列车电力传动与控制第7章交直流传动内燃机车传动系统
- 格式:ppt
- 大小:6.71 MB
- 文档页数:215
电力机车和电动车组传动方式的分类及特点电力机车和电动车组的传动方式按照供电电源的性质及所采用的牵引电动机的不同,理论上可以分为直-直流传动、交-直流传动、交-直-交流传动、交-交流传动和直-交流传动等。
1.直-直流传动方式直-直流传动方式就是使用直流电源供电、直流牵引电动机驱动的传动方式,结构示意图如图1。
受电器从接触网或者第三轨上获取电能,通过直流电压调节装置对直流电压进行调节,从而达到调节直流(脉流)牵引电动机转速和转矩的目的。
图 1 直-直流传动方式示意图调压装置可以是:(1)电阻器:特点是简单、可靠。
维修方便,对使用和维护工人技术要求低。
但是电阻调速是有级的,调速过程中电阻器有能耗,能量损失大,调速性能差,在大功率场合长期调速运行,不仅损失的能量很大,还可能引起地铁隧道或周围环境温度升高。
(2)斩波器:用大功率电力电子器件构成,特点是效率高,调速性能好。
直-直流传动方式的主要特点是调速简单方便,但是直流供电电压低限制了其应用场合,并且直流牵引电动机体积大、维护工作量大、经济性能指标差。
早期的工矿电机车、城市有轨电车、无轨电车和地铁动车大多采用直-直流传动方式。
此外直流电流的回流会对线路周围的金属结构产生电蚀。
2. 交-直流传动方式交-直流传动方式就是使用交流电源供电、直流牵引电动机驱动的传动方式,结构示意图如图2。
受电器从接触网获取交流电能,通过整流调压装置对输出直流电压进行调节,从而达到调节直流牵引电动机转速和转矩的目的。
图2 交-直流传动方式示意图交-直流传动方式是我国电力机车长期使用的一种电力机车传动方式,国产韶山(SS)系列和进口的6K、8K电力机车等均采用这一传动方式,这些机车的主要差别在于调压整流方式和控制方式的不同。
这种传动方式的主要特点是接触网采用单相交流供电,可以大大提高电网的供电能力,减少牵引变电所的数量。
从技术上看,其缺点主要是因为采用直流牵引电动机所引起的。
3. 交-直-交流传动交-直-交流传动方式就是使用交流电源供电,中间经过降压整流变成直流,然后再将直流逆变成为频率和电压幅值可调的交流电,驱动交流牵引电动机的传动方式。
第一章1.试述交-直流传动电力机车的主要缺陷及评价标准。
答:交-直流传动电力机车的主要缺陷是功率因数偏低,谐波电流偏大,对电网与广播通信系统产生不利影响。
评价标准:采用功率因数PF和谐波干扰电流作为评价标准2.简述功率因数的概念,提高交-直流传动电力机车功率因数的主要措施。
答:在交流电路中,电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S.提高功率因数的主要措施:(1)选择合适的整流调压电路(2)采用功率因数补偿电路3.试述交-直流传动电力机车的调速方法及相互关系答:交-直流传动电力机车的调速是通过调节直流(脉流)牵引电动机的转速来实现的,直流牵引电动机的调速主要有两种(1)改变电枢电压调速(2)磁场削弱调速相互关系:在交-直流传动电力机车中只有当调压资源用尽后才能开始实施磁场削弱调速4.分析三段不等分半控桥电路的调压过程及输出关系、波形。
答:调压过程:升压调压过程第一段:普通半控桥(大桥)首先工作,VT1、VT2触发导通,调节α1进行移相控制,直至其全开放,输出电压由零均匀地调至额定输出电压的一半。
此阶段中抽式半控桥(小桥1、2)始终被封锁,α2=α3=π,由VD3、VD4提供续流通路。
第二段:保持普通半控桥VT1、VT2的全导通状态,α1=0,中抽式半控桥中小桥1投入工作,小桥2仍然被封锁,触发VT3、VT4使其导通,调节α2进行移相控制,输出电压在1/2U d基础上递增。
当VT3、VT4全开放时,α2=0,输出电压达到额定输出电压的3/4第三段:保持普通半控桥、小桥1处于全开放状态,小桥2投入工作,触发VT5、VT6导通,调节α3进行移相控制,输出电压将在3/4基础上递增。
当VT5、VT6全开放时,输出电压达到额定值。
至此,升高电压的调节过程全部结束。
降压顺序控制过程与上述升压控制过程相反。
输出关系:第一段大桥:0≤α1<π,α2=α3=πU d=U d1=1/4U d0(1+cosα1) 0≤U d≤1/2U d0第二段大桥1:0≤α2<π,α1=0,α3=πU d2=1/8U d0(1+cosα2)U d=U d1+U d2=1/8U d0(5+cosα2), 1/2U d0<U d≤3/4U d0第三段大桥2:0≤α3<π,α1=α2=0U d3=1/8U d0(1+cosα3)U d=U d1+U d2+ U d3=1/8U d0(7+cosα3), 3/4U d0<U d≤U d0输出波形:5.试述交-直流传动电力机车主电路的选择原则原则:1.若需要进行再生制动,整流电路必须采用全控桥式;若需要电阻制动,可选用半控桥式;2.客用机车采用无级磁削方式,货运机车采用有级磁削方式,一般为3级。
内燃机车交流传动及其控制系统1、概述电力传动系统的各项功能是通过一定形式的电路驱动各种电气设备得以实现的,电传动内燃机车上的电路,按其作用可以分为主电路、调节电路、辅助电路和控制电路四大系统。
主电路将产生机车牵引力和制动力的各种电气设备连成一个系统,实现机车的功率传输,是电传动机车最重要的组成部分之一,不但决定电传动机车的类型,而且在很大程度上决定该型机车的基本特性。
因此主电路性能的优劣,在很大程度上决定了机车性能的好坏、投资的多少及运行费用的高低等主要技术经济指标。
调节电路在交-直流传动中通常是内燃机车上保证柴油机发电机组恒功率运行的励磁调节系统,它包括牵引发电机的励磁回路及恒功率励磁调节回路等;在交-直-交流传动中则是指保证柴油机发电机组恒功率运行的牵引发电机励磁调节和逆变器变压变频调节系统。
调节电路应尽可能扩大牵引电机的恒功率范围,使机车在宽广的速度范围内都能充分发挥柴油机的功率,获得良好的经济运行特性,满足内燃机车牵引性能的要求。
辅助电路将机车上的各种辅助电气设备和辅助电源连成一个系统,成为保证机车正常运转不可缺少的电气装置。
机车上的辅助电气设备包括:通风机、空气压缩机、油泵等的拖动电机、起动辅助发电机、蓄电池、照明设备等。
辅助传动系统通常为直流传动,由辅助发电机在电压调整器(或微机)的控制下向辅助电路提供110V的直流电,再由各种直流电动机驱动辅助装置运转。
由于是恒定的110V直流电压供电,各辅助直流电动机基本不能调速,只能按工况以一定的转速运转或停止,使辅助系统并非保持在最佳工况下运转,工作效率不高。
另有一部分辅助装置则是由机械或液压驱动,工作效率同样不高。
因此,为提高机车整个辅助系统的性能及效率,近年来开始发展辅助交流传动系统,辅助装置的拖动电机为交流电动机,能够根据工况的变化进行变频或变极调速,使辅助系统处于最佳工作状态及工作效率。
控制电路将控制主电路和辅助电路各电气设备的控制电器、信号装置和控制电源连成一个电气系统,实现对机车的操纵和控制。
“动车组交流传动与控制”学习概要1. 牵引变流器组成及功能牵引变流器是交流传动系统的核心部件,能够实现四象限运行,满足列车牵引、制动需要。
牵引变流器的基本功能是,把来自接触网或其它交流电源的交流电压,最终变换为频率、幅值可调的三相交流电压,供给交流牵引电动机,将电能转换为机械能,输出转矩驱动动轮旋转,在轮轨间产生牵引力或制动力,使列车运行。
在列车电力传动系统中,由于受调速范围的限制,只能采用交-直-交流传动控制技术。
交-直-交流传动控制由两部分组成,即网(电源)侧整流器控制和电动机(负载)侧逆变器控制。
交-直-交流传动系统变流器由网侧整流器、直流中间环节、电动机侧逆变器及控制装置组成。
整流器的作用是把来自接触网的单相交流电压或同步发电机产生的三相交流电压变换为直流。
直流中间环节由滤波电容器或电感组成,其作用是储能和滤波。
逆变器的作用是将中间环节平直的直流电,通过一定的控制策略,变换为频率、电压可调的三相脉冲交流电,供给交流牵引电动机,进行能量转换驱动列车。
牵引变流器根据中间直流环节滤波元件的不同,可分为电压型和电流型两种。
电压型变流器直流中间环节的储能器采用电容器,向逆变器输出的是恒定的直流电压;电流型变流器直流中间环节的储能器采用电感,向逆变器输出的是恒定的直流电流。
现代机车和动车组,牵引电动机一般为异步电动机,主要采用电压型变流器。
电流型变流器只为同步电动机供电或在一些城市、市郊运输装备中使用。
交流传动内燃机车等自备能源的列车,变流器由不可控整流器和PWM逆变器组成,动力制动一般采用电阻制动。
电力机车/EMU牵引变流器由网侧整流器和电动机侧逆变器两部分组成,无论是网侧的整流器还是电动机侧的逆变器都属于开关电路,电路中开关器件的周期性通断,从根本上破坏了交流电压、电流的正弦波形和连续性,在电压、电流中产生了高次谐波,不仅给污染了电网,而且使电动机运行性能恶化,谐波电流产生的脉动转矩将使电动机产生振动、噪音,影响稳定运行。