电力牵引传动与控制概述
- 格式:ppt
- 大小:3.64 MB
- 文档页数:2
CRH380动车组牵引系统技术概论CRH380动车组是中国铁路总公司研发的一款高速动车组。
其牵引系统是整个动车组的重要部分,它能够为整个列车提供可靠的驱动力,并保证列车在高速运行中的平稳性和安全性。
本文将对CRH380动车组牵引系统技术进行概述,以便更好地了解这一先进技术。
CRH380动车组的牵引系统主要由电动机、逆变器、传动系统和控制系统四个主要部分组成。
其中,电动机是动车组实现电力驱动的重要设备,逆变器将直流电源转换为交流电以供电动机使用,传动系统将电动机的转动力传递到车轮上,控制系统则负责监控和控制整个牵引系统的运行。
首先,电动机是CRH380动车组牵引系统的核心部分。
其采用三相异步牵引电动机,其最大输出功率可达10,500千瓦。
电动机的特点是耐高温,运行稳定性好,并且具有较高的效率和动力输出。
它可以提供足够的驱动力来使列车在高速运行时达到理想的速度。
其次,逆变器是牵引系统的另一个重要组成部分。
它的作用是将车载电池组提供的直流电转换成可用于电动机的交流电。
逆变器具有高效的电力转换和电力调节功能,能够根据实际需要提供不同频率和电压的电力输出。
这样,它可以满足列车在不同速度和负载条件下的不同需求。
传动系统将电动机的转动力传递到车轮上。
在CRH380动车组中,采用了齿轮传动系统。
它由电动机和主传动轴上的齿轮组成,能够将电动机的转动力通过齿轮的配合传递到车轮上,确保列车能够平稳地行驶。
传动系统的设计需要考虑到动车组的高速性能和运行稳定性,以及对于噪音和震动的控制。
最后,控制系统对整个牵引系统进行监控和控制。
它能够实时检测电动机、逆变器和传动系统的运行状态,并根据列车的实际情况调整系统的工作参数。
控制系统还可以对列车的加速度和速度进行精确控制,保证列车在运行过程中的平稳性和安全性。
综上所述,CRH380动车组牵引系统是一个复杂而高效的技术系统。
它由电动机、逆变器、传动系统和控制系统四个主要部分组成,这些部分相互配合,共同实现列车的高速运行。
简述电力牵引系统的组成电力牵引系统是指利用电能驱动车辆行驶的系统,电力牵引系统主要由电源系统、变流器系统、牵引电机系统和控制系统组成。
1. 电源系统:电力牵引系统的电源系统主要是提供电能给牵引电机系统,一般采用锂电池组、混合动力系统或接触网供电。
锂电池组是目前广泛应用于电动车的一种电源系统,其具有体积小、重量轻、能量密度高、无记忆效应等优点。
混合动力系统综合了高效的内燃机和清洁的电力系统,通过内燃机和发电机来供电。
接触网供电是指通过高压电缆连接到铁路接触网,将电能供给给牵引电机系统。
2. 变流器系统:变流器系统是将电源提供的直流电转换为交流电,并且能够调节电流和电压的系统。
变流器通常由电源逆变器、牵引逆变器和充电机组成。
电源逆变器将电源提供的直流电转换成交流电供给牵引逆变器和充电机。
牵引逆变器将交流电转换为牵引电机所需要的电能,同时可以根据需要调节电流和电压,以实现对牵引电机的驱动控制。
充电机则负责对电池组进行充电。
3. 牵引电机系统:牵引电机系统是电力牵引系统的核心部分,负责将电能转换为机械能,驱动车辆行驶。
牵引电机通常采用交流异步电机或永磁同步电机。
交流异步电机具有结构简单、可靠性高等特点,适用于牵引车辆的起步和低速行驶;永磁同步电机具有高效、体积小等特点,适用于高速行驶和大功率需求的车辆。
另外,牵引电机系统还包括传动装置,将电机输出的转矩传递给车轮,通常采用传统的机械传动装置,如齿轮传动、链传动等。
4. 控制系统:控制系统是对电力牵引系统的各个部分协调、控制和保护的核心部分。
控制系统主要包括控制器、传感器、控制算法和通信系统。
控制器是对整个牵引系统的控制中心,利用传感器采集到的电流、电压、转速等参数信息,通过控制算法完成对牵引电机的驱动控制,并实现对整个系统的保护功能。
传感器主要用于采集牵引电机和其他关键部件的运行状态,如电流传感器、温度传感器等。
控制算法主要是对电机的控制策略进行优化,使得系统能够更加稳定、高效地工作。
电力牵引与传动控制一、课程说明课程编号:090409Z10课程名称:电力牵引与传动控制/Electric Traction and Drive Control课程类别:专业课学时/学分:48(10)/3先修课程:模拟、数字电子技术、电机学、电力电子技术、自动控制原理、微机原理应用适用专业:电气工程及其自动化、电气工程卓越工程师、自动化、测控技术教材、教学参考书:1.《电力牵引系统及其故障诊断技术》,主编,中南大学出版社,20012.《韶山8型电力机车》,刘友梅主编,中国铁道出版社,20013.《HXD-1型电力机车》,张曙光主编,中国铁道出版社,2008二、课程设置的目的意义“电力牵引与传动控制”是高等学校自动化、电气工程及其自动化、测控技术与仪器等专业教学计划中一门专业课程,它的主要任务是使学生了解各种电力牵引与传动控制系统的基本概念和原理,掌握各种电力牵引调速、控制方法,并介绍当今世界各国电力牵引技术发展的现状和方向。
三、课程的基本要求知识:电力牵引与传动控制将强弱电结合,以弱电控制强电,既有电机调速控制,又有电力电子变流装置控制。
是一门为电类专业大学本科学生所开设的专业课。
能力:通过该课程的学习,力图提高学生综合运用所学过的知识,能够分析具体的传动控制系统的组成、工作原理并达到能够设计出一个简单的控制系统的水平。
对电力机车,特别是其中的调速器、变流器的控制以及具体的控制电路有一个比较深入的理解。
对电力机车及其传动控制的最新发展有所了解。
素质:轨道交通产业是现代自动控制系统的集成平台,其发展速度和发展规模仅次于航天与军工产业。
学生通过了解掌握这些最先进的知识,可以强化电气、电力设备设计的实践能力,培养其发现问题、分析问题、解决问题的能力和素质。
四、教学内容、重点难点及教学设计五、实践教学内容和基本要求注: 参观登乘铁路机车,了解牵引传动系统总体结构;参观实验室,了解牵引传动诊断系统。
力争参观、乘坐磁悬浮列车并了解其最新进展。
城市轨道交通车辆-第章-电力牵引传动系统课件 (一)城市轨道交通车辆是现代城市交通中非常重要的一部分,而他们的电力牵引传动系统就是其运行的核心和动力。
本文将详细介绍城市轨道交通车辆的电力牵引传动系统。
一、电力牵引传动系统的组成电力牵引传动系统由三个组成部分构成:牵引变流器、牵引电机和制动电阻。
1.牵引变流器:牵引变流器是电力牵引的核心和决定因素,它可以将直流电转化为交流电。
牵引变流器能够控制电机的转速和力矩,以达到牵引车辆的目的。
2.牵引电机:城市轨道交通车辆的牵引电机是三相异步电动机或同步电动机。
牵引电机可以将电能转化为机械能,从而提供动力以驱动轨道车辆。
3.制动电阻:制动电阻是在车辆紧急制动时提供制动力的电阻元件。
当电机接通制动电阻电路时,电机旋转速度要逐渐降低,从而达到制动效果。
二、电力牵引传动系统的分类根据使用条件和使用要求的不同,电力牵引传动系统可以分为直流电力牵引传动系统和交流电力牵引传动系统两种类型。
1.直流电力牵引传动系统:直流电力牵引传动系统具有简单、可靠、成熟的技术,对牵引电机的故障诊断和控制较为方便。
同时,直流电力牵引传动系统还具有调速范围大,可靠性高的特点。
2.交流电力牵引传动系统:交流电力牵引传动系统采用AC电机,可以在不同速度下提供更高的牵引力和效率。
此外,交流电力牵引传动系统可以通过能量回馈来降低整车的能耗。
三、电力牵引传动系统的优缺点1.优点电力牵引传动系统具有牵引力大、加速度快、稳定性高和运行平稳等特点。
同时,电力牵引传动系统能够提供更为舒适的乘坐环境,降低噪声和振动。
另外,电力牵引传动系统还能够节能环保,大大减少空气污染和噪声污染。
2.缺点电力牵引传动系统的成本较高,维护和保养也比较复杂。
同时,由于其本身的构造和性能,电力牵引传动系统的动力响应有些慢,无法满足部分应急情况下的需要。
总之,电力牵引传动系统是城市轨道交通车辆运行的核心,也是现代城市交通发展的重要标志之一。
电力牵引传动控制系统:核心技术与应用优势一、电力牵引传动控制系统概述电力牵引传动控制系统,作为现代轨道交通领域的关键技术,以其高效、环保、低噪音等优势,逐渐成为我国铁路、城市轨道交通等领域的主流驱动方式。
该系统主要包括电力变换、电机控制、传动装置及监控系统等部分,通过先进的控制策略,实现列车牵引与制动的高效运行。
二、电力牵引传动控制系统的核心技术1. 电力变换技术电力变换技术是电力牵引传动控制系统的核心,主要包括整流、逆变和滤波等环节。
通过对输入的电能进行高效转换,为电机提供稳定、可靠的电源供应,确保列车在各种工况下都能实现优异的牵引性能。
2. 电机控制技术电机控制技术主要针对牵引电机进行精确控制,包括速度、转矩和位置控制等。
采用矢量控制、直接转矩控制等先进控制策略,实现电机的高效、稳定运行,降低能耗,提高列车运行品质。
3. 传动装置技术传动装置技术主要包括齿轮箱、联轴器等部件,将电机输出的动力传递到车轮,实现列车的牵引和制动。
通过优化传动装置的设计,降低噪音、提高传动效率,确保列车运行的安全性和舒适性。
4. 监控系统技术监控系统技术负责对整个电力牵引传动控制系统进行实时监控,包括故障诊断、保护、数据处理等功能。
通过集成化、智能化的监控手段,提高系统的可靠性和运行稳定性。
三、电力牵引传动控制系统的应用优势1. 节能环保电力牵引传动控制系统采用电能作为动力来源,相较于传统燃油驱动方式,具有显著的节能环保优势。
同时,系统的高效运行有助于降低能源消耗,减少污染物排放。
2. 运行速度快电力牵引传动控制系统具有较高的功率密度,能够实现列车的快速启动、加速和制动,提高运行速度,缩短运行时间。
3. 维护成本低相较于传统传动系统,电力牵引传动控制系统结构简单,故障率低,维护方便。
通过智能化监控手段,可实现故障预警和远程诊断,降低维护成本。
4. 噪音低、舒适性高电力牵引传动控制系统采用交流电机驱动,相较于直流电机,噪音更低,振动更小,提高了乘客的舒适度。
电力牵引传动与控制技术的现状与发展电力牵引系统是指在铁路运输中通过电力传动和控制机械的运动。
电力牵引系统是铁路运输中的一种重要的机械传动系统。
近年来,随着铁路交通的高速化、绿色化和智能化的发展,电力牵引技术迎来了新的发展机遇。
本文将介绍电力牵引传动与控制技术的现状与发展。
一、电力牵引传动技术的现状电力牵引传动是铁路运输中必备的技术,其主要作用是将电能转换为机械能,实现列车运动。
目前,中国的电力牵引传动技术具有较高的水平,已经实现了直流电力牵引技术、交流电力牵引技术和混合动力牵引技术三种形式的电力牵引传动技术。
直流电力牵引技术是传统的电力牵引技术,在国内外均得到广泛应用。
直流电力牵引系统由车辆直流电源、逆变器、电机和磁控制器等组成,能够实现电能的高效转换和调节。
交流电力牵引技术是目前铁路运输中应用最为广泛的一种电力牵引技术,主要依靠交流电机的牵引效应实现列车的运动。
交流电力牵引系统由车辆交流电源、逆变器、电机和控制器等组成,其优点是能够实现无级变速调节和电能回馈。
混合动力牵引技术是近年来快速发展的一种牵引技术,其主要特点是将各种牵引系统进行组合,提高列车的牵引效率、降低能耗和减少污染排放。
二、电力牵引控制技术的现状电力牵引控制技术是电力牵引系统的重要组成部分。
现代电力牵引系统的控制技术主要分为两种方式,一种是非智能化的集中控制方式,另一种是智能化的分散控制方式。
非智能化的集中控制方式主要依靠人工控制集中控制室中的观察仪表和按钮进行车辆的控制。
这种控制方式功能较单一,且控制效率较低,但是由于成本低廉,仍然在一定范围内适用。
智能化的分散控制方式是近年来的一种新兴技术,通过集成智能芯片、传感器和计算机技术等实现集控与分控的平衡,使电力牵引控制系统可以实现更加精准、灵活的控制。
三、电力牵引传动与控制技术的未来发展随着铁路交通不断高速化、绿色化和智能化的发展,电力牵引传动与控制技术也不断向高效、可靠、节能、环保和智能化方向发展。
电力机车工作原理引言概述:电力机车是铁路运输中常见的一种机车类型,它通过电力驱动实现牵引列车运行。
了解电力机车的工作原理对于理解铁路运输系统的运行机制非常重要。
本文将详细介绍电力机车的工作原理,帮助读者更好地了解这一关键的铁路运输设备。
一、电力机车的基本组成1.1 牵引系统:主要由牵引电机、传动系统和牵引电源组成。
1.2 控制系统:包括牵引控制系统、制动控制系统和辅助控制系统。
1.3 供电系统:主要由接触网、变电站和接触网供电设备组成。
二、电力机车的工作原理2.1 牵引系统工作原理:牵引电机受电源供电后,通过传动系统将动力传递到车轮,实现机车的运行。
2.2 控制系统工作原理:牵引控制系统通过控制电机的工作状态和功率输出,实现机车的加速、减速和定速运行。
2.3 供电系统工作原理:接触网向机车提供直流电源,变电站将交流电转换为直流电,接触网供电设备保证电力传输的稳定性和可靠性。
三、电力机车的牵引特点3.1 高效节能:电力机车利用电能驱动,具有高效节能的特点,相比内燃机车更环保。
3.2 高速牵引:电力机车在高速运行时具有较好的牵引性能,适用于长距离高速列车运行。
3.3 可调速运行:电力机车能够根据需要实现可调速运行,实现列车的平稳运行和减少磨损。
四、电力机车的维护与管理4.1 定期检修:电力机车需要进行定期的检修和保养,确保各部件的正常工作状态。
4.2 故障排除:及时解决电力机车的故障问题,保证机车的正常运行。
4.3 数据监测:通过数据监测和分析,提高电力机车的运行效率和可靠性。
五、电力机车的发展趋势5.1 智能化技术:电力机车将逐渐引入智能化技术,提高运行效率和安全性。
5.2 绿色环保:电力机车将更加注重环保和节能,减少对环境的影响。
5.3 高速化发展:电力机车将继续发展高速化技术,适应高速铁路的需求。
总结:通过本文的介绍,读者可以更全面地了解电力机车的工作原理和特点,以及未来的发展趋势。
电力机车作为铁路运输中的重要组成部分,将继续发挥重要作用,为铁路运输系统的发展做出贡献。
掌握电流型、电压型变流器中间回路储能其所用的器件(电感L、电容C)并知道各自所接电动机的电压、电流波形的形状。
电流型变流器:电容器C用作中间回路的储能器,电压型变流器:电抗器L作为中间回路的储能器,电流:正弦波,方波掌握列车制动的方法(3种)摩擦制动电气制动电磁制动电力牵引交流传动控制系统的硬件配置(3个部分组成)车顶高压设备车内变流设备以及相关的附加设备转向架中的机电能量变换装置直流电机的调速方式:恒转矩:1、保持磁通φ不变,改变电枢端电压调速恒功率:2、保持电枢电压不变,减弱磁通φ调速三相异步电动机基频以下和基频以上调速的特点以及所对应的恒转矩或恒功率调速基频以下:横转矩调速基频以上:横功率调速SPWM控制模式3重算法: 自然采样法规则采样法指定谐波消除法P28IGBT栅极驱动电路基本要求(1-5点)1提供适当的正向和反向输出电压,使IGBT能可靠的开通和关断;2提供足够大的瞬时功率或瞬时电流,使IGBT能及时迅速建立栅控电场而导通;3输入、输出延迟时间尽可能小,以提高工作频率;4输入、输出电气隔离性能足够高,使信号电路与栅极驱动电路绝缘;5具有灵敏的过流保护能力。
P104直流电动机PWM调速的3种方法及优点1定宽调频法。
2调宽调频法 3定频调宽法优点:需要的滤波装置很小甚至只利用电枢电感已经足够,不需要外加滤波装置;电动机的损耗和发热较小,动态响应快,开关频率高,控制线路简单。
P169-P170感应电动机矢量控制原理,绘图说明把感应电动机经坐标变换为等效成直流机,然后,仿照直流机的控制方法,求得直流电动机的控制。
在经过相应的反变换,就可以控制交流机了。
P138-140交流转动电力机车三级控制的特点及作用列车级控制特点:特性控制,速度控制,目标控制,运行状态选择显示,列车安全防护诊断。
作用:严格保持列车的运行速度,避免加速或减速时出现的冲击,并且在目标制动时,能够迅速、准确的停靠在站台上。