB边上有线段1+2+3=6条,把AB边上的每一条线段作为长,AD边上的每一条线段作为宽,每一个长配一个宽,就组成一个长方形,所以,图中共有6×3=18个长方形.即:长边线段数×宽边线段数=长方形的个数试一试1:数一数,下图中有( )个长方形.例2:数一数,下图中有多少个正方形?(每个小方格是边长为1的正方形)分析:图中边长为1个长度单位的正方形有3×3=9个,边长为2个长度单位的正方形有2×2=4个,边长为3个长度单位的正方形有1×1=1个.所以图中的正方形总数为:1+4+9=14个.经进一步分析可以发现,由相同的n×n个小方格组成的几行几列的正方形其中所含的正方形总数为:1×1+2×2+…+n×n.试一试2:数一数下图中有()个正方形.(每个小方格为边长是1的小正方形)例3:数一数右图中有多少个正方形?(其中每个小方格都是边长为1个长度单位的正方形)分析:边长是1个长度单位的正方形有6×4=24个;边长是2个长度单位的正方形有(6-1)×(4-1)=15个;边长是3个长度单位的正方形有(6-2)×(4-2)=8个;边长是4个长度单位的正方形有(6-3)×(4-3)=3个;共有:24+15+8+3=50个.如果一个长方形的长被分成m等份,宽被分成n等份(长和宽的每一份都是相等的)那么正方形的总数为:mn+(m-1)(n-1)+(m-2)(n-2)+…+(m-n+1)·1试一试3:数一数下图中有( )个正方形.。
四年级数学思维训练数数图形
我们已经认识了线段、角、三角形、长方形等基本图形,当这些图形重重叠叠地交错在一起时就构成了复杂的几何图形。
要想准确地计数这类图形中所包含的某一种基本图形的个数,就需要仔细地观察,灵活地运用有关的知识和思考方法,掌握数图形的规律,才能获得正确的结果。
要准确、迅速地计数图形必须注意以下几点:
1,弄清被数图形的特征和变化规律。
2,要按一定的顺序数,做到不重复,不遗漏。
.
例1:数出下面图中有多少条线段。
.
练习一:
数出下列图中有多少条线段。
答
(1)(2)
(3)
例2:数一数下图中有多少个锐角。
练习二:
下列各图中各有多少个锐角?答
.
例3:数一数下图中共有多少个三角形。
练习三:
数一数下面图中各有多少个三角形。
答
例4:数一数下图中共有多少个三角形。
练习四:
数一数下面各图中各有多少个三角形。
答
.
例5:数一数下图中有多少个长方形。
.
练习五:
数一数下面各图中分别有多少个长方形。
答。
第17讲数数图形一、知识要点我们已经认识了线段、角、三角形、长方形等基本图形,当这些图形重重叠叠地交错在一起时就构成了复杂de几何图形。
要想准确地计数这类图形中所包含de某一种基本图形de个数,就需要仔细地观察,灵活地运用有关de知识和思考方法,掌握数图形de规律,才能获得正确de结果。
要准确、迅速地计数图形必须注意以下几点:1.线段上有n个端点,那么线段de条数为n+(n-1)+(n-2)+…+3+2+12.从一个顶点引n条射线,那么锐角de个数为n+(n-1)+(n-2)+…+3+2+13. 由相同den×n个小方格组成de几行几列de正方形其中所含de正方形总数为:1×1+2×2+…+n×n。
4. 如果一个长方形de长被分成m等份,宽被分成n等份(长和宽de每一份都是相等de)那么正方形de总数为:mn+(m-1)(n-1)+(m-2)(n-2)+…+(m-n+1)n.二、精讲精练【例题1】数出下面图中有多少条线段。
练习1:数出下列图中有多少条线段。
(2)【例题2】数一数下图中有多少个锐角。
练习2::下列各图中各有多少个锐角?【例题3】数一数下图中共有多少个三角形。
练习3::数一数下面图中各有多少个三角形。
【例题4】数一数下图中共有多少个三角形。
练习4::数一数下面各图中各有多少个三角形。
【例题5】数一数下图中有多少个长方形。
练习5::数一数下面各图中分别有多少个长方形。
【例题6】数一数下图中有多少个长方形?练习6:数一数,下面各图中分别有几个长方形?【例题7】数一数,下图中有多少个正方形?(每个小方格是边长为1de正方形)练习7::数一数下列各图中分别有多少个正方形?(每个小方格为边长是1de小正方形)【例题8】数一数下图中有多少个正方形?(其中每个小方格都是边长为1个长度单位de正方形)练习8:数一数下列各图中分别有多少个正方形。
【例题9】从广州到北京de某次快车中途要停靠8个大站,铁路局要为这次快车准备多少种不同车de车票?这些车票中有多少种不同de票价?练习9:1.从上海到武汉de航运线上,有9个停靠码头,航运公司要为这段航运线准备多少种不同de船票?2.从上海至青岛de某次直快列车,中途要停靠6个大站,这次列车有几种不同票价?3.从成都到南京de快车,中途要停靠9个站,有几种不同de票价?【例题10】求下列图中线段长度de总和。
备课说明:1、本讲共6道例题,前4道例题(用时1小时)分别介绍了数线段、角、三角形、正方形和长方形的基本方法。
其中数线段(例1)的方法及计数公式是基础,应重点讲解;接着例2与例3可尝试着让学生先思考,看看学生能否举一反三;例4学生做题是可能较多采用枚举法,因此先让学生做教师再进行讲解,学生能更好的体会到乘法原理的简便性。
例5、例6(1小时)为图形计数提高题,例5图形较为复杂,这时怎么合理分类,再进行计数就显得至关重要,学生的分类方法可能多种多样,只要合理都应给予肯定,并给一些时间,鼓励学生根据自己的思路来解题;例6数含有五角星的正方形,仍可用乘法原理解决问题。
2、重点:熟练掌握线段、角的计数公式;能够根据图形特点,利用加法原理与乘法原理合理分类计数。
难点:根据图形特点,合理分类计数。
数线段与数图形实际上就是数几何图形中线段、角、三角形、四边形等的个数问题.在对图形计数时,通常采用的是枚举法,即把所要计数的对象一一列举出来,然后计算它的总和.在用枚举法计数时,要对计数对象合理地进行分类,并要按次序地数,只有这样,才能保证计数时既不重复,又不遗漏.把一条线段分成几段小线段,我们把这些小线段称为基本线段,线段计数都是由这些基本线段组成,即1)3()2()1(++-+-+-+ n n n n .数线段也可以按照点来计算,如果一条线段上有m 个点,根据这些点可以运用2)1(÷-⨯m m 进行计算.要想正确数出图形的个数,关键是从基本图形入手:✓ 弄清图形中包含的基本图形是什么,有多少个;✓ 从各图形中所包含基本图形的个数多少出发,依次数出它们的个数,并求出它们的和是多少;✓ 有些图形被分成几个部分,可以先从各部分的基本图形出发,数出包含图形的个数,再求各部分的总和.数一数,下面的图形中各有几条线段?F E D C B A解析:①对于两条线段,只要有一个端点不同,就是不同的线段,我们以左端点为标准,将线段分5类分别计数。
图形的计数(四年级奥数秋季思维训练教程)教学内容:第二讲图形的计数(四年级秋季思维训练教程)课时:第一、二课时课型:新授课教学目的:知识与技能理解并掌握数线段的两种方法:基本线段法、定端点法。
学会灵活地将数图形(三角形、正方形、长方形等)问题转化为数线段问题。
过程与方法通过引导学生复习旧知,鼓励学生总结归纳数线段的基本方法,培养学生的观察能力、抽象概括能力,增强学生探究问题的本领。
在观察、分析图形的过程中,要逐步培养学生掌握从特殊到一般的研究问题的方法。
情感态度与价值观在观察、总结归纳数线段的基本方法的过程中,体会探索新知的乐趣,养成善于思考,勇于探索,乐于交流的习惯。
在数图形个数时,要求按一定的顺序去做,做到不遗漏,不重复,提高学生的逻辑思维能力,养成严密的数学思维习惯。
教学重、难点:重点:通过观察、分析复杂图形并数出其中基本图形的个数的过程中,促进学生掌握类比转化的方法,培养学生分析和解决问题的能力。
难点:如何将复杂图形的计数问题转化为线段的计数问题教具、学具准备:教学过程:复习旧知,凝疑导入同学们,看看我左手上是什么?(粉笔)数数有几只?(三只)。
再看看老师右手上拿了什么?(纸)瞅瞅它们共有几张呢?我们两三岁时家人就开始教我们数数了,所以刚刚那两个问题对同学们来说都是小菜一碟,有没有?但是,不知,同学们还是否记得我们之前学过一种稍微复杂一点的数数问题---数线段。
下面我们来简单地复习一下:问题一:数一数下面图形中共有多少条线段?(10条)线段:有两个端点的直线组成的图形要求:不遗漏不重复展示与总结:定端点法:4+3+2+1=10(条)基本线段法:有4条基本线段由两条基本线段组成的线段:3条由三条基本线段组成的线段:2条由四条基本线段组成的线段:1条共有4+3+2+1=10(条)这道题有没有唤起同学们对以前学过知识的记忆呢?同学们应该都知道,学习是一个连续且不断发展的过程,随着我们年龄和年级的不断增加,我们会对同一个大问题进行更深入的研究,所以,理所当然,数数问题也需要我们对它进行更深一步的探究。
第18讲数数图形数数图形第17讲一、知识要点在解决数图形问题时,首先要认真分析图形的组成规律,根据一、知识要点图形特点选择适当的方法,既可以逐个计数,也可以把图形分成若要准确、迅速地计数图形必须注意以下几点:干个部分,先对每部分按照各自构成的规律数出图形的个数,再把1.弄清被数图形的特征和变化规律。
他们的个数合起来。
要按一定的顺序数,做到不重复,不遗漏。
2.二、精讲精练二、精讲精练【例题1】数一数下图中有多少个长方形?数出下面图中有多少条线段。
】【例题1练习1::数一数,下面各图中分别有几个长方形?1::数出下列图中有多少条线段。
练习【例题2】数一数,下图中有多少个正方形?2)(的正方形)(每个小方格是边长为1)(3个长度单位的正图中边长为1【思路导航】中有2【例题】数一数下图个长度单位的正方2方形有3×3=9个,边长为多少个锐角。
个。
所以个长度单位的正方形有1×1=12形有×2=4个,边长为3 :练习2:下列各图中各有多少个锐角?1+4+9=14图中的正方形总数为:个。
【例题3形。
】数一数下图中共有多少个三角个小方格组成的几行几n经进一步分析可以发现,由相同的n×。
角:3练习:数一数下面图中各有多少个三形×11+2n。
×+…+×2n列的正方形其中所含的正方形总数为:数一数下图中共有多少个三角】4【例题形。
(每个小方:练习2:数一数下列各图中分别有多少个正方形?三角4练习::数一数下面各图中各有多少个1的小正方形)格为边长是形。
(其中每个小方格都3】数一数下图中有多少个正方形?【例题5【例题数一数下图中有多少个长方形。
】个长度单位的正方形)1是边长为:数一数下面各图中分别有多少个长方形。
:5练习.【思路导航】边长是1个长度单位的正方形有3×2=6个,边长AB+AC+AD+AE+BC+BD+BE+CD+CE+DE=1+(1+4)+(1+4+2)+(1+4+2+3)+4+(4+2所以,是2个长度单位的正方形有2×1=2个。
【小学四年级奥数讲义】数数图形一、知要点我已了段、角、三角形、方形等基本形,当些形重重叠叠地交在一起就构成了复的几何形。
要想准确地数形中所包含的某一种基本形的个数,就需要仔地察,灵活地运用有关的知和思考方法,掌握数形的律,才能得正确的果。
要准确、迅速地数形必注意以下几点:1.段上有 n 个端点,那么段的条数 n+(n-1)+(n-2)+ ⋯+3+2+12.从一个点引 n 条射,那么角的个数 n+(n-1)+(n-2)+ ⋯+3+2+13.由相同的 n×n 个小方格成的几行几列的正方形其中所含的正方形数:1×1+2×2+⋯+ n×n。
4.如果一个方形的被分成 m等份,被分成 n 等份(和的每一份都是相等的)那么正方形的数:mn+(m-1)(n -1) +(m-2)(n -2)+⋯+ (m-n+1)n.二、精精【例 1】数出下面中有多少条段。
1:数出下列中有多少条段。
(2)【例题 2】数一数下图中有多少个锐角。
练习 2::下列各图中各有多少个锐角?【例题 3】数一数下图中共有多少个三角形。
练习 3::数一数下面图中各有多少个三角形。
【例题 4】数一数下图中共有多少个三角形。
练习 4::数一数下面各图中各有多少个三角形。
【例题 5】数一数下图中有多少个长方形。
练习 5::数一数下面各图中分别有多少个长方形。
【例题 6】数一数下图中有多少个长方形?练习 6:数一数,下面各图中分别有几个长方形?【例题 7】数一数,下图中有多少个正方形?(每个小方格是边长为 1 的正方形)练习 7::数一数下列各图中分别有多少个正方形?(每个小方格为边长是1的小正方形)【例题 8】数一数下图中有多少个正方形?(其中每个小方格都是边长为 1 个长度单位的正方形)练习 8:数一数下列各图中分别有多少个正方形。
【例题 9】从广州到北京的某次快车中途要停靠 8 个大站,铁路局要为这次快车准备多少种不同车的车票?这些车票中有多少种不同的票价?练习 9:1.从上海到武汉的航运线上,有 9 个停靠码头,航运公司要为这段航运线准备多少种不同的船票?2. 从上海至青岛的某次直快列车,中途要停靠 6 个大站,这次列车有几种不同票价?3. 从成都到南京的快车,中途要停靠9 个站,有几种不同的票价?【例 10】求下列中段度的和。
四年级奥数思维训练专题-数数图形
专题简析:当线段、角、三角形、长方形等图形重重叠叠地交错在一起时就构成了复杂的几何图形.要想准确地计数这类图形中所包含的某一种基本图形的个数,必须注意以下几点:1,弄清被数图形的特征和变化规律.
2,要按一定的顺序数,做到不重复,不遗漏.
例1:数一数下图中共有多少个三角形.
分析:以AD上的线段为底边的三角形也是1+2+3=6个;以EF上的线段为底边的三角形也是1+2+3=6个.所以图中共有6×2=12个三角形.
试一试1:数一数下面各图中各有多少个三角形.
()个三角形()个三角形
例2:数一数下图中有多少个长方形.·
分析:数长方形与数线段的方法类似.可以这样思考,图中的长方形的个数取决于AB或CD边上的线段,AB边上的线段条数是1+2+3=6条,所以图中有6个长方形.
试一试2:
数一数下面各图中分别有多少个长方形.
()个长方形
数数图形(二)
专题简析:“数图形”时,既可以逐个计数,也可以把图形分成若干个部分,先对每部分按照各自构成的规律数出图形的个数,再把他们的个数合起来.
例1:数一数下图中有多少个长方形?
分析:AB边上有线段1+2+3=6条,把AB边上的每一条线段作为长,AD边上的每一条线段作为宽,每一个长配一个宽,就组成一个长方形,所以,图中共有6×3=18个长方形.
即:长边线段数×宽边线段数=长方形的个数
试一试1:数一数,下图中有( )个长方形.
例2:数一数,下图中有多少个正方形?(每个小方格是边长为1的正方形)
分析:图中边长为1个长度单位的正方形有3×3=9个,边
长为2个长度单位的正方形有2×2=4个,边长为3个长度单位的正方形有1×1=1个.所以图中的正方形总数为:1+4+9=14个.
经进一步分析可以发现,由相同的n×n个小方格组成的几行几列的正方形其中所含的正方形总数为:1×1+2×2+…+n×n.
试一试2:数一数下图中有()个正方形.(每个小方格为边长是1的小正方形)
例3:数一数右图中有多少个正
方形?(其中每个小方格都是边
长为1个长度单位的正方形)
分析:边长是1个长度单位的正方形有6×4=24个;边长是2个长度单位的正方形有(6-1)×(4-1)=15个;边长是3个长度单位的正方形有(6-2)×(4-2)=8个;边长是4个长度单位的正方形有(6-3)×(4-3)=3个;共有:24+15+8+3=50个.
如果一个长方形的长被分成m等份,宽被分成n等份(长和宽的每一份都是相等的)那么正方形的总数为:mn+(m-1)(n-1)+(m -2)(n-2)+…+(m-n+1)·1
试一试3:数一数下图中有( )个正方形.。