高考数学压轴专题新备战高考《复数》易错题汇编及答案
- 格式:doc
- 大小:644.00 KB
- 文档页数:9
【最新】《复数》专题解析(1)一、选择题1.设(1)1i x yi -=+,其中,x y 是实数,则x yi +在复平面内所对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】由()11i x yi -=+,其中,x y 是实数,得:11,1x x x y y ==⎧⎧∴⎨⎨-==-⎩⎩,所以x yi +在复平面内所对应的点位于第四象限.本题选择D 选项.2.已知复数z 满足()1z i i =-,(i 为虚数单位),则z =( )AB C .2 D .3【答案】A【解析】 ()11z i i i =-=+,故z = A.3.设i 是虚数单位,则()()3211i i -+等于( ) A .1i -B .1i -+C .1i +D .1i --【答案】B【解析】【分析】化简复数得到答案.【详解】 ()()3221(1)(1)2(1)1221i i i i i i i ii -----===-++ 故答案选B【点睛】本题考查了复数的计算,意在考查学生的计算能力.4.若43i z =+,则z z=( ) A .1B .1-C .4355i +D .4355i - 【答案】D【详解】由题意可得 :5z ==,且:43z i =-, 据此有:4343555z i i z -==-. 本题选择D 选项.5.已知复数z,则|z |=( ) A .14 B .12 C .1 D .2【答案】B【解析】【分析】【详解】解:因为4i ===,因此|z |=126.设复数4273i z i -=-,则复数z 的虚部为( ) A .1729- B .1729 C .129- D .129【答案】C【解析】【分析】 根据复数运算法则求解1712929z i =-,即可得到其虚部. 【详解】 依题意,()()()()427342281214634217173737358582929i i i i i i z i i i i -+-+-+-=====---+ 故复数z 的虚部为129-故选:C【点睛】此题考查复数的运算和概念辨析,关键在于熟练掌握运算法则,准确计算,正确辨析虚部7.已知复数z 满足11212i i z+=+(i 为虚数单位),则z 的虚部为( ) A .4 B .4i C .4- D .4i -【答案】C 【解析】112i 11420i 34i 12i 5z ++-===-+ ,所以z 的虚部为4-,选C.8.若复数()21a i a R i -∈+为纯虚数,则3ai -=( )A B .13 C .10 D【答案】A【解析】【分析】由题意首先求得实数a 的值,然后求解3ai -即可.【详解】由复数的运算法则有: 2(2)(1)221(1)(1)22a i a i i a a i i i i ++-+-==+++-, 复数()21a i a R i -∈+为纯虚数,则2020a a +=⎧⎨-≠⎩,即2,|3|a ai =--=本题选择A 选项.【点睛】复数中,求解参数(或范围),在数量关系上表现为约束参数的方程(或不等式).由于复数无大小之分,所以问题中的参数必为实数,因此,确定参数范围的基本思想是复数问题实数化.9.设i 是虚数单位,则复数734i i ++在复平面内所对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】 因为734i i++(7)(34)2525=1(34)(34)25i i i i i i +--==-+-, 所以所对应的点为(1,1)-,位于第四象限,选D.10.若复数()234sin12cos z i θθ=-++为纯虚数,()0,θπ∈,则θ=( ) A .6π B .3π C .23π D .3π或23π 【答案】B【解析】分析:由题意得到关于sin ,cos θθ的方程组,求解方程组结合题意即可求得三角函数值,由三角函数值即可确定角的大小.详解:若复数()23412z sin cos i θθ=-++为纯虚数,则: 234sin 012cos 0θθ⎧-=⎨+≠⎩,即:23sin 41cos 2θθ⎧=⎪⎪⎨⎪≠-⎪⎩, 结合()0,θπ∈,可知:sin 1cos 2θθ⎧=⎪⎪⎨⎪=⎪⎩,故3πθ=. 本题选择B 选项.点睛:本题主要考查纯虚数的概率,三角函数的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.11.复数(1)(2)z ai a i =-+在复平面内对应的点在第一象限,其中a R ∈,i 为虚数单位,则实数a 的取值范围是( )A.B.)+∞ C.(,-∞ D.( 【答案】A【解析】【分析】利用复数代数形式的乘除运算、化简,再由实部与虚部均大于0,列出不等式组,即可求解.【详解】由题意,复数2(1)(2)3(2)z ai a i a a i =-+=+-在复平面内对应的点在第一象限, 所以23020a a >⎧⎨->⎩,解得0a <<,即实数a的取值范围是. 故选:A .【点睛】本题主要考查了复数的乘法运算,以及复数的代数表示法及其几何意义的应用,着重考查了推理与运算能力.12.若复数1a i z i +=-,且3·0z i >,则实数a 的值等于( ) A .1B .-1C .12D .12- 【答案】A【解析】【分析】 由3·0z i >可判定3·z i 为实数,利用复数代数形式的乘除运算化简复数z ,再由实部为0,且虚部不为0列式求解即可.【详解】()()()()()i 1i 11i i 1i 1i 1i 2a a a a z ++-+++===--+Q , 所以3·z i =()()()()341i 1i 1i 122a a a a -++--++=,因为3·0z i >,所以3·z i 为实数,102a --= 可得1a =,1a =时3,?10z i =>,符合题意,故选A. 【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.13.复数1122i i ++的虚部为( ) A .110 B .110- C .310 D .310- 【答案】A【解析】【分析】 化简复数111122510i i i +=++,结合复数的概念,即可求解复数的虚部,得到答案,. 【详解】 由题意,复数()()1121112212122510i i i i i i i -+=+=+++-, 所以复数1122i i ++的虚部为110. 故选:A.【点睛】本题主要考查了复数的运算法则,以及复数的概念,其中解答中熟记复数的运算法则,准确化简是解答的关键,着重考查了推理与计算能力,属于基础题.14.已知两非零复数12,z z ,若12R z z ∈,则一定成立的是A .12R z z ∈B .12R z z ∈C .12R z z +∈D .12R z z ∈ 【答案】D【解析】利用排除法:当121,1z i z i =+=-时,12z z ∈R ,而()21212z z i i R =+=∉,选项A 错误, 1211z i i R z i+==∉-,选项B 错误, 当121,22z i z i =+=-时,12z z ∈R ,而123z z i R +=-∉,选项C 错误,本题选择D 选项.15.复数52i -的共轭复数是( ) A .2i + B .2i -C .2i -+D .2i -- 【答案】C【解析】【分析】 先化简复数代数形式,再根据共轭复数概念求解.【详解】 因为522i i =---,所以复数52i -的共轭复数是2i -+,选C. 【点睛】本题考查复数运算以及共轭复数概念,考查基本求解能力.16.复数z 11i i -=+,则|z |=( ) A .1B .2 CD .【答案】A【解析】【分析】运用复数的除法运算法则,先计算出z 的表达式,然后再计算出z .【详解】由题意复数z 11i i -=+得221(1)12=1(1)(1)2i i i i i i i i ---+===-++-,所以=1z . 故选A【点睛】本题考查了运用复数的除法运算求出复数的表达式,并能求出复数的模,需要掌握其计算法则,较为基础.17.已知方程()()2440x i x ai a R ++++=∈有实根b ,且z a bi =+,则复数z 等于( )A .22i -B .22i +C .22i -+D .22i --【答案】A【解析】【详解】由b 是方程()()2440x i x ai a R ++++=∈的根可得()2440b i b ai ++++=, 整理可得:()()2440b a i b b ++++=, 所以20440b a b b +=⎧⎨++=⎩,解得22a b =⎧⎨=-⎩,所以22z i =-,故选A .18.若复数z 满足22iz i =-(i 为虚数单位),则z 的共轭复数z 在复平面内对应的点所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】分析:直接利用复数代数形式的乘除运算化简复数,然后求z 的共轭复数,即可得到z 在复平面内对应的点所在的象限. 详解:由题意,()()()222222,i i i z i i i i -⋅--===--⋅-Q 22,z i ∴=-+ 则z 的共轭复数z 对应的点在第二象限.故选B.点睛:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.19.已知复数为纯虚数(为虚数单位),则实数( ) A .-1B .1C .0D .2【答案】B【解析】【分析】化简得到,根据纯虚数概念计算得到答案.【详解】 为纯虚数,故且,即. 故选:.【点睛】本题考查了根据复数类型求参数,意在考查学生的计算能力.20.若复数(1)(1)z m m m i =-+-是纯虚数,其中m 是实数,则1z =( ) A .iB .i -C .2iD .2i -【答案】A【解析】 因为复数()()11z m m m i =-+-是纯虚数,所以()1010m m m ⎧-=⎨-≠⎩,则m =0,所以z i =-,则11i z i==-.。
高考数学《复数》练习题一、选择题1.设()()2225322z t t t t i =+-+++,其中t ∈R ,则以下结论正确的是( )A .z 对应的点在第一象限B .z 一定不为纯虚数C .z 对应的点在实轴的下方D .z 一定为实数【答案】C【解析】【分析】根据()2222110t t t ++=++>,2253t t +-可正可负也可为0,即可判定.【详解】 ()2222110t t t ++=++>Q ,z ∴不可能为实数,所以D 错误; z ∴对应的点在实轴的上方,又z Q 与z 对应的点关于实轴对称,z 对应的点在实轴的下方,所以C 正确;213,25302t t t -<<+-<,z 对应的点在第二象限,所以A 错误; 21,25302t t t =+-=,z 可能为纯虚数,所以B 错误; ∴C 项正确.故选:C【点睛】此题考查复数概念的辨析,关键在于准确求出实部和虚部的取值范围.2.已知i 是虚数单位,复数134z i =-,若在复平面内,复数1z 与2z 所对应的点关于虚轴对称,则12z z ⋅=A .25-B .25C .7-D .7【答案】A【解析】【分析】根据复数1z 与2z 所对应的点关于虚轴对称,134z i =-,求出2z ,代入计算即可【详解】 Q 复数1z 与2z 所对应的点关于虚轴对称,134z i =-234z i ∴=--()()12343425z z i i ⋅=---=-故选A【点睛】本题主要考查了复数的运算法则及其几何意义,属于基础题3.已知复数z 满足()1z i i =-,(i 为虚数单位),则z =( )AB C .2 D .3【答案】A【解析】 ()11z i i i =-=+,故z = A.4.a 为正实数,i 为虚数单位,2a i i +=,则a=( )A .2B C D .1【答案】B【解析】【分析】【详解】||220,a i a a a i+==∴=>∴=Q ,选B.5.已知复数z 满足()1i z i +=,i 为虚数单位,则z 等于( ) A .1i -B .1i +C .1122i -D .1122i + 【答案】A【解析】因为|2(1)11(1)(1)i i z i i i i -===-++-,所以应选答案A .6.欧拉公式e i x =cos x +isin x (i 为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,e 2i 表示的复数在复平面中对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】【分析】由题意得2cos 2sin 2i e i =+,得到复数在复平面内对应的点(cos 2,sin 2),即可作出解答.【详解】由题意得,e 2i =cos 2+isin 2,∴复数在复平面内对应的点为(cos 2,sin 2).∵2∈,∴cos 2∈(-1,0),sin 2∈(0,1),∴e 2i 表示的复数在复平面中对应的点位于第二象限,故选B.【点睛】本题主要考查了复数坐标的表示,属于基础题.7.在复平面内,已知复数z 对应的点与复数2i --对应的点关于实轴对称,则zi =()A .12i -B .12i +C .12i -+D .12i --【答案】B【解析】【分析】由已知求得z ,代入zi ,再由复数代数形式的乘除运算化简得答案.【详解】由题意,2z i =-+, 则22(2)()12zii i i i i i -+-+-===+-.故选:B .【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.8.已知复数z 满足121iz i i +⋅=--(其中z 为z 的共轭复数),则z 的值为( )A .1B .2C 3D 5【答案】D【解析】【分析】 按照复数的运算法则先求出z ,再写出z ,进而求出z .【详解】21(1)21(1)(1)2ii ii i i i ++===--+Q ,1222(2)121i iz i i z i z i i i i i +-∴⋅=-⇒⋅=-⇒==--=---,12||z i z ∴=-+⇒==故选:D【点睛】本题考查复数的四则运算、共轭复数及复数的模,考查基本运算能力,属于基础题.9.若复数()234sin12cos z i θθ=-++为纯虚数,()0,θπ∈,则θ=( ) A .6π B .3π C .23π D .3π或23π 【答案】B【解析】分析:由题意得到关于sin ,cos θθ的方程组,求解方程组结合题意即可求得三角函数值,由三角函数值即可确定角的大小.详解:若复数()23412z sin cos i θθ=-++为纯虚数,则: 234sin 012cos 0θθ⎧-=⎨+≠⎩,即:23sin 41cos 2θθ⎧=⎪⎪⎨⎪≠-⎪⎩, 结合()0,θπ∈,可知:sin 1cos 2θθ⎧=⎪⎪⎨⎪=⎪⎩,故3πθ=. 本题选择B 选项.点睛:本题主要考查纯虚数的概率,三角函数的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.10.已知复数12z =-,则z z +=( ) A.12-- B.12-+ C.12+ D.122- 【答案】C【解析】分析:首先根据题中所给的复数z ,可以求得其共轭复数,并且可以求出复数的模,代入求得122z z i +=+,从而求得结果.详解:根据12z =-,可得12z =-+,且1z ==,所以有1112222z z +=-++=+,故选C. 点睛:该题考查的是有关复数的问题,涉及到的知识点有复数的共轭复数、复数的模、以及复数的加法运算,属于基础题目.11.复数11i+的共轭复数是 ( ) A .1122i + B .1122i - C .1i - D .1i +【答案】A【解析】【分析】 利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数11i +,进而可得结果.【详解】 因为()()111121211i i i i i -+--==+, 所以11i+的共轭复数是1122i +, 故选:A.【点睛】 复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.12.设3i z i +=,i 是虚数单位,则z 的虚部为( ) A .1B .-1C .3D .-3 【答案】D【解析】因为z=3i i+13i =-∴z 的虚部为-3,选D. 13.设i 是虚数单位,z 表示复数z 的共轭复数,若231z i i=+-,则4z i +=( )A .6B .50C .D 【答案】C【解析】【分析】计算5z i =-,再代入计算得到答案.【详解】由231z i i=+-,得()()2315z i i i =+-=-,则45455z i i i i +=++=+= 故选:C .【点睛】本题考查了复数运算,共轭复数,复数的模,意在考查学生对于复数知识的综合应用.14.已知复数z 满足21zi z i +=-,则z =A .12i +B .12i -C .1i +D .1i -【答案】C【解析】【分析】设出复数z ,根据复数相等求得结果.【详解】设(),z a bi a b R =+∈,则z a bi =-, 故()()()()22221zi z a bi i a bi b a a b i i +=++-=-++-=-, 故2121b a a b -+=⎧⎨-=-⎩,解得11a b =⎧⎨=⎩. 所以1z i =+.故选:C .【点睛】本题考查复数的运算,共轭复数的求解,属综合基础题.15.复数(1)(2)z ai a i =-+在复平面内对应的点在第一象限,其中a R ∈,i 为虚数单位,则实数a 的取值范围是( )A .B .)+∞C .(,-∞D .(【答案】A【解析】【分析】利用复数代数形式的乘除运算、化简,再由实部与虚部均大于0,列出不等式组,即可求解.【详解】由题意,复数2(1)(2)3(2)z ai a i a a i =-+=+-在复平面内对应的点在第一象限,所以23020a a >⎧⎨->⎩,解得0a <<,即实数a 的取值范围是. 故选:A .【点睛】本题主要考查了复数的乘法运算,以及复数的代数表示法及其几何意义的应用,着重考查了推理与运算能力.16.若复数1a i z i +=-,且3·0z i >,则实数a 的值等于( ) A .1B .-1C .12D .12- 【答案】A【解析】【分析】由3·0z i >可判定3·z i 为实数,利用复数代数形式的乘除运算化简复数z ,再由实部为0,且虚部不为0列式求解即可.【详解】 ()()()()()i 1i 11i i 1i 1i 1i 2a a a a z ++-+++===--+Q , 所以3·z i =()()()()341i 1i 1i 122a a a a -++--++=,因为3·0z i >,所以3·z i 为实数,102a --= 可得1a =,1a =时3,?10z i =>,符合题意,故选A. 【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.17.已知i 为虚数单位,,a b ∈R ,复数12i i a bi i +-=+-,则a bi -=( ) A .1255i - B .1255i + C .2155i - D .21i 55+ 【答案】B【解析】【分析】由复数的除法运算,可得(1)(2)12(2)(2)55i i i i i i a b i=+++-=--+,即可求解a b i -,得到答案.【详解】 由题意,复数12i i a bi i+-=+-,得(1)(2)1312(2)(2)555i i a b i=i i i i i i ++++-=-=--+, 所以1255a b i=i -+,故选B . 【点睛】 本题主要考查了复数的运算,其中解答中熟记复数的基本运算法则,准确化简是解答的关键,着重考查了推理与运算能力,属于基础题.18.设i 是虚数单位,则2320192342020i i i i +++⋅⋅⋅+的值为( )A .10101010i --B .10111010i --C .10111012i --D .10111010i -【答案】B【解析】【分析】利用错位相减法、等比数列的求和公式及复数的周期性进行计算可得答案.【详解】解:设2320192342020S i i i i =+++⋅⋅⋅+,可得:24201920320023420192020iS i i i i i =++++⋅⋅⋅++,则24201923020(1)22020i S i i i i i i -=++++⋅⋅⋅+-, 2019242019202023020(1)(1)202020201i i i S i i i i i i i i i i--=+++++⋅⋅⋅+-+-=-, 可得:2(1)(1)(1)20202020202112i i i i i S i i i i ++-=+-=+-=-+-, 可得:2021(2021)(1)1011101012i i i S i i -+-++===---, 故选:B.【点睛】本题主要考查等比数列的求和公式,错位相减法、及复数的乘除法运算,属于中档题.19.已知复数134z i=+,则下列说法正确的是( ) A .复数z 的实部为3B .复数z 的虚部为425iC .复数z 的共轭复数为342525i +D .复数的模为1【答案】C【解析】【分析】直接利用复数的基本概念得选项.【详解】1343434252525i z i i -===-+, 所以z 的实部为325,虚部为425- ,z 的共轭复数为342525i +15=, 故选C.【点睛】该题考查的是有关复数的概念和运算,属于简单题目.20.若复数(1)(1)z m m m i =-+-是纯虚数,其中m 是实数,则1z =( ) A .iB .i -C .2iD .2i -【答案】A【解析】 因为复数()()11z m m m i =-+-是纯虚数,所以()1010m m m ⎧-=⎨-≠⎩,则m =0,所以z i =-,则11i z i==-.。
高考数学《复数》课后练习一、选择题1.复数z 满足()1|1|z i i +=-,则复数z 在复平面内的对应点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】【分析】根据复数的运算法则,化简z =-,再结合复数的几何表示方法,即可求解. 【详解】由题意,复数z 满足()1|1|z i i +=-,可得)()()1|1|11122i i z i i i --===-++-,则复数z 在复平面内对应的点为位于第四象限. 故选:D .【点睛】本题主要考查了复数的几何表示方法,以及复数的除法运算,其中解答中熟记复数的运算法则,准确化简复数为代数形式是解答的关键,着重考查了推理与运算能力.2.已知复数z 满足()1i z i +=,i 为虚数单位,则z 等于( ) A .1i -B .1i +C .1122i -D .1122i + 【答案】A【解析】因为|2(1)11(1)(1)i i z i i i i -===-++-,所以应选答案A .3.若z C ∈且342z i ++≤,则1z i --的最大和最小值分别为,M m ,则M m -的值等于( )A .3B .4C .5D .9【答案】B【解析】【分析】根据复数差的模的几何意义可得复数z 在复平面上对应的点的轨迹,再次利用复数差的模的几何意义得到,M m ,从而可得M m -的值.因为342z i ++≤, 故复数z 在复平面上对应的点P 到134z i =--对应的点A 的距离小于或等于2, 所以P 在以()3,4C --为圆心,半径为2的圆面内或圆上,又1z i --表示P 到复数21z i =+对应的点B 的距离,故该距离的最大值为()()22231412412AB +=--+--+=+,最小值为2412AB -=-,故4M m -=.故选:B.【点睛】本题考查复数中12z z -的几何意义,该几何意义为复平面上12,z z 对应的两点之间的距离,注意12z z +也有明确的几何意义(可把12z z +化成()12z z --),本题属于中档题.4.欧拉公式e i x =cos x +isin x (i 为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,e 2i 表示的复数在复平面中对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】【分析】由题意得2cos 2sin 2i e i =+,得到复数在复平面内对应的点(cos 2,sin 2),即可作出解答.【详解】由题意得,e 2i =cos 2+isin 2,∴复数在复平面内对应的点为(cos 2,sin 2).∵2∈, ∴cos 2∈(-1,0),sin 2∈(0,1),∴e 2i 表示的复数在复平面中对应的点位于第二象限,故选B.【点睛】本题主要考查了复数坐标的表示,属于基础题.5.若12i +是关于x 的实系数方程20x bx c ++=的一个复数根,则( )A .2,3b c ==B .2,1b c ==-C .2,1b c =-=-D .2,3b c =-=【答案】D【解析】由题意,将根代入实系数方程x 2+bx +c =0整理后根据得数相等的充要条件得到关于实数a ,b的方程组100b c -++=⎧⎪⎨=⎪⎩,解方程得出a ,b 的值即可选出正确选项 【详解】由题意1是关于x 的实系数方程x 2+bx +c =0∴﹣2+b bi +c =0,即()10b c i -+++=∴100b c -++=⎧⎪⎨=⎪⎩,解得b =﹣2,c =3 故选:D .【点睛】本题考查复数相等的充要条件,解题的关键是熟练掌握复数相等的充要条件,能根据它得到关于实数的方程,本题考查了转化的思想,属于基本计算题6.已知i 是虚数单位,复数z 满足()12i z i +=,则z 的虚部是( )A .1B .iC .1-D .i -【答案】A【解析】 ()12i z i +=22(1)112i i i z i i -⇒===++,所以z 的虚部是1,选A. 7.若43i z =+,则z z=( ) A .1B .1-C .4355i +D .4355i - 【答案】D【解析】【详解】由题意可得:5z ==,且:43z i =-, 据此有:4343555z i i z -==-. 本题选择D 选项.8.已知复数z 满足(1)43z i i +=-,其中i 是虚数单位,则复数z 在复平面中对应的点到原点的距离为( )AB.2 C .52 D .54【答案】B【解析】【分析】利用复数的除法运算化简z, 复数z 在复平面中对应的点到原点的距离为||,z 利用模长公式即得解.【详解】由题意知复数z 在复平面中对应的点到原点的距离为||,z43(43)(1)1717,12222||2i i i i z i i z ----====-+∴== 故选:B【点睛】本题考查了复数的除法运算,模长公式和几何意义,考查了学生概念理解,数学运算,数形结合的能力,属于基础题.9.已知z 是复数,则“2z 为纯虚数”是“z 的实部和虚部相等”的( )A .充分必要条件B .充分不必要条C .必要不充分条件D .既不充分也不必要条件 【答案】D【解析】【分析】设z a bi =+,2z 为纯虚数得到0a b =±≠,得到答案.【详解】设z a bi =+,,a b ∈R ,则()2222z a b abi =-+,2z 为纯虚数220020a b a b ab ⎧-=⇔⇔=±≠⎨≠⎩,z 的实部和虚部相等a b ⇔=. 故选:D.【点睛】本题考查了既不充分也不必要条件,意在考查学生的推断能力.10.设i 是虚数单位,则2320192342020i i i i +++⋅⋅⋅+的值为( )A .10101010i --B .10111010i --C .10111012i --D .10111010i -【答案】B【解析】【分析】利用错位相减法、等比数列的求和公式及复数的周期性进行计算可得答案.【详解】解:设2320192342020S i i i i =+++⋅⋅⋅+,可得:24201920320023420192020iS i i i i i =++++⋅⋅⋅++,则24201923020(1)22020i S i i i i ii -=++++⋅⋅⋅+-, 2019242019202023020(1)(1)202020201i i i S i i i i i i i i i i--=+++++⋅⋅⋅+-+-=-, 可得:2(1)(1)(1)20202020202112i i i i i S i i i i ++-=+-=+-=-+-, 可得:2021(2021)(1)1011101012i i i S i i -+-++===---, 故选:B.【点睛】本题主要考查等比数列的求和公式,错位相减法、及复数的乘除法运算,属于中档题.11.设(1)1i x yi -=+,其中,x y 是实数,则x yi +在复平面内所对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】由()11i x yi -=+,其中,x y 是实数,得:11,1x x x y y ==⎧⎧∴⎨⎨-==-⎩⎩,所以x yi +在复平面内所对应的点位于第四象限.本题选择D 选项.12.若121z z -=,则称1z 与2z 互为“邻位复数”.已知复数1z a =与22z bi =+互为“邻位复数”,,a b ∈R ,则22a b +的最大值为( )A .8-B .8+C .1+D .8【答案】B【解析】【分析】根据题意点(,)a b 在圆22(2)(1x y -+-=(,)a b 到原点的距离,计算得到答案.【详解】|2|1a bi --=,故22(2))1a b -+=,点(,)a b 在圆22(2)(1x y -+=上,(,)a b 到原点的距离,故22a b +的最大值为)221(18=+=+. 故选:B .【点睛】 本题考查了复数的运算,点到圆距离的最值,意在考查学生的计算能力和转化能力.13.设()()2225322z t t t t i =+-+++,其中t ∈R ,则以下结论正确的是( ) A .z 对应的点在第一象限B .z 一定不为纯虚数C .z 对应的点在实轴的下方D .z 一定为实数【答案】C【解析】【分析】根据()2222110t t t ++=++>,2253t t +-可正可负也可为0,即可判定.【详解】 ()2222110t t t ++=++>Q ,z ∴不可能为实数,所以D 错误; z ∴对应的点在实轴的上方,又z Q 与z 对应的点关于实轴对称,z 对应的点在实轴的下方,所以C 正确;213,25302t t t -<<+-<,z 对应的点在第二象限,所以A 错误; 21,25302t t t =+-=,z 可能为纯虚数,所以B 错误; ∴C 项正确.故选:C【点睛】此题考查复数概念的辨析,关键在于准确求出实部和虚部的取值范围.14.设3i z i +=,i 是虚数单位,则z 的虚部为( ) A .1B .-1C .3D .-3 【答案】D【解析】因为z=3i i+13i =-∴z 的虚部为-3,选D.15.设2i 2i 1i z =++-,则复数z =( ) A .12i -B .12i +C .2i +D .2i -【答案】A【解析】【分析】根据复数的运算法则,求得12z i =+,再结合共轭复数的概念,即可求解.【详解】 由题意,可得复数()()()2i 1i 2i 2i 2i 12i 1i 1i 1i z +=++=++=+--+, 所以12i z =-.故选:A .【点睛】本题主要考查了复数的运算,以及复数的共轭复数的概念及应用,其中解答中熟记复数的运算法则,准确运算是解答的关键,着重考查了运算能力.16.设复数z 满足()13i z i +=+,则z =( )A .2B .2C .22D .5 【答案】D【解析】分析:先根据复数除法得z ,再根据复数的模求结果.详解:因为()13i z i +=+,所以31(3)(1)212i z i i i i +==+-=-+, 因此5,z =选D.点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b 、模为22a b +、对应点为(,)a b 、共轭为.-a bi17.在复平面内,复数121i z i -=+对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【解析】试题分析:1213122i i i -=--+在复平面内所对应的点坐标为,位于第三象限,故选C .考点:复数的代数运算及几何意义.18.已知i 是虚数单位,则复数242i z i -=+的共轭复数在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【解析】【分析】 先将复数化为代数形式,再根据共轭复数的概念确定对应点,最后根据对应点坐标确定象限.【详解】 解:∵()()()()242232424242105i i i z i i i i ---===-++-, ∴32105z i =+, ∴复数z 的共轭复数在复平面内对应的点的坐标为(32105,),所在的象限为第一象限. 故选:A .点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b (,)a b 、共轭为.-a bi19.已知复数z 满足()11z i i +=-,则z = ( )A .iB .1C .i -D .1-【答案】B【解析】 ()()1i 1i z +=-,则()()()21i 1i 2i 1i 1i 1i 2z ---====-++-i ,1z ∴=,故选B.20.若复数(1)(1)z m m m i =-+-是纯虚数,其中m 是实数,则1z =( ) A .iB .i -C .2iD .2i - 【答案】A【解析】因为复数()()11z m m m i =-+-是纯虚数,所以()1010m m m ⎧-=⎨-≠⎩,则m =0,所以z i =-,则11i z i ==-.。
【高中数学】单元《复数》知识点归纳一、选择题1.已知i 是虚数单位,则复数242i z i-=+的共轭复数在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】A【解析】【分析】先将复数化为代数形式,再根据共轭复数的概念确定对应点,最后根据对应点坐标确定象限.【详解】 解:∵()()()()242232424242105i i i z i i i i ---===-++-, ∴32105z i =+, ∴复数z 的共轭复数在复平面内对应的点的坐标为(32105,),所在的象限为第一象限. 故选:A .点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b (,)a b 、共轭为.-a bi2.已知复数z 的模为2,则z i -的最大值为:( )A .1B .2CD .3【答案】D【解析】 因为z i -213z i ≤+-=+= ,所以最大值为3,选D.3.已知复数1223,z i z a bi =+=+(,R,0a b b 且∈≠),其中i 为虚数单位,若12z z 为实数,则a b 的值为( ) A .32- B .23- C .23 D .32【答案】B【解析】【分析】先根据复数乘法计算,再根据复数概念求a,b 比值.【详解】因为()1223(z z i a bi =++)()23(32a b a b =-++) i , 所以320a b +=,因为0b ≠,所以23a b =-,选B. 【点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b、模为(,)a b 、共轭为.-a bi4.已知复数i z x y =+(x ,y ∈R),且2z +=1y x -的最大值为( ) ABC.2+D.2【答案】C【解析】【分析】根据模长公式,求出复数z 对应点的轨迹为圆,1y x -表示(,)x y 与(0,1)连线的斜率,其最值为过(0,1)点与圆相切的切线斜率,即可求解.【详解】∵复数i z x y =+(x ,y ∈R),且2z +==()2223x y ++=. 设圆的切线l :1y kx =+=化为2420k k--=,解得2k =∴1yx-的最大值为2 故选:C.【点睛】 本题考查复数的几何意义、轨迹方程、斜率的几何意义,考查数形结合思想,属于中档题.5.已知两非零复数12,z z ,若12R z z ∈,则一定成立的是A .12R z z ∈B .12R z z ∈C .12R z z +∈D .12R z z ∈ 【答案】D【解析】利用排除法: 当121,1z i z i =+=-时,12z z ∈R ,而()21212z z i i R =+=∉,选项A 错误, 1211z i i R z i+==∉-,选项B 错误, 当121,22z i z i =+=-时,12z z ∈R ,而123z z i R +=-∉,选项C 错误,本题选择D 选项.6.复数1122i i ++的虚部为( ) A .110 B .110- C .310 D .310- 【答案】A【解析】【分析】 化简复数111122510i i i +=++,结合复数的概念,即可求解复数的虚部,得到答案,. 【详解】 由题意,复数()()1121112212122510i i i i i i i -+=+=+++-, 所以复数1122i i ++的虚部为110. 故选:A.【点睛】本题主要考查了复数的运算法则,以及复数的概念,其中解答中熟记复数的运算法则,准确化简是解答的关键,着重考查了推理与计算能力,属于基础题.7.已知复数z 满足11212i i z+=+(i 为虚数单位),则z 的虚部为( ) A .4 B .4i C .4- D .4i -【答案】C 【解析】112i 11420i 34i 12i 5z ++-===-+ ,所以z 的虚部为4-,选C.8.复数z 满足()1|1|z i i +=-,则复数z 在复平面内的对应点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】【分析】根据复数的运算法则,化简z =-,再结合复数的几何表示方法,即可求解. 【详解】 由题意,复数z 满足()1|1|z i i +=-,可得)()()1|1|11122i i z i i i --===-++-, 则复数z在复平面内对应的点为位于第四象限. 故选:D .【点睛】 本题主要考查了复数的几何表示方法,以及复数的除法运算,其中解答中熟记复数的运算法则,准确化简复数为代数形式是解答的关键,着重考查了推理与运算能力.9.若复数()234sin12cos z i θθ=-++为纯虚数,()0,θπ∈,则θ=( ) A .6π B .3π C .23π D .3π或23π 【答案】B【解析】分析:由题意得到关于sin ,cos θθ的方程组,求解方程组结合题意即可求得三角函数值,由三角函数值即可确定角的大小.详解:若复数()23412z sin cos i θθ=-++为纯虚数,则: 234sin 012cos 0θθ⎧-=⎨+≠⎩,即:23sin 41cos 2θθ⎧=⎪⎪⎨⎪≠-⎪⎩, 结合()0,θπ∈,可知:sin 1cos 2θθ⎧=⎪⎪⎨⎪=⎪⎩,故3πθ=. 本题选择B 选项.点睛:本题主要考查纯虚数的概率,三角函数的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.10.复数11i+的共轭复数是 ( ) A .1122i + B .1122i - C .1i - D .1i +【答案】A【解析】【分析】 利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数11i +,进而可得结果.【详解】 因为()()111121211i i i i i -+--==+, 所以11i+的共轭复数是1122i +, 故选:A.【点睛】 复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.11.设i 是虚数单位,z 表示复数z 的共轭复数,若231z i i =+-,则4z i +=( )A .6B .50C .D 【答案】C【解析】【分析】计算5z i =-,再代入计算得到答案.【详解】由231z i i=+-,得()()2315z i i i =+-=-,则45455z i i i i +=++=+= 故选:C .【点睛】本题考查了复数运算,共轭复数,复数的模,意在考查学生对于复数知识的综合应用.12.欧拉公式cos sin ix e x i x =+(i 为虚数单位)是由著名数学家欧拉发明的,他将指数函数定义域扩大到复数,建立了三角函数和指数函数的关系,根据欧拉公式,若将2i e π表示的复数记为z ,则(12)z i +的值为( )A .2i -+B .2i --C .2i +D .2i -【答案】A【解析】【分析】 根据欧拉公式求出2cossin 22i z e i i πππ==+=,再计算(12)z i +的值.【详解】 ∵2cos sin 22i z e i i πππ==+=,∴(12)(12)2z i i i i +=+=-+.故选:A.【点睛】此题考查复数的基本运算,关键在于根据题意求出z .13.复数(1)(2)z ai a i =-+在复平面内对应的点在第一象限,其中a R ∈,i 为虚数单位,则实数a 的取值范围是( )A .B .)+∞C .(,-∞D .(【答案】A【解析】【分析】利用复数代数形式的乘除运算、化简,再由实部与虚部均大于0,列出不等式组,即可求解.【详解】由题意,复数2(1)(2)3(2)z ai a i a a i =-+=+-在复平面内对应的点在第一象限,所以23020a a >⎧⎨->⎩,解得0a <<,即实数a 的取值范围是. 故选:A .【点睛】本题主要考查了复数的乘法运算,以及复数的代数表示法及其几何意义的应用,着重考查了推理与运算能力.14.如果复数z 满足336z i z i ++-=,那么1z i ++的最小值是( )A .1B C .2 D 【答案】A【解析】 分析:先根据已知336z i z i ++-=找到复数z 对应的点Z 的轨迹,再利用数形结合求1z i ++的最小值.详解:设复数z 对应的点Z(x,y),6=,它表示点Z 到A (0,-3)和B (0,3)的距离和为6,所以点Z 的轨迹为线段AB,因为1z i ++Z 到点C (-1,-1)的距离,所以当点Z 在点D(0,-1)时,它和点C (-1,-1)的距离最小,且这个最小距离为1. 故答案为:A点睛:(1)本题主要考查复数的几何意义,意在考查学生对这些知识的掌握水平和数形结合的思想方法.(2)z a bi ++表示复数z 对应的点到(-a,-b )的距离,类似这样的结论还有一些,大家要结合直角坐标理解它的几何意义,并做到能利用它解题.15.已知下列三个命题:①若复数z 1,z 2的模相等,则z 1,z 2是共轭复数;②z 1,z 2都是复数,若z 1+z 2是虚数,则z 1不是z 2的共轭复数;③复数z 是实数的充要条件是z z =.则其中正确命题的个数为( )A .0个B .1个C .2个D .3个【答案】C【解析】【分析】运用复数的模、共轭复数、虚数等知识对命题进行判断.【详解】对于①中复数1z 和2z 的模相等,例如1=1+z i ,2z ,则1z 和2z 是共轭复数是错误的;对于②1z 和2z 都是复数,若12+z z 是虚数,则其实部互为相反数,则1z 不是2z 的共轭复数,所以②是正确的;对于③复数z 是实数,令z a =,则z a =所以z z =,反之当z z =时,亦有复数z 是实数,故复数z 是实数的充要条件是z z =是正确的.综上正确命题的个数是2个.故选C【点睛】本题考查了复数的基本概念,判断命题是否正确需要熟练掌握基础知识,并能运用举例的方法进行判断,本题较为基础.16.已知复数z 满足(1)2i z i -=,i 为虚数单位,则z 等于A .1i -B .1i +C .1122i -D .1122i + 【答案】B【解析】【分析】由题意可得21z i=-,根据复数的除法运算即可. 【详解】 由()12i z i -=,可得22(1)112i z i i +===+-, 故选B.【点睛】 本题主要考查了复数的除法运算,复数的模,属于中档题.17.已知复数z 满足()11z i i +=-,则z = ( )A .iB .1C .i -D .1-【答案】B【解析】 ()()1i 1i z +=-,则()()()21i 1i 2i 1i 1i 1i 2z ---====-++-i ,1z ∴=,故选B.18.复数321i i -(i 为虚数单位)的共轭复数是 ( ) A .2155i -+ B .2133i + C .2155i -- D .2133i - 【答案】C【解析】 试题分析:由题;3(21)22121(21)(21)555i i i i i i i i -+-===-+--+-,则共轭复数为:2155i --. 考点:复数的运算及共轭复数的概念.19.复数z 满足|||3|z i z i -=+,则||z ( )A .恒等于1B .最大值为1,无最小值C .最小值为1,无最大值D .无最大值,也无最小值【答案】C【解析】【分析】设复数z x yi =+,其中x ,y R ∈,由题意求出1y =-,再计算||z 的值.【详解】解:设复数z x yi =+,其中x ,y R ∈,由|||3|z i z i -=+,得|(1)||(3)|x y i x y i +-=++, 2222(1)(3)x y x y ∴+-=++,解得1y =-;||1z ∴=,即||z 有最小值为1,没有最大值.故选:C .【点睛】本题考查了复数的概念与应用问题,是基础题.20.已知i 是虚数单位,则2331i i i -⎛⎫-= ⎪+⎝⎭( ) A .32i --B .33i --C .24i -+D .22i -- 【答案】B【解析】【分析】根据虚数单位i 的性质以及复数的基本运算法则,直接计算化简.【详解】()()()22231i 3i 3i i i 12i i 33i 1i 2轾--骣-÷犏ç-=+=-+=--÷ç÷犏ç桫+臌 故选B.【点睛】本题考查复数代数形式的混合运算.除法中关键是分子分母同乘以分母的共轭复数,实现分母实数化.。
【最新】数学《复数》高考复习知识点一、选择题1,若复数z的虚部小于0, |z|J5,且z Z4,则iz ()A. 1 3iB. 2 iC. 1 2iD. 1 2i【答案】C【解析】【分析】根据z z 4可得z 2 mi(m R),结合模长关系列方程,根据虚部小于0即可得解【详解】由z z 4,得z 2 mi(m R),因为|z| 而=4 J5,所以m 1.又z的虚部小于0,所以z 2 i , iz 1 2i.故选:C【点睛】此题考查复数的概念辨析和模长计算,根据复数的概念和运算法则求解^...... 4 ~ 一,、2.已知i是虚数单位,z ------------- 43i ,则z ( )(1 i)A. 10B. ^/T QC. 5D. V5【答案】B【解析】【分析】利用复数代数形式的乘除运算化简,再由复数模的计算公式求解. 【详解】4 4 ,--- z ------ rQz (7Y 3i左3i 1 3i,|z J( 1)2( 3)2 师故选B.【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.3.已知i是虚数单位,复数z i 3 4i ,若在复平面内,复数z i与z2所对应的点关于虚轴对称,则z i z2A. 25B. 25C. 7D. 7【答案】A 【解析】【分析】根据复数乙与z2所对应的点关于虚轴对称,z1 3 4i ,求出z2,代入计算即可【详解】Q复数Z i与Z2所对应的点关于虚轴对称,Z i 3 4i z2 3 4i4 Z2 3 4i 3 4i 25故选A【点睛】本题主要考查了复数的运算法则及其几何意义,属于基础题z4.若Z 4 3i ,则一()zA. 1B. 1C. 4 3i5 5 【答案】D【解析】【详解】由题意可得:z 。
4232 5,且:z 4 3i ,z 4 3i 4 3.据此有:一7 7i .z 5 5 5本题选择D选项. D.3.—i55.已知复数z x yi (x, y R),且A.33C. 2 \ 6 【答案】C 【解析】【分析】根据模长公式,求出复数z对应点的轨迹为圆, 值为过(0,1)点与圆相切的切线斜率,即可求解【详解】・••复数z x yi (x, y R),且z 2 ••• , x 2 2 y2、、3 . x 2 2 y2z 2 m ,则)二的最大值为()xB.66D. 2 V6工」表示(x,y)与(0,1)连线的斜率,其最x .后3.、……八.2k 1 广设圆的切线1 : y kx 1 ,则一jJ 3,,k 2 1化为k 24k 2 0 ,解得k 2 76, ,上」的最大值为2 J6.x、故选:C. 【点睛】本题考查复数的几何意义、轨迹方程、斜率的几何意义,考查数形结合思想,属于中档题|1 i | 、. 2 1 i ,2 、2.z J ! ——i ,1 i 1 i 1 i2 22、2则复数z在复平面内对应的点为 d 2_)位于第四象限. 22故选:D. 【点睛】本题主要考查了复数的几何表示方法,以及复数的除法运算,其中解答中熟记复数的运算 法则,准确化简复数为代数形式是解答的关键,着重考查了推理与运算能力.7.已知复数z 1旦,则z z2 2()A.1jjiB.。
《复数》知识点汇总一、选择题1.已知复数z 满足11212i i z+=+(i 为虚数单位),则z 的虚部为( ) A .4 B .4i C .4- D .4i -【答案】C 【解析】112i 11420i 34i 12i 5z ++-===-+ ,所以z 的虚部为4-,选C.2.已知i 是虚数单位,44z 3i (1i)=-+,则z (= )A .10BC .5D 【答案】B【解析】【分析】利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.【详解】4244z 3i 3i 13i (1i)(2i)=-=-=--+Q ,z ∴== 故选B .【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.3.已知复数i z x y =+(x ,y ∈R ),且2z +=1y x -的最大值为( )A BC .2+D .2【答案】C【解析】【分析】根据模长公式,求出复数z 对应点的轨迹为圆,1y x -表示(,)x y 与(0,1)连线的斜率,其最值为过(0,1)点与圆相切的切线斜率,即可求解.【详解】∵复数i z x y =+(x ,y ∈R ),且2z +==()2223x y ++=.设圆的切线l :1y kx =+=化为2420k k --=,解得2k = ∴1y x-的最大值为2 故选:C.【点睛】 本题考查复数的几何意义、轨迹方程、斜率的几何意义,考查数形结合思想,属于中档题.4.已知(,)a bi a b R +∈是11i i +-的共轭复数,则a b +=( ) A .1-B .12-C .12D .1 【答案】A【解析】【分析】 先利用复数的除法运算法则求出11i i+-的值,再利用共轭复数的定义求出a +bi ,从而确定a ,b 的值,求出a +b .【详解】 ()()21(1)21112i i i i i i ++===-+-i , ∴a +bi =﹣i ,∴a =0,b =﹣1,∴a +b =﹣1,故选:A .【点睛】本题主要考查了复数代数形式的乘除运算,考查了共轭复数的概念,是基础题.5.设3443i z i -=+,()21f x x x =-+,则()f z =( ) A .iB .i -C .1i -+D .1i +【答案】A【解析】【分析】利用复数代数形式的乘除运算化简,代入函数解析式求解.【详解】解:3443i z i-=+Q ()()()()344334434343i i i z i i i i ---∴===-++- ()21f x x x =-+Q()()()21f z i i i ∴=---+=故选:A【点睛】本题考查复数代数形式的乘除运算,是基础的计算题.6.已知i 是虚数单位,则复数242i z i -=+的共轭复数在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】A【解析】【分析】先将复数化为代数形式,再根据共轭复数的概念确定对应点,最后根据对应点坐标确定象限.【详解】 解:∵()()()()242232424242105i i i z i i i i ---===-++-, ∴32105z i =+, ∴复数z 的共轭复数在复平面内对应的点的坐标为(32105,),所在的象限为第一象限. 故选:A .点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b (,)a b 、共轭为.-a bi7.已知复数12z =-,则z z +=( )A .12--B .12-+C .12+D .12- 【答案】C【解析】分析:首先根据题中所给的复数z ,可以求得其共轭复数,并且可以求出复数的模,代入求得122z z i +=+,从而求得结果.详解:根据12z =-,可得12z =-+,且1z ==,所以有11122z z +=-++=+,故选C. 点睛:该题考查的是有关复数的问题,涉及到的知识点有复数的共轭复数、复数的模、以及复数的加法运算,属于基础题目.8.若复数z 的虚部小于0,|z |=4z z +=,则iz =( )A .13i +B .2i +C .12i +D .12i -【答案】C【解析】【分析】 根据4z z +=可得()2z mi m =+∈R ,结合模长关系列方程,根据虚部小于0即可得解.【详解】由4z z +=,得()2z mi m =+∈R ,因为||z ==1m =±. 又z 的虚部小于0,所以2z i =-,12iz i =+.故选:C【点睛】此题考查复数的概念辨析和模长计算,根据复数的概念和运算法则求解.9.若复数z 满足2(12)1i z z +=+,则其共轭复数z 为( )A .1188i +B .1188i -+C .1188i --D .1188i - 【答案】B【解析】【分析】 计算得到18i z --=,再计算共轭复数得到答案. 【详解】 21111(12)1,,44888i i z z z z i i --+=+∴===-+-Q . 故选:B .【点睛】本题考查了复数的化简,共轭复数,意在考查学生的计算能力.10.设i 是虚数单位,则复数734i i ++在复平面内所对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】 因为734i i ++(7)(34)2525=1(34)(34)25i i i i i i +--==-+-, 所以所对应的点为(1,1)-,位于第四象限,选D.11.若复数()234sin12cos z i θθ=-++为纯虚数,()0,θπ∈,则θ=( ) A .6π B .3π C .23π D .3π或23π 【答案】B【解析】分析:由题意得到关于sin ,cos θθ的方程组,求解方程组结合题意即可求得三角函数值,由三角函数值即可确定角的大小.详解:若复数()23412z sin cos i θθ=-++为纯虚数,则: 234sin 012cos 0θθ⎧-=⎨+≠⎩,即:23sin 41cos 2θθ⎧=⎪⎪⎨⎪≠-⎪⎩, 结合()0,θπ∈,可知:sin 1cos 2θθ⎧=⎪⎪⎨⎪=⎪⎩,故3πθ=. 本题选择B 选项.点睛:本题主要考查纯虚数的概率,三角函数的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.12.设i 是虚数单位,z 表示复数z 的共轭复数,若231z i i =+-,则4z i +=( ) A .6B .50 C.D【答案】C【解析】【分析】计算5z i =-,再代入计算得到答案.【详解】由231z i i=+-,得()()2315z i i i =+-=-,则45455z i i i i +=++=+= 故选:C .【点睛】本题考查了复数运算,共轭复数,复数的模,意在考查学生对于复数知识的综合应用.13.设复数z 满足()13i z i +=+,则z =( )AB .2C .D 【答案】D【解析】分析:先根据复数除法得z ,再根据复数的模求结果.详解:因为()13i z i +=+,所以31(3)(1)212i z i i i i +==+-=-+,因此z =选D.点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b (,)a b 、共轭为.-a bi14.若复数1a i z i +=-,且3·0z i >,则实数a 的值等于( ) A .1B .-1C .12D .12- 【答案】A【解析】【分析】由3·0z i >可判定3·z i 为实数,利用复数代数形式的乘除运算化简复数z ,再由实部为0,且虚部不为0列式求解即可.【详解】 ()()()()()i 1i 11i i 1i 1i 1i 2a a a a z ++-+++===--+Q , 所以3·z i =()()()()341i 1i 1i 122a a a a -++--++=,因为3·0z i >,所以3·z i 为实数,102a --= 可得1a =,1a =时3,?10z i =>,符合题意,故选A.【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.15.已知m 为实数,i 为虚数单位,若()24m m +- 0i >,则222m i i +=-( ) A .iB .1C .- iD .1- 【答案】A【解析】因为2(4)0m m i +->,所以2(4)m m i +-是实数,且20{240m m m >⇒=-=,故22(1)222(1)m i i i i i ++==--,应选答案A .16.已知复数z 满足(1)43z i i +=-,其中i 是虚数单位,则复数z 在复平面中对应的点到原点的距离为( )AB.2 C .52 D .54【答案】B【解析】【分析】利用复数的除法运算化简z, 复数z 在复平面中对应的点到原点的距离为||,z 利用模长公式即得解.【详解】由题意知复数z 在复平面中对应的点到原点的距离为||,z43(43)(1)1717,12222||2i i i i z i i z ----====-+∴== 故选:B【点睛】本题考查了复数的除法运算,模长公式和几何意义,考查了学生概念理解,数学运算,数形结合的能力,属于基础题.17.已知复数z 在复平面内对应点是()1,2-,i 为虚数单位,则21z z +=-( )A .1i --B .1i +C .312i -D .312i + 【答案】D【解析】 21z z +=-323122i i i -=+- ,选D.18.已知复数z 满足()11z i i +=-,则z = ( ) A .iB .1C .i -D .1-【答案】B【解析】 ()()1i 1i z +=-,则()()()21i 1i 2i 1i 1i 1i 2z ---====-++-i ,1z ∴=,故选B.19.在复平面内,复数z 满足()112z i i +=-,则z 对应的点位于 ( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】 ∵()112z i i +=-,∴()()()()221211212213131111222i i i i i i i z i i i i i -----+--=====--++--,∴1322z i =-+,故对应的点在第二象限.故选B .20.若复数z 满足()12z i i +=(i 为虚数单位),则z =( )A .1B .2CD .【答案】C【解析】试题分析:因为(1)2z i i +=,所以22(1)1,12i i i z i i -===++因此1z i =+= 考点:复数的模。
【最新】高中数学《复数》专题解析一、选择题1.复数z 满足(2)36z i i +=-(i 为虚数单位),则复数z 的虚部为( ) A .3 B .3i -C .3iD .3-【答案】D 【解析】 【分析】首先化简复数z ,然后结合复数的定义确定其虚部即可. 【详解】 由题意可得:()()()()362361151322255i i i i z i i i i -----====--++-, 据此可知,复数z 的虚部为3-. 本题选择D 选项. 【点睛】复数的代数形式的运算主要有加、减、乘、除及求低次方根.除法实际上是分母实数化的过程.2.已知复数21iz =-+,则( ) A .2z =B .z 的实部为1C .z 的虚部为1-D .z 的共轭复数为1i +【答案】C 【解析】分析:由题意首先化简复数z ,然后结合z 的值逐一考查所给的选项即可确定正确的说法. 详解:由复数的运算法则可得:()()()()21211112i i z i i i ----===---+--,则z =,选项A 错误;z 的实部为1-,选项B 错误; z 的虚部为1-,选项C 正确; z 的共轭复数为1zi =-+,选项D 错误.本题选择C 选项.点睛:本题主要考查复数的运算法则,复数的几何意义等知识,意在考查学生的转化能力和计算求解能力.3.若复数z 满足232,z z i +=-其中i 为虚数单位,则z= A .1+2i B .1-2iC .12i -+D .12i --【答案】B【解析】试题分析:设i z a b =+,则23i 32i z z a b +=+=-,故,则12i z =-,选B.【考点】注意共轭复数的概念【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,有时对复数的运算与概念、复数的几何意义等进行综合考查,也是考生必定得分的题目之一.4.已知复数z 满足()13i z i +=,i 为虚数单位,则z 等于( )A .1i -B .1i +C .1122i - D .1122i + 【答案】A 【解析】 因为|3+|2(1)1(1)(1)i i z i i i -===-+-,所以应选答案A .5.设i 是虚数单位,则()()3211i i -+等于()A .1i -B .1i -+C .1i +D .1i --【答案】B 【解析】 【分析】 化简复数得到答案. 【详解】()()3221(1)(1)2(1)1221i i i i i i i ii -----===-++故答案选B 【点睛】本题考查了复数的计算,意在考查学生的计算能力.6.在复平面内,已知复数z 对应的点与复数2i --对应的点关于实轴对称,则zi=( ) A .12i - B .12i +C .12i -+D .12i --【答案】B 【解析】 【分析】由已知求得z ,代入zi,再由复数代数形式的乘除运算化简得答案. 【详解】由题意,2z i =-+,则22(2)()12z i i i i i i i -+-+-===+-. 故选:B . 【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.7.复数21iz i+=-,i 是虚数单位,则下列结论正确的是A .z =B .z 的共轭复数为31+22i C .z 的实部与虚部之和为1 D .z 在复平面内的对应点位于第一象限【答案】D 【解析】 【分析】利用复数的四则运算,求得1322z i =+,在根据复数的模,复数与共轭复数的概念等即可得到结论. 【详解】 由题意()()()()22121313111122i i i i z i i i i i ++++====+--+-,则2z ==,z的共轭复数为1322z i =-, 复数z 的实部与虚部之和为2,z 在复平面内对应点位于第一象限,故选D . 【点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化,其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b (,)a b 、共轭为a bi -.8.已知m 为实数,i 为虚数单位,若()24m m +- 0i >,则222m ii+=-( ) A .i B .1C .- iD .1-【答案】A 【解析】因为2(4)0m m i +->,所以2(4)m m i +-是实数,且20{240m m m >⇒=-=,故22(1)222(1)m i i i i i ++==--,应选答案A .9.已知(,)a bi a b R +∈是11ii+-的共轭复数,则a b +=( ) A .1- B .12-C .12D .1【答案】A 【解析】 【分析】先利用复数的除法运算法则求出11ii+-的值,再利用共轭复数的定义求出a +bi ,从而确定a ,b 的值,求出a +b . 【详解】()()21(1)21112i i ii i i ++===-+-i , ∴a +bi =﹣i , ∴a =0,b =﹣1, ∴a +b =﹣1, 故选:A . 【点睛】本题主要考查了复数代数形式的乘除运算,考查了共轭复数的概念,是基础题.10.在复平面内与复数21iz i=+所对应的点关于虚轴对称的点为A ,则A 对应的复数为( ) A .1i -- B .1i -C .1i +D .1i -+【答案】D 【解析】 【分析】根据复数的运算法则求出1z i =+,即可得到其对应点关于虚轴对称点的坐标,写出复数. 【详解】由题()()()2122211112i i i i z i i i i -+====+++-,在复平面对应的点为(1,1), 关于虚轴对称点为(-1,1),所以其对应的复数为1i -+. 故选:D【点睛】此题考查复数的几何意义,关键在于根据复数的乘法除法运算准确求解,熟练掌握复数的几何意义.11.已知复数z 满足(1)43z i i +=-,其中i 是虚数单位,则复数z 在复平面中对应的点到原点的距离为( ) AB.2C .52D .54【答案】B 【解析】 【分析】利用复数的除法运算化简z, 复数z 在复平面中对应的点到原点的距离为||,z 利用模长公式即得解. 【详解】由题意知复数z 在复平面中对应的点到原点的距离为||,z43(43)(1)1717,12222||2i i i i z i i z ----====-+∴==故选:B 【点睛】本题考查了复数的除法运算,模长公式和几何意义,考查了学生概念理解,数学运算,数形结合的能力,属于基础题.12.“1x >”是“复数2(1)()z x x x i x R =-+-∈在复平面内对应的点在第一象限”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C 【解析】 【分析】根据充分必要条件的定义结合复数与复平面内点的对应关系,从而得到答案. 【详解】若复数()()21z x x x i x R =-+-∈在复平面内对应的点在第一象限,则20,10x x x ⎧->⎨->⎩ 解得1x >,故“1x >”是“复数()()21z x x x i x R =-+-∈在复平面内对应的点在第一象限”的充要条件. 故选C. 【点睛】本题考查了充分必要条件,考查了复数的与复平面内点的对应关系,是一道基础题.13.复数11i +的共轭复数是 ( ) A .1122i + B .1122i -C .1i -D .1i +【答案】A 【解析】 【分析】利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数11i+,进而可得结果. 【详解】因为()()111121211i i i i i -+--==+, 所以11i+的共轭复数是1122i +,故选:A. 【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.14.如果复数z 满足336z i z i ++-=,那么1z i ++的最小值是( )A .1 BC .2D 【答案】A 【解析】分析:先根据已知336z i z i ++-=找到复数z 对应的点Z 的轨迹,再利用数形结合求1z i ++的最小值.详解:设复数z 对应的点Z(x,y),6=,它表示点Z 到A (0,-3)和B (0,3)的距离和为6, 所以点Z 的轨迹为线段AB,因为1z i ++Z 到点C (-1,-1)的距离, 所以当点Z 在点D(0,-1)时,它和点C (-1,-1)的距离最小,且这个最小距离为1. 故答案为:A点睛:(1)本题主要考查复数的几何意义,意在考查学生对这些知识的掌握水平和数形结合的思想方法.(2)z a bi ++表示复数z 对应的点到(-a,-b )的距离,类似这样的结论还有一些,大家要结合直角坐标理解它的几何意义,并做到能利用它解题.15.(2018江西省景德镇联考)若复数2i2a z -=在复平面内对应的点在直线0x y +=上,则z =( )A .2 BC .1D .【答案】B 【解析】分析:化简复数z ,求出对应点坐标,代入直线方程,可求得a 的值,从而可得结果. 详解:因为复数2i 22a az i -==-, 所以复数2i 2a z -=在复平面内对应的点的坐标为,12a ⎛⎫- ⎪⎝⎭, 由复数2i2a z -=在复平面内对应的点在直线0x y +=上, 可得10212aa z i -=⇒==-,,z ==,故选B.16.已知复数z 在复平面内对应点是()1,2-,i 为虚数单位,则21z z +=-( ) A .1i -- B .1i +C .312i -D .312i +【答案】D 【解析】21z z +=-323122i i i -=+- ,选D.17.在复平面内,复数z 满足()112z i i +=-,则z 对应的点位于 ( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】B 【解析】∵()112z i i +=-,∴()()()()221211212213131111222i i i i i i i z i i i i i -----+--=====--++--,∴1322z i =-+,故对应的点在第二象限.故选B .18.复数321i i -(i 为虚数单位)的共轭复数是 ( )A .2155i -+ B .2133i + C .2155i -- D .2133i - 【答案】C 【解析】试题分析:由题;3(21)22121(21)(21)555i i i i i i i i -+-===-+--+-,则共轭复数为:2155i --. 考点:复数的运算及共轭复数的概念.19.若复数z 满足()12z i i +=(i 为虚数单位),则z =( )A .1B .2C D .【答案】C 【解析】试题分析:因为(1)2z i i +=,所以22(1)1,12i i i z i i -===++因此1z i =+= 考点:复数的模20.若复数(1)(1)z m m m i =-+-是纯虚数,其中m 是实数,则1z=( ) A .i B .i -C .2iD .2i -【答案】A 【解析】因为复数()()11z m m m i =-+-是纯虚数,所以()1010m m m ⎧-=⎨-≠⎩,则m =0,所以z i =-,则11i z i==-.。
新单元《复数》专题解析一、选择题1.设复数4273i z i -=-,则复数z 的虚部为( ) A .1729- B .1729 C .129- D .129【答案】C【解析】【分析】 根据复数运算法则求解1712929z i =-,即可得到其虚部. 【详解】 依题意,()()()()427342281214634217173737358582929i i i i i i z i i i i -+-+-+-=====---+ 故复数z 的虚部为129-故选:C【点睛】此题考查复数的运算和概念辨析,关键在于熟练掌握运算法则,准确计算,正确辨析虚部的概念.2.已知复数z 的模为2,则z i -的最大值为:( )A .1B .2CD .3【答案】D【解析】 因为z i -213z i ≤+-=+= ,所以最大值为3,选D.3.欧拉公式e i x =cos x +isin x (i 为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,e 2i 表示的复数在复平面中对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】【分析】由题意得2cos 2sin 2i e i =+,得到复数在复平面内对应的点(cos 2,sin 2),即可作出解答.【详解】由题意得,e 2i =cos 2+isin 2,∴复数在复平面内对应的点为(cos 2,sin 2).∵2∈,∴cos 2∈(-1,0),sin 2∈(0,1),∴e 2i 表示的复数在复平面中对应的点位于第二象限,故选B.【点睛】本题主要考查了复数坐标的表示,属于基础题.4.设i 是虚数单位,则()()3211i i -+等于( )A .1i -B .1i -+C .1i +D .1i --【答案】B【解析】【分析】化简复数得到答案.【详解】()()3221(1)(1)2(1)1221i i i i i i i i i -----===-++故答案选B【点睛】本题考查了复数的计算,意在考查学生的计算能力.5.在复平面内,已知复数z 对应的点与复数2i --对应的点关于实轴对称,则zi =()A .12i -B .12i +C .12i -+D .12i --【答案】B【解析】【分析】由已知求得z ,代入zi ,再由复数代数形式的乘除运算化简得答案.【详解】由题意,2z i =-+, 则22(2)()12z ii i i i i i -+-+-===+-.故选:B .【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.6.已知为虚数单位, m R ∈,复数()()22288z m m m m=-+++-,若z 为负实数,则m 的取值集合为( )A .{}0B .{}8C .()2,4-D .()4,2-【答案】B 【解析】由题设可得2280{280m m m m -=-++<,解之得8m =,应选答案B 。
新数学《复数》试卷含答案一、选择题1.若202031i i z i+=+,则z 在复平面内对应点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【解析】【分析】化简得到2z i =+,得到答案.【详解】 ()()()()202013131342211112i i i i i i z i i i i i +-+++=====++++-,对应的点在第一象限. 故选:A .【点睛】本题考查了复数对应象限,意在考查学生的计算能力.2.若复数21z i i =+-(i 为虚数单位),则||z =( )AB C D .5【答案】C【解析】【分析】根据复数的运算,化简复数,再根据模的定义求解即可.【详解】 22(1)121(1)(1)i z i i i i i i +=+=+=+--+,||z ==故选C. 【点睛】本题主要考查了复数的除法运算,复数模的概念,属于中档题.3.已知i 是虚数单位,复数134z i =-,若在复平面内,复数1z 与2z 所对应的点关于虚轴对称,则12z z ⋅=A .25-B .25C .7-D .7【答案】A【解析】【分析】根据复数1z 与2z 所对应的点关于虚轴对称,134z i =-,求出2z ,代入计算即可【详解】Q 复数1z 与2z 所对应的点关于虚轴对称,134z i =-234z i ∴=--()()12343425z z i i ⋅=---=-故选A【点睛】本题主要考查了复数的运算法则及其几何意义,属于基础题4.已知复数(2)z i i =-,其中i 是虚数单位,则z 的模z = ( ) A .3 B .5 C .3 D .5【答案】B【解析】 22(2)22(1)5z i i i i =-=-=+-=,故选B .5.已知复数z 满足()13i z i +=+,i 为虚数单位,则z 等于( ) A .1i -B .1i +C .1122i -D .1122i + 【答案】A【解析】因为|3+|2(1)1(1)(1)i i z i i i -===-+-,所以应选答案A .6.已知为虚数单位, m R ∈,复数()()22288z m m m m=-+++-,若z 为负实数,则m 的取值集合为( )A .{}0B .{}8C .()2,4-D .()4,2-【答案】B 【解析】由题设可得2280{280m m m m -=-++<,解之得8m =,应选答案B 。